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Specific topics to be recalled and covered include:
linear high order differential equation models

Laplace transforms, which convert linear differential 
equations to algebraic equations, thus greatly simplifying 
their study

methods for assessing the stability of linear dynamic 
systems

frequency response.
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Linear Continuous Time Models

The linear form of this model is:

Introducing the Heaviside, or differential, operator ρ〈o〉:

dny(t)
dtn

+ an−1
dn−1y(t)
dtn−1

+ . . . + a0y(t) = bn−1
dn−1

dtn−1
u(t) + . . . + b0u(t)

ρ〈f(t)〉 = ρf(t) � df(t)
dt

ρn〈f(t)〉 = ρnf(t) = ρ
〈
ρn−1〈f(t)〉〉 =

dfn(t)
dtn

We obtain:

ρny(t) + an−1ρ
n−1y(t) + . . . + a0y(t) = bn−1ρ

n−1u(t) + . . . + b0u(t)
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Laplace Transforms

The study of differential equations of the type 
described above is a rich and interesting subject. Of 
all the methods available for studying linear 
differential equations, one particularly useful tool is 
provided by Laplace Transforms. 
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Definition of the Transform

Consider a continuous time signal y(t); 0 ≤ t < ∞. 
The Laplace transform pair associated with y(t) is 
defined as

L [y(t)] = Y (s) =
∫ ∞

0−
e−sty(t)dt

L−1 [y(s)] = y(t) =
1

2πj

∫ σ+j∞

σ−j∞
estY (s)ds
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Table 4.1:  Laplace transform table

f(t) (t ≥ 0) L [f(t)] Region of Convergence

1
1
s

σ > 0

δD(t) 1 |σ| < ∞
t

1
s2

σ > 0

tn n ∈ Z+ n!
sn+1

σ > 0

eαt α ∈ C
1

s − α
σ > �{α}

teαt α ∈ C
1

(s − α)2
σ > �{α}

cos(ωot)
s

s2 + ω2
o

σ > 0

sin(ωot)
ωo

s2 + ω2
o

σ > 0

eαt sin(ωot + β)
(sin β)s + ω2

o cosβ − α sin β

(s − α)2 + ω2
o

σ > �{α}

t sin(ωot)
2ωos

(s2 + ω2
o)2

σ > 0

t cos(ωot)
s2 − ω2

o

(s2 + ω2
o)2

σ > 0

µ(t) − µ(t − τ)
1 − e−sτ

s
|σ| < ∞
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Table 4.2:  Laplace transform properties. Note that
[ ] [ ] { } .00)()(,,...3,2,1,)()(,)()( 21 <∀==∈ℑ=ℑ= ttftfktysYtfsF ii

f(t) L [f(t)] Names
l∑

i=1

aifi(t)
l∑

i=1

aiFi(s) Linear combination

dy(t)
dt

sY (s) − y(0−) Derivative Law

dky(t)
dtk

skY (s) − ∑k
i=1 sk−i di−1y(t)

dti−1

∣∣∣∣
t=0−

High order derivative∫ t

0−
y(τ)dτ

1
s
Y (s) Integral Law

y(t − τ)µ(t − τ) e−sτY (s) Delay

ty(t) −dY (s)
ds

tky(t) (−1)k dkY (s)
dsk∫ t

0−
f1(τ)f2(t − τ)dτ F1(s)F2(s) Convolution

lim
t→∞ y(t) lim

s→0
sY (s) Final Value Theorem

lim
t→0+

y(t) lim
s→∞ sY (s) Initial Value Theorem

f1(t)f2(t)
1

2πj

∫ σ+j∞

σ−j∞
F1(ζ)F2(s − ζ)dζ Time domain product

eatf1(t) F1(s − a) Frequency Shift
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Transfer Functions
Taking Laplace Transforms converts the differential equation 
into the following algebraic equation

where

and

G(s) is called the transfer function.

sn Y(s) + an  1 sn 1Y(s) + : : : + a0 Y(s)

= bn  1sn  1U(s) + : : : + b0 U(s) + f (s; xo)
- -

- -

Y (s) = G(s)U(s)

G(s) =
B(s)
A(s)

A(s) =sn + an−1s
n−1 + . . . + a0

B(s) =bn−1s
n−1 + bn−2s

n−2 + . . . + b0
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Transfer Functions for Continuous 
Time State Space Models
Taking Laplace transform in the state space model 
equations yields

and hence

G(s) is the system transfer function.

