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The previous lecture was concerned with building 
models for systems acting under digital control.

We next turn to the question of control itself.
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Topics to be covered include:
why one cannot simply treat digital control as if it were 
exactly the same as continuous control, and

how to carry out designs for digital control systems so that 
the at-sample response is exactly treated.
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Having the controller implemented in digital formcontroller implemented in digital form 
introduces several constraintsseveral constraints into the problem:
(a) the controller sees the output response only at the sample only at the sample 

pointspoints,
(b) an antianti--aliasingaliasing filter will usually be needed prior to the 

output sampling process to avoid folding of high 
frequency signals (such as noise) onto lower frequencies 
where they will be misinterpreted; and

(c) the continuous plant input bears a simple relationship to simple relationship to 
the (sampled) digital controller output, the (sampled) digital controller output, e.g.e.g. via a zero via a zero 
order hold deviceorder hold device.
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A key idea is that if one is only interested in the atinterested in the at-- 
sample responsesample response, these samples can be described by 
discrete time modelsdiscrete time models in the delta operator.  For 
example, consider the sampled data control loop 
shown below

Cq(z)
R q(z)

G h0(s) G o(s)
Y (s)

�+

D igitalcontroller Hold device Plant

sam pler
F (s)

Anti-aliasing � lter

Yf(s)

E q(z)

Figure 13.1: Sampled data control loop
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If we focus only on the sampled responsewe focus only on the sampled response then it is 
straightforward to derive an equivalent discrete model equivalent discrete model 
for the atfor the at--sample response of the holdsample response of the hold--plantplant--antianti-- 
aliasing filter combinationaliasing filter combination.

We use the transfer function form, and recall the 
following forms for the discrete time model:
(a)  With anti-aliasing filter  F

(b) Without anti-aliasing filter

{ })()()(),(][ 0000 ofresponseimpulsesampled sGsGsFZzGFG hqh

{ })()(),(][ 0000 ofresponseimpulsesampled sGsGZzGG hqh
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Are there special features of 
digital control models?
Many ideas carry directly over to the discrete case.  
For example, one can easily do discrete pole 
assignment.  Of course, one needs to remember that 
the discrete stability domain is different from the 
continuous stability domain.  However, this simply 
means that the desirable region for closed loop poles 
is different in the discrete case.

We are led to ask if there are any real conceptual 
differences between continuous and discrete.
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Continuous-Discrete Poles

Functions converge to the underlying continuous 
time descriptions.  In particular, the relationship the relationship 
between continuous and discrete polesbetween continuous and discrete poles is as follows:

where            denote the discrete (z-domain) poles 
and continuous time poles, respectively.
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Continuous-Discrete Zeros
The relationship between continuous and discrete zerosdiscrete zeros 
is more complex.  Perhaps surprisingly, all discrete time 
systems turn out to have relative degree 1relative degree 1 irrespective of 
the relative degree of the original continuous system.

Hence, if the continuous system has n poles and continuous system has n poles and m m (< (< nn) ) 
zeros then the corresponding discrete system will have zeros then the corresponding discrete system will have nn 
poles and (poles and (nn--1) zeros1) zeros. Thus, we have  n-m+1 extra 
discrete zeros.  We therefore (somewhat artificially) 
divide the discrete zeros into two sets.
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Example 13.1

Consider the continuous time system having 
continuous transfer function

where n = 2, m = 0.  Then we anticipate that 
discretising would result in one sampling zero, 
which we verify as follows.

G o(s)=
1

s(s+ 1)
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With a sampling period of T=0.1 seconds, the shift 
domain digital model is:

where  K = 0.0048,      = -0.967 and  α0 = 0.905.qz0

G oq(z)= K
z� zq

o

(z� 1)(z� � o)
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Note that the continuous system has relative degree 
2, whereas the discrete system has relative degree 1 
and a sampling zero.

The next slide shows a plot of the sampling zero as a 
function of sampling period.
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Figure 13.2: Location of sampling zero with different 
sampling periods.
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In the control of discrete time systems special care 
needs to be taken with the sampling zeroswith the sampling zeros.  For 
example, these zeros can be nonnon--minimum phase minimum phase 
even if the original continuous system is minimum even if the original continuous system is minimum 
phasephase.  Consider, for instance, the minimum phase, 
continuous time system with transfer function given 
by:

G o(s)=
s+ 4

(s+ 1)3
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For this system, the shift domain zeros of [G0 Gh0 ]q (z) 
for two different sampling periods are

Δ
 

= 2[s] ⇒ zeros at -0.6082 and -0.0281
Δ

 
= 0.5[s] ⇒ zeros at -1.0966 and 0.1286

Note that Δ
 

= 0.5[s], the pulse transfer function has a 
zero outside the stability region.

Thus, one needs to be particularly careful of sampling 
zeros when designing a digital control system.
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Is a Dedicated Digital Theory Really 
Necessary?

We could well ask if it is necessary to have a separate 
theory of digital control or could one simply map over a 
continuous design to the discrete case.  The possible 
design options are:
1)1) Design the controller in continuous time, discretise the result Design the controller in continuous time, discretise the result 

for implementation and ensure that the sampling constraints do for implementation and ensure that the sampling constraints do 
not significantly affect the final performance.not significantly affect the final performance.

2)2) Work in discrete time by doing an exact analysis of the Work in discrete time by doing an exact analysis of the atat--samplesample 
response and ensure that the intersample response is not too response and ensure that the intersample response is not too 
surprising.surprising.

