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Notes on Modelling

OverviewOverview
ModellingModelling

Topics to be covered include:

How to select the appropriate model complexity
How to build models for a given plant
How to describe model errors.
How to linearise nonlinear models

It also provides a brief introduction to certain commonly
used models, including

State space models
High order differential and high order difference equation models
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The Raison d'être for Models

The basic idea of feedback is tremendously 
compelling. Recall the mould level control problem 
from Lecture 2. Actually, there are only three ways 
that a controller could manipulate the valve: open, 
close or leave it as it is. Nevertheless, we have seen 
already that the precise way this is done involves 
subtle trade-offs between conflicting objectives, such 
as speed of response and sensitivity to measurement 
noise.
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The power of a mathematical model lies in the fact 
that it can be simulated in hypothetical situations, be 
subject to states that would be dangerous in reality, 
and it can be used as a basis for synthesizing controllers.



3/23/2006 4/25

Notes on Modelling

Model Complexity

In building a model, it is important to bear in mind 
that all real processes are complex and hence any 
attempt to build an exact description of the plant is 
usually an impossible goal. Fortunately, feedback is 
usually very forgiving and hence, in the context of 
control system design, one can usually get away with 
rather simple models, provided they capture the 
essential features of the problem.
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We introduce several terms:
Nominal model. This is an   approximate description of 
the plant used for control system design.

Calibration model.  This is a more comprehensive 
description of the plant. It includes other features not used 
for control system design but which have a direct bearing 
on the achieved performance.

Model error. This is the difference between the nominal 
model and the calibration model.  Details of this error may  
be unknown but various bounds may be available for it.
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Building Models
A first possible approach to building a plant model is to postulate a 
specific model structure and to use what is known as a black box
approach to modeling.  In this approach one varies, either by trial and 
error or by an algorithm, the model parameters until the dynamic
behavior of model and plant match sufficiently well.
An alternative approach for dealing with the modeling problem is to 
use physical laws (such as conservation of mass, energy and 
momentum) to construct the model.  In this approach one uses the fact 
that, in any real system, there are basic phenomenological laws which 
determine the relationships between all the signals in the system.
In practice, it is common to combine both black box and 
phenomenological ideas to building a model.
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Control relevant models are often quite simple 
compared to the true process and usually combine 
physical reasoning with experimental data.
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State Space Models

For continuous time systems

For discrete time systems

dx

dt
= f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

x[k + 1] = fd(x[k], u[k], k)
y[k] = gd(x[k], u[k], k)
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Linear State Space Models

dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
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Example 3.3

Consider the simple electrical network shown in 
Figure 3.1.  Assume we want to model the voltage  
v(t)

On applying fundamental network laws we obtain 
the following equations:

Figure 3.1:  Electrical
network.  State space model.
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These equations can be rearranged as follows:

We have a linear state space model with

di(t)
dt

=
1
L

v(t)

dv(t)
dt

= − 1
C

i(t) −
(

1
R1C

+
1

R2C

)
v(t) +

1
R1C

vf (t)

A =

[
0 1

L

− 1
C −

(
1

R1C + 1
R2C

)]
; B =

[
0
1

R1C

]
; C =

[
0 1

]
; D = 0
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Example 3.4

Consider a separately excited d.c. motor. Let va(t) 
denote the armature voltage, θ(t) the output angle. A 
simplified schematic diagram of this system is 
shown in Figure 3.2.

Figure 3.2: Simplified model of a d.c. motor
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Linearisation

Although almost every real system includes 
nonlinear features, many systems can be reasonably 
described, at least within certain operating ranges, by 
linear models.
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Thus consider

Say that {xQ(t), uQ(t), yQ(t); t ∈ } is a given set of 
trajectories that satisfy the above equations, i.e.   