sX(s) − x(0) = AX(s) + BU(s)
Y (s) = CX(s) + DU(s)

X(s) = (sI− A)−1x(0) + (sI− A)−1BU(s)

Y (s) = [C(sI− A)−1B + D]U(s) + C(sI− A)−1x(0)

Y (s) = G(s)U(s)

G(s) = C(sI− A)−1B + D
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Often practical systems have a time delay between 
input and output. This is usually associated with the 
transport of material from one point to another.  For 
example, if there is a conveyor belt or pipe 
connecting different parts of a plant, then this will 
invariably introduce a delay.
The transfer function of a pure delay is of the form 
(see Table 4.2):

where Td is the delay (in seconds).  Td will typically 
vary depending on the transportation speed.

H(s) = e−sTd
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Example 4.4 (Heating system). As a simple 
example of a system having a pure time delay 
consider the heating system shown below.
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The transfer function from input (the voltage applied 
to the heating element) to the output (the temperature 
as seen by the thermocouple) is approximately of the 
form:

H(s) =
Ke−sTd

(τs + 1)
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Summary

Transfer functions describe the input-output 
properties of linear systems in algebraic form.
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Stability of Transfer Functions

We say that a system is stable if any bounded input 
produces a bounded output for all bounded initial 
conditions.  In particular, we can use a partial 
fraction expansion to decompose the total response 
of a system into the response of each pole taken 
separately.  For continuous-time systems, we then 
see that stability requires that the poles have strictly 
negative real parts, i.e., they need to be in the open 
left half plane (OLHP) of the complex plane  s .  
This implies that, for continuous time systems, the 
stability boundary is the imaginary axis.
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Impulse and Step Responses of 
Continuous-Time Linear Systems

The transfer function of a continuous time system is the 
Laplace transform of its response to an impulse (Dirac’s 

delta) with zero initial conditions.

The impulse function can be thought of as the limit (∆→0) of 
the pulse shown on the next slide.
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Figure 4.2:  Discrete pulse
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Steady State Step Response

The steady state response (provided it exists) for a 
unit step is given by

where  G(s)  is the transfer function of the system.

)0(1)(lim)(lim
0

G
s

sGsyty
st

===
→∞∞→
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We define the following indicators:
Steady state value,  y∞:  the final value of the step response 

(this is meaningless if the system has poles in the CRHP).
Rise time, tr: The time elapsed up to the instant at which the 

step response reaches, for the first time, the value kry∞. The 
constant kr varies from author to author, being usually 
either 0.9 or 1. 

Overshoot, Mp: The maximum instantaneous amount by 
which the step response exceeds its final value.  It is 
usually expressed as a percentage of y∞
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Undershoot, Mu: the (absolute value of the) maximum 
instantaneous amount by which the step response falls 
below zero.

Settling time, ts: the time elapsed until the step response 
enters (without leaving it afterwards) a specified deviation 
band, ±δ, around the final value. This deviation δ, is 
usually defined as a percentage of y∞, say 2% to 5%.
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Figure 4.3:  Step response indicators
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Poles, Zeros and Time Responses

We will consider a general transfer function of the 
form

β1, β1,…, βm and α1, α2, ,,, αn are the zeros and poles 
of the transfer function, respectively. The relative 
degree is               . mnnr −=

∆

H(s) = K

∏m
i=1(s − βi)∏n
l=1(s − αl)



22/49

Notes on Continuous Time Signals 

Poles

Recall that any scalar rational transfer function can 
be expanded into a partial fraction expansion, each 
term of which contains either a single real pole, a 
complex conjugate pair or multiple combinations 
with repeated poles.
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First Order Pole

A general first order pole contributes

The response of this system to a unit step can be 
computed as

H1(s) =
K

τs + 1

y(t) = L−1

[
K

s(τs + 1)

]
= L−1

[
K

s
− Kτ

τs + 1

]
= K(1 − e−

t
τ )
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Figure 4.4:  Step response of a first order system
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A Complex Conjugate Pair

For the case of a pair of complex conjugate poles, it 
is customary to study a canonical second order 
system having the transfer function.

