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This chapter examines a particular control structure 
that has become almost universally used in industrial 
control.  It is based on a particular fixed structure 
controller family, the so-called PID controller 
family.  These controllers have proven to be robust 
and extremely beneficial in the control of many 
important applications.

PID stands for: P (Proportional)

I (Integral)

D (Derivative)
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The Current Situation

Despite the abundance of sophisticated tools, including 
advanced controllers, the Proportional, Integral, 
Derivative (PID controller) is still the most widely 
used in modern industry, controlling more that 95% of 
closed-loop industrial processes*

* Åström K.J. & Hägglund T.H. 1995, “New tuning methods for PID 
controllers”, Proc. 3rd European Control Conference, p.2456-62;  and
*Yamamoto & Hashimoto 1991, “Present status and future needs:  The view 
from Japanese industry”, Chemical Process Control, CPCIV, Proc. 4th Inter-
national Conference on Chemical Process Control, Texas, p.1-28.
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PID Structure

Consider the simple SISO control loop shown  in 
Figure 6.1:

Figure 6.1: Basic feedback control loop

C(s)
R(s) E(s) Y (s)U(s)

−+
Plant



23/03/2006 5/22

Classical PID Control

The standard form PID are:

CP (s) = Kp

CPI(s) = Kp

(
1 +

1
Trs

)

CPD(s) = Kp

(
1 +

Tds

τDs + 1

)

CPID(s) = Kp

(
1 +

1
Trs

+
Tds

τDs + 1

)

Proportional only:

Proportional plus Integral:

Proportional plus derivative:

Proportional, integral and 
derivative:
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Tuning of PID Controllers

Because of their widespread use in practice, we 
present below several methods for tuning PID 
controllers.  Actually these methods are quite old and 
date back to the 1950’s.  Nonetheless, they remain in 
widespread use today.

In particular, we will study.
�� ZieglerZiegler--Nichols Oscillation MethodNichols Oscillation Method
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Ziegler-Nichols (Z-N) Oscillation Method

This procedure is only valid for open loop stable 
plants and it is carried out through the following 
steps

� Set the true plant under proportional control, with a 
very small gain.

� Increase the gain until the loop starts oscillating.  Note 
that linear oscillation is required and that it should be 
detected at the controller output.

23/03/2006 8/22

Classical PID Control

� Record the controller critical gain Kp = Kc and the 
oscillation period of the controller output,  Pc.

� Adjust the controller parameters according to Table 
6.1 (next slide);  there is some controversy regarding 
the PID parameterization for which the Z-N method 
was developed, but the version described here is, to the 
best knowledge of the authors, applicable to the 
parameterization of  standard form PID.
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Table 6.1:  Ziegler-Nichols tuning using the 
oscillation method

Kp Tr Td

P 0.50Kc

PI 0.45Kc
Pc

1.2
PID 0.60Kc 0.5Pc

Pc

8
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General System

If we consider a general plant of the form:

then one can obtain the PID settings via Ziegler-
Nichols tuning for different values of  τ and ν0.  The 
next plot shows the resultant closed loop step 
responses as a function of the ratio 
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Figure 6.3:  PI Z-N tuned (oscillation method) control 
loop for different values of the ratio .
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Numerical Example

Consider a plant with a model given by

Find the parameters of a PID controller using the 
Z-N oscillation method.  Obtain a graph of the 
response to a unit step input reference and to a unit 
step input disturbance.

Go(s) =
1

(s + 1)3
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Solution

Applying the procedure we find:

Kc = 8  and  ωc = √3.

Hence, from Table 6.1, we have

The closed loop response to a unit step in the 
reference at  t = 0  and a unit step disturbance at t = 10 
are shown in the next figure.

Kp = 0.6 ∗ Kc = 4.8; Tr = 0.5 ∗ Pc ≈ 1.81; Td = 0.125 ∗ Pc ≈ 0.45
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Figure 6.4:  Response to step reference and step 
input disturbance
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Lead-lag Compensators

Closely related to PID control is the idea of lead-lag 
compensation.  The transfer function of these 
compensators is of the form:

If  τ1 > τ2, then this is a lead network and when τ1 < τ2, 
this is a lag network.

C(s) =
τ1s + 1
τ2s + 1
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Figure 6.9:  Approximate Bode diagrams for lead 
networks (τ1=10τ2)
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Observation

We see from the previous slide that the lead network 
gives phase advance at  ω = 1/τ1 without an increase 
in gain.  Thus it plays a role similar to derivative 
action in PID.
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Figure 6.10: Approximate Bode diagrams for lag 
networks (τ2=10τ1)
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Observation

We see from the previous slide that the lag network 
gives low frequency gain increase.  Thus it plays a 
role similar to integral action in PID.
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Summary

� PI and PID controllers are widely used in 
industrial control.

� From a modern perspective, a PID controller is 
simply a controller of (up to second order) 
containing an integrator.  Historically, however, 
PID controllers were tuned in terms of their P, I
and D terms.

� It has been empirically found that the PID 
structure often has sufficient flexibility to yield 
excellent results in many applications.
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� The basic term is the proportional term,  P,  which 
causes a corrective control actuation proportional 
to the error.

� The integral term, I gives a correction proportional 
to the integral of the error.  This has the positive 
feature of ultimately ensuring that sufficient 
control effort is applied to reduce the tracking 
error to zero.  However, integral action tends to 
have a destabilizing effect due to the increased 
phase shift.
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� The derivative term, D, gives a predictive 
capability yielding a control action proportional to 
the rate of change of the error.  This tends to have 
a stabilizing effect but often leads to large control 
movements.

� Various empirical tuning methods can be used to 
determine the PID parameters for a given 
application.  They should be considered as a first 
guess in a search procedure.