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

ẋQ(t) = f(xQ(t), uQ(t)); xQ(to) given
yQ(t) = g(xQ(t), uQ(t))

ẋ(t) ≈ f(xQ, uQ) +
∂f

∂x

∣∣∣∣ x=xQ
u=uQ

(x(t) − xQ) +
∂f

∂u

∣∣∣∣ x=xQ
u=uQ

(u(t) − uQ)

y(t) ≈ g(xQ, uQ) +
∂g

∂x

∣∣∣∣ x=xQ
u=uQ

(x(t) − xQ) +
∂g

∂u

∣∣∣∣ x=xQ
u=uQ

(u(t) − uQ)

+ℜ
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ẋ(t) = Ax(t) + Bu(t) + E

y(t) = Cx(t) + Du(t) + F

A =
∂f

∂x

∣∣∣∣ x=xQ
u=uQ

; B =
∂f

∂u

∣∣∣∣ x=xQ
u=uQ

C =
∂g

∂x

∣∣∣∣ x=xQ
u=uQ

; D =
∂g

∂u

∣∣∣∣ x=xQ
u=uQ

E = f(xQ, uQ) − ∂f

∂x

∣∣∣∣ x=xQ
u=uQ

xQ − ∂f

∂u

∣∣∣∣ x=xQ
u=uQ

uQ

F = g(xQ, uQ) − ∂g

∂x

∣∣∣∣ x=xQ
u=uQ

xQ − ∂g

∂u

∣∣∣∣ x=xQ
u=uQ

uQ
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Example 3.6

Consider a continuous time system with true model 
given by

Assume that the input u(t) fluctuates around u = 2.  
Find an operating point with  uQ = 2  and a linearized 
model around it.

dx(t)
dt

= f(x(t), u(t)) = −
√

x(t) +
(u(t))2

3

d∆x(t)
dt

= −3
8
∆x(t) +

4
3
∆u(t)
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Figure 3.4:  Nonlinear system output,  ynl(t), and linearised 
system output,  yl(t), for a square wave input of increasing 
amplitude, u(t).
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Example 3.7 (Inverted pendulum) 

Figure 3.5: Inverted pendulum

In Figure 3.5, we have used the following notation:
y(t) - distance from some reference point
θ(t) - angle of pendulum
M - mass of cart
m - mass of pendulum (assumed concentrated at tip)

- length of pendulum
f(t) - forces applied to pendulum
l
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Example of an Inverted Pendulum
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Application of Newtonian physics to this system 
leads to the following model:

where λm = (M/m)

ÿ =
1

λm + sin2 θ(t)

[
f(t)
m

+ θ̇2(t)� sin θ(t) − g cos θ(t) sin θ(t)
]

θ̈ =
1

�λm + sin2 θ(t)

[
−f(t)

m
cos θ(t) + θ̇2(t)� sin θ(t) cos θ(t) + (1 − λm)g sin θ(t)

]
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This is a linear state space model in which A, B and C are:

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 −mg

M 0
0 0 0 1
0 0 (M+m)g

M� 0

⎤
⎥⎥⎦ ; B =

⎡
⎢⎢⎣

0
1
M
0

− 1
M�

⎤
⎥⎥⎦ ; C =

[
1 0 0 0

]
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Summary
In order to systematically design a controller for a 
particular system, one needs a formal - though possibly 
simple - description of the system. Such a description is 
called a model. 

A model is a set of mathematical equations that are 
intended to capture the effect of certain system variables 
on certain other system variables. 
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The italicized expressions above should be understood as 
follows:

Certain system variables: It is usually neither possible 
nor necessary to model the effect of every variable on 
every other variable; one therefore limits oneself to 
certain subsets. Typical examples include the effect of 
input on output, the effect of disturbances on output, the 
effect of a reference signal change on the control signal, 
or the effect of various unmeasured internal system 
variables on each other. 
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Capture: A model is never perfect and it is therefore 
always associated with a modeling error. The word 
capture highlights the existence of errors, but does not 
yet concern itself with the precise definition of their 
type and effect.

Intended: This word is a reminder that one does not 
always succeed in finding a model with the desired 
accuracy and hence some iterative refinement may be 
needed. 

Set of mathematical equations: There are numerous 
ways of describing the system behavior, such as linear 
or nonlinear differential or difference equations.
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Models are classified according to properties of the equation 
they are based on. Examples of classification include:

In many situations nonlinear models can be linearised 
around a user defined operating point.

Model
Attribute Contrasting Attribute Asserts whether or not …

Single input
Single output Multiple input multiple output … the model equations have one input and one output only
Linear Nonlinear … the model equations are linear in the system variables
Time varying Time invariant … the model parameters are constant
Continuous Sampled … model equations describe the behavior at every instant of

time, or only in discrete samples of time
Input-output State space … the model equations rely on functions of input and output

variables only, or also include the so called state variables.
Lumped
parameter

Distributed parameter … the model equations are ordinary or partial differential
equations