We will analyze and discuss these possibilities below.
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1. Approximate Continuous Designs
Given a continuous controller, C(s), we mention the 
methods drawn from the digital signal processing 
literature for determining an equivalent digital controller.
1.11.1 Simply take a continuous time controller expressed in 

terms of the Laplace variable, s and then replace every 
occurrence of  s by the corresponding shift domain 
operator z.  This leads to the following digital control law:

where C(s) is the transfer function of the continuous time 
controller and where is the resultant transfer 
function of the discrete time controller in the shift form.

( ) ( )
T

zs
sCzC 11 −

=
=

( )zC1
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1.21.2 Convert the controller to a zero order hold discrete 
equivalent.  This is called a step invariant transformation, 
Hold Equivalence (HE). This leads to

where C(s), Gh0 (s) and              are the transfer functions 
of the continuous time controller, zero order hold and 
resultant discrete time controller respectively.   

)(2 zC

C 2(� )= D [sam pled im pulse response offC (s)G h0(s)g]{ }[ ])()(of response impulse  sampled)( 02 sGsCzC hΖ=
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1.2.11.2.1 Convert the controller to a simple discrete simple discrete 
equivalentequivalent.  This leads to

where C(s) and              are the transfer functions of the 
continuous time controller and the resultant discrete time 
controller, respectively.   

)(1.2 zC

{ }[ ]C(s) of response impulse sampledD)(1.2 =zC
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1.31.3 We could use a more sophisticated mapping from  s to z.  
For example, we could carry out the following 
transformation, commonly called a bilinear transformation 
with pre-warping.  We first let:

The discrete controller is then defined by:

C 3(� )= C (s)js= � �
�
2

� + 1
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We next choose  α
 

so as to match the frequency responses 
of the two controllers at some desired frequency, say ω*.  
For example, one might choose ω* as the frequency at 
which the continuous time sensitivity function has its 
maximum value.
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Example 13.3

The system nominal transfer function is given by

and the continuous time controller is

Replace the controller by a digital controller with 
Δ

 
= 0.157[s] preceded by a sampler and followed by a 

ZOH using the three approximations outlined earlier.  

G o(s)=
10

s(s+ 1)

C (s)=
0:416s+ 1

0:139s+ 1
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The methods for directly mapping a 
continuous controller to discrete time

1.11.1 Replacing  s by z in  C(s) we get

1.21.2 The ZOH equivalent of  C(s)  is

1.31.3 For the bilinear mapping with pre-warping, we 
choose ω* = 5.48.  This gives  α

 
= 0.9375 and 

the resulting controller becomes

C 2(� )=
0:694� + 1

0:232� + 1

C 3(� )= C (s)
�
�
s= � �

�
2

� + 1

=
0:4685� + 1

0:2088� + 1

1
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Simulation Results

The above 3 digital controllers were simulated and 
their performance checked against the performance 
achieved with the original continuous controller.  
The results are shown on the next slide.
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Figure 13.4:Figure 13.4: Performance of different control designsPerformance of different control designs:: 

-- continuous time:continuous time: yycc ((tt)) 
--> > simple substitutionsimple substitution:: yy11 ((tt)) 
-- step invariancestep invariance:: yy22 ((tt) ) 
-- bilinear transformation:bilinear transformation: yy33 ((tt))
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We see from the figure that none of the 
approximations exactly reproduces the closed-loop 
response obtained with the continuous time 
controller.  Actually for this example, we see that 
simple substitution (Method 1.1) appears to give the simple substitution (Method 1.1) appears to give the 
best resultbest result and that there is not much to be gained by 
fancy methods here.  However, it would be 
dangerous to draw general conclusions from this one 
example.
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2.  At-Sample Digital Design

The next option we explore is that of doing an exact 
digital control system design for the sampled 
response.

We recall that the sampled response is exactly 
described by appropriate discrete-time-models 
(expressed in either the shift operator z).
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Time Domain Design

Any algebraic technique (such as pole assignment) 
has an immediate digital counterpart.  Essentially all 
that is needed is to work with  z (or γ)  instead of the 
Laplace variable, s, and to keep in mind the different 
region for closed loop stability.
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Frequency Domain Design
Automatic design techniques can be exploited for 
frequency domain design.

Common frequency domain design tools are:

Bode plots;
Root locus;
Nyquist diagrams.

•• See laboratory experiences and practical applications… See laboratory experiences and practical applications… 
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Summary
There are a number of ways of designing digital control There are a number of ways of designing digital control 
systems:systems:

design in continuous time and discretise the controller prior to
implementation;
model the process by a digital model and carry out the design in
discrete time.

Continuous time design which is discretised for Continuous time design which is discretised for 
implementation:implementation:

Continuous time signals and models are utilized for the design;
Prior to implementation, the controller is replaced by an equivalent 
discrete time version;
Equivalent means to simply map  s to  z (where z is the shift 
operator);
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Caution must be exercised since the analysis was carried out in continuous 
time and the expected results are therefore based on the assumption that the 
sampling rate is high enough to mask sampling effects;
If the sampling period is chosen carefully, in particular with respect to the 
open and closed loop dynamics, then the results should be acceptable.

Discrete design based on a discretised process model:Discrete design based on a discretised process model:
First the model of the continuous process is discretised;
Then, based on the discrete process, a discrete controller is designed and 
implemented;
Caution must be exercised with so called intersample behavior:  the analysis is 
based entirely on the behavior as observed at discrete points in time, but the 
process has a continuous behavior also between sampling instances;
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Problems can be avoided by refraining from designing 
solutions which appear feasible in a discrete time 
analysis, but are known to be unachievable in a 
continuous time analysis.

The following rules of thumb will help avoid The following rules of thumb will help avoid 
intersample problems if a purely digital design intersample problems if a purely digital design 
is carried out:is carried out:

sample 10 times the desired closed loop bandwidth;
always check the intersample response.
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