H(s) =
ω2

n

s2 + 2ψωns + ω2
n
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Step Response for Canonical 
Second Order Transfer Function

On applying the inverse Laplace transform we 
finally obtain

Y (s) =
1
s
− s + ψωn

(s + ψωn)2 + ω2
d

− ψωn

(s + ψωn)2 + ω2
d

=
1
s
− 1√

1 − ψ2

[√
1 − ψ2

s + ψωn

(s + ψωn)2 + ω2
d

− ψ
ωd

(s + ψωn)2 + ω2
d

]

y(t) = 1 − e−ψωnt√
1 − ψ2

sin(ωdt + β)
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Figure 4.5:  Pole location and unit step response of a   
canonical second order system.
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Zeros

The effect that zeros have on the response of a 
transfer function is a little more subtle than that due 
to poles.  One reason for this is that whilst poles are 
associated with the states in isolation,  zeros rise 
from additive interactions amongst the states 
associated with different poles.  Moreover, the zeros 
of a transfer function depend on where the input is 
applied and how the output is formed as a function 
of the states.
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Consider a system with transfer function given by

H(s) =
−s + c

c(s + 1)(0.5s + 1)
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Figure 4.6:  Effect of different zero locations on the step 
response
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The previous figure establishes that, when a system 
has non minimum phase zeros, there is a trade off 
between having a fast step response and having 

small undershoot.
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Frequency Response

We next study the system response to a rather special 
input, namely a sine wave.  The reason for doing so 
is that the response to sine waves also contains rich 
information about the response to other signals.
Let the transfer function be

H(s) = K

∑m
i=0 bis

i

sn +
∑n−1

k=1 aksk

Then the steady state response to the input  sin(wt) is
y(t) = |H(jw)|sin(wt + φ(w))

where
H(jω) = |H(jω)|ejφ(ω)
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In summary:

A sine wave input forces a sine wave at the output 
with the same frequency. Moreover, the amplitude of 
the output sine wave is modified by a factor equal to 
the magnitude of H(jw) and the phase is shifted by a 

quantity equal to the phase of H(jw).
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Bode Diagrams

Bode diagrams consist of a pair of plots. One of 
these plots depicts the magnitude of the frequency 
response as a function of the angular frequency, and 
the other depicts the angle of the frequency response, 
also as a function of the angular frequency.
Usually, Bode diagrams are drawn with special axes:

The abscissa axis is linear in log(w) where the log is base 
10.  This allows a compact representation of the frequency 
response along a wide range of frequencies. The unit on 
this axis is the decade, where a decade is the distance 
between w1 and 10w1 for any value of w1.
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The magnitude of the frequency response is measured in 
decibels [dB], i.e. in units of 20log|H(jw)|. This has several 
advantages, including good accuracy for small and large 
values of |H(jw)|, facility to build simple approximations 
for 20log|H(jw)|, and the fact that the frequency response 
of cascade systems can be obtained by adding the 
individual frequency responses.
The angle is measured on a linear scale in radians or 
degrees.
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Filtering

In an ideal amplifier, the frequency response would 
be H(jw) = K, constant ∀w, i.e. every frequency 
component would pass through the system with 
equal gain and no phase.
We define:

The pass band in which all frequency components pass 
through the system with approximately the same 
amplification (or attenuation) and with a phase shift 
which is approximately proportional to w.
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The stop band, in which all frequency components are 
stopped.  In this band |H(jw)| is small compared to the 
value of |H(jw)| in the pass band.

The transition band(s), which are intermediate between a 
pass band and a stop band.
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Cut-off frequency wc. This is a value of w, such that 
where        is respectively

|H(0)|  for low pass filters and band reject filters

|H(∞)| for high pass filters

the maximum value of |H(jw)| in the pass band, for 
band pass filters

( ) ,2/ĤjwH c = Ĥ
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Bandwidth Bw. This is a measure of the frequency width 
of the pass band (or the reject band).  It is defined as Bw = 
wc2 - wc1, where wc2 > wc1 ≥ 0. In this definition, wc1 and 
wc2 are cut-off frequencies on either side of the pass band 
or reject band (for low pass filters, wc1 = 0).
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Figure 4.8:  Frequency response of a bandpass filter
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Fourier Transform

Definition of the Fourier Transform

F [f(t)] = F (jω) =
∫ ∞

−∞
e−jωtf(t)dt

F−1 [F (jω)] = f(t) =
1
2π

∫ ∞

−∞
ejωtF (jω)dω
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Table 4.3:  Fourier transform table

f(t) ∀t ∈ R F [f(t)]
1 2πδ(ω)

