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Topics to be covered
For a given controller and plant connected in 
feedback we ask and answer the following questions:
� Is the loop stable?
� What are the sensitivities to various disturbances?
� What is the impact of linear modeling errors?
� How do small nonlinearities impact on the loop?

We recall several analysis tools; specifically

� Root locus
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Feedback Structures

We will see that feedback can have many desirable 
properties such as the capacity to reduce the effect of 
disturbances, to decrease sensitivity to model errors 
or to stabilize an unstable system. We will also see, 
however, that ill-applied feedback can make a 
previously stable system unstable, add oscillatory 
behavior into a previously smooth response or result 
in high sensitivity to measurement noise.
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Figure 5.1: Simple feedback control system 
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In the loop shown in Figure 5.1 we use transfer 
functions and Laplace transforms to describe the 
relationships between signals in the loop.  In 
particular, C(s) and G0(s) denote the transfer 
functions of the controller and the nominal plant 
model respectively, which can be represented in 
fractional form as:

C(s) =
P (s)
L(s)

Go(s) =
Bo(s)
Ao(s)
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Link to Characteristic Equation

Lemma 5.1 (Nominal internal stability)
Consider the nominal closed loop depicted in Figure 
5.2. Then the nominal closed loop is internally stable 
if and only if the roots of the nominal closed loop 
characteristic equation 

all lie in the open left half plane. We call A0L + B0P 
the nominal closed-loop characteristic polynomial.

Ao(s)L(s) + Bo(s)P (s) = 0
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Stability and Polynomial Analysis
Consider a polynomial of the following form:

The problem to be studied deals with the question of 
whether that polynomial has any root with 
nonnegative real part. Obviously, this equation can 
be answered by computing the n roots of p(s). 
However, in many applications it is of special 
interest to study the interplay between the location of 
the roots and certain polynomial coefficients.

p(s) = sn + an−1s
n−1 + . . . + a1s + a0
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Root Locus (RL)
A classical tool used to study stability of equations 
of the type given above is root locus. The root locus 
approach can be used to examine the location of the 
roots of the characteristic polynomial as one 
parameter is varied.
Consider the following equation

with λ ≥ 0 and M, N have degree  m, n respectively.

1 + λF (s) = 0 where F (s) =
M(s)
D(s)
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Example

Consider a plant with transfer function G0(s) and a 
feedback controller with transfer function C(s), 
where

We want to know how the location of the closed 
loop poles change for α moving in �+.

Go(s) =
1

(s − 1)(s + 2)
and C(s) = 4

s + α

s
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Figure 5.3: Locus for the closed loop poles when the 
controller zero varies 
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Nominal Stability using 
Frequency Response

A classical and lasting tool that can be used to assess the stability 
of a feedback loop is Nyquist stability theory. In this approach, 
stability of the closed loop is predicted using the open loop 
frequency response of the system. This is achieved by plotting a
polar diagram of the product G0(s)C(s) and then counting the 
number of encirclements of the (-1,0) point. We show how this 
works below.
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Final Result

Theorem 5.1:
If a proper open loop transfer function G0(s)C(s) has 
P poles in the open RHP, and none on the imaginary 
axis, then the closed loop has Z poles in the open 
RHP if and only if the polar plot G0(sw)C(sw) 
encircles the point (-1,0) clockwise N=Z-P times.
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Discussion
� If the system is open loop stable, then for the closed loop to 

be internally stable it is necessary and sufficient that no 
unstable cancellations occur and that the Nyquist plot of 
G0(s)C(s) does not encircle the point (-1,0).

� If the system is open loop unstable, with P poles in the open 
RHP, then for the closed loop to be internally stable it is 
necessary and sufficient that no unstable cancellations occur 
and that the Nyquist plot of G0(s)C(s) encircles the point
(-1,0) P times counterclockwise.

� If the Nyquist plot of G0(s)C(s) passes exactly through the 
point (-1,0), there exists an w0 ∈ � such that F(jw0) = 0, i.e. 
the closed loop has poles located exactly on the imaginary 
axis. This situation is known as a critical stability condition.



23/03/2006 14/22

Notes on SISO Analysis

Relative Stability:  Stability 
margins and Sensitivity Peaks

In control system design, one often needs to go 
beyond the issue of closed loop stability. In particular, 
it is usually desirable to obtain some quantitative 
measures of how far from instability the nominal loop 
is, i.e. to quantify relative stability.  This is achieved 
by introducing measures which describe the distance 
from the nominal open loop frequency response to the 
critical stability point (-1,0).
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Figure 5.7:  Stability margins and sensitivity peak
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(a)  The gain margin, Mg, and the phase margin Mf
are defined as follows (see Figure 5.7):

Mg
�
= −20 log10(|a|)

Mf
�
= φ

(b)  Peak sensitivity:
Since                     then S0 is a maximum at the 
frequency where  G0(jw)C(jw) is closest to the 
point -1.  The peak sensitivity is thus 1/η - (see 
Figure 5.7).
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Figure 5.8:  Stability margins in Bode diagrams
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Robustness

So far, we have only considered the effect that the 
controller has on the nominal closed loop formed 
with the nominal model for the plant.  However, in 
practice, we are usually interested, not only in this 
nominal performance, but also the true performance 
achieved when the controller is applied to the true 
plant. This is the so called “Robustness” issue.  We 
will show below that the nominal sensitivities do 
indeed tell us something about the true or achieved 
sensitivities.
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Robust Stability

We are concerned with the case where the nominal 
model and the true plant differ.  It is then necessary 
that, in addition to nominal stability, we check that 
stability is retained when the true plant is controlled 
by the same controller. We call this property robust 
stability.
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Proof: Consider the Nyquist plot for the nominal and 
the true loop

Go(jω)C(jω)

−1

Go(jω1)C(jω1)
1 + Go(jω1)C(jω1)

Gε(jω)C(jω)

G(jω)C(jω)
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Summary

� This chapter introduced the fundamentals of SISO 
feedback control loop analysis.

� Feedback introduces a cyclical dependence 
between controller and system:
� the controller action affects the systems 

outputs,
� and the system outputs affect the controller 

action.
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� Well designed, feedback can

� make an unstable system stable;
� increase the response speed;
� decrease the effects of disturbances;
� decrease the effects of system parameter 

uncertainties, and more.