δD(t) 1

µ(t) πδ(ω) +
1
jω

µ(t) − µ(t − to)
1 − e−jωto

jω

eαtµ(t) �{α} < 0
1

jω − α

teαtµ(t) �{α} < 0
1

(jω − α)2

e−α|t| α ∈ R+ 2α

ω2 + α2

cos(ωot) π (δ(ω − ωo) + δ(ω − ωo))
sin(ωot) jπ (δ(ω + ωo) − δ(ω − ωo))

cos(ωot)µ(t) π (δ(ω − ωo) + δ(ω − ωo)) +
jω

−ω2 + ω2
o

sin(ωot)µ(t) jπ (δ(ω + ωo) − δ(ω − ωo)) +
ωo

−ω2 + ω2
o

e−αt cos(ωot)µ(t) α ∈ R+ jω + α

(jω + α)2 + ω2
o

e−αt sin(ωot)µ(t) α ∈ R+ ωo

(jω + α)2 + ω2
o
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Table 4.4:  Fourier transforms properties.  Note that Fi(jw) = 
F[fi(t)] and Y(jw) = F[y(t)].

f(t) F [f(t)] Description
l∑

i=1

aifi(t)
l∑

i=1

aiFi(jω) Linearity

dy(t)
dt

jωY (jω) Derivative law

dky(t)
dtk

(jω)kY (jω) High order derivative∫ t

−∞
y(τ)dτ

1
jω

Y (jω) + πY (0)δ(ω) Integral law

y(t − τ) e−jωτY (jω) Delay

y(at)
1
|a|Y

(
j
ω

a

)
Time scaling

y(−t) Y (−jω) Time reversal∫ ∞

−∞
f1(τ)f2(t − τ)dτ F1(jω)F2(jω) Convolution

y(t) cos(ωot)
1
2
{Y (jω − jωo) + Y (jω + jωo)} Modulation (cosine)

y(t) sin(ωot)
1
j2

{Y (jω − jωo) − Y (jω + jωo)} Modulation (sine)

F (t) 2πf(−jω) Symmetry

f1(t)f2(t)
1

2πj

∫ σ+j∞

σ−j∞
F1(ζ)F2(s − ζ)dζ Time domain product

eatf1(t) F1(jω − a) Frequency shift



44/49

Notes on Continuous Time Signals 

A useful result: Parseval’s Theorem

Theorem 4.1:  Let F(jw) and G(jw) denote the 
Fourier transform of f(t) and g(t) respectively.  Then

∫ ∞

−∞
f(t)g(t) dt =

1
2π

∫ ∞

−∞
F (jω)G(−jω) dω
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Table 4.5:  System models and influence of parameter  
variations

System Parameter Step response Bode (gain) Bode(phase)

K

τs+ 1
K K

K

− π
2

τ
τ τ

τ

− π
2

ω2
n

s2 + 2ψωns+ ω2
ψ

ψ
ψ

ψ

−π

ωn

ωn
ωn

ωn

−π

as+ 1

(s+ 1)2
a

a

a

a

− π
2

−as+ 1

(s+ 1)2
a a

a

a

− 3π
2
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Summary
There are two key approaches to linear dynamic models:

the, so-called, time domain, and
the so-called, frequency domain

Although these two approaches are largely equivalent, they 
each have their own particular advantages and it is 
therefore important to have a good grasp of each.
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In the time domain,
systems are modeled by differential equations
systems are characterized by the evolution of their 
variables (output etc.) in time
the evolution of variables in time is computed by 
solving differential equations
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In the frequency domain,
modeling exploits the key linear system property that 
the steady state response to a sinusoid is again a 
sinusoid of the same frequency;  the system only 
changes amplitude and phase of the input in a fashion 
uniquely determined by the system at that frequency,
systems are modeled by transfer functions, which 
capture this impact as a function of frequency.
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With respect to the important characteristic of stability, a 
continuous time system is

stable if and only if the real parts of all poles are strictly 
negative
marginally stable if at least one pole is strictly 
imaginary and no pole has strictly positive real part
unstable if the real part of at least one pole is strictly 
positive
non-minimum phase if the real part of at least one zero 
is strictly positive.


