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Motivation for Control Engineering

Feedback control has a long history which began 
with the early desire of humans to harness the 
materials and forces of nature to their advantage.  
Early examples of control devices include clock 
regulating systems and mechanisms for keeping 
wind-mills pointed into the wind.  

Modern industrial plants have sophisticated control 
systems which are crucial to their successful 
operation.
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This flyball governor is in the 
same cotton factory in Manchester.
However, this particular governor
was used to regulate the speed of
a water wheel driven by the flow of
the river.  The governor is quite 
large as can be gauged by the outline
of the door frame behind the 
governor.
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Improved control is a key enabling technology 
underpinning:
� enhanced product quality 

� waste minimization 

� environmental protection 

� greater throughput for a given installed capacity 

� greater yield 

� deferring costly plant upgrades, and 

� higher safety margins
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Types of Control System Design

Control system design also takes several different 
forms and each requires a slightly different 
approach.

The control engineer is further affected by where 
the control system is in its lifecycle, e.g.:

� Initial "grass roots" design 

� Commissioning and Tuning 

� Refinement and Upgrades 

� Forensic studies 

08/06/2006 6

Digital Control Course Introduction

System Integration

Success in control engineering depends on taking a 
holistic viewpoint.  Some of the issues are:

� plant, i.e. the process to be controlled 
� objectives 
� sensors 
� actuators 
� communications 
� computing 
� architectures and interfacing 
� algorithms 

� accounting for disturbances and uncertainty
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Plant

The physical layout of a plant is an intrinsic part of 
control problems. Thus a control engineer needs to 
be familiar with the "physics" of the process under 
study. This includes a rudimentary knowledge of the 
basic energy balance, mass balance and material 
flows in the system.
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Objectives

Before designing sensors, actuators or control 
architectures, it is important to know the goal, that is, 
to formulate the control objectives. This includes

� what does one want to achieve (energy reduction, yield 

increase,...)

� what variables need to be controlled to achieve 

these objectives

� what level of performance is necessary (accuracy, speed,...)
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Sensors

Sensors are the eyes of control enabling one to see
what is going on. Indeed, one statement that is 
sometimes made about control is: 

If you can measure it, you can control it.
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Actuators

Once sensors are in place to report on the state of a 
process, then the next issue is the ability to affect, or 
actuate, the system in order to move the process 
from the current state to a desired state
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Communications

Interconnecting sensors to actuators, involves the use 
of communication systems. A typical plant can have 
many thousands of separate signals to be sent over 
long distances. Thus the design of communication 
systems and their associated protocols is an 
increasingly important aspect of modern control 
engineering.
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Computing

In modern control systems, the connection between 
sensors and actuators is invariably made via a            
computer of some sort. Thus, computer issues are 
necessarily part of the overall design. Current            
control systems use a variety of computational 
devices including DCS's (Distributed Control            
Systems), PLC's (Programmable Logic Controllers), 
PC's (Personal Computers), etc.
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A modern computer based rapid prototyping system
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Architectures and interfacing

The issue of what to connect to what is a non-trivial 
one in control system design. One may feel that the best 
solution would always be to bring all signals to a 
central point so that each control action would be based 
on complete information (leading to so called, 
centralized control). However, this is rarely (if ever) the 
best solution in practice. Indeed, there are very good 
reasons why one may not wish to bring all signals to a 
common point. Obvious objections to this include 
complexity, cost, time constraints in computation, 
maintainability, reliability, etc.
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Algorithms

Finally, we come to the real heart of control engineering 
i.e. the algorithms that connect the sensors to the actuators. 
It is all to easy to underestimate this final aspect of the 
problem.

As a simple example from our everyday experience, 
consider the problem of playing tennis at top international 
level. One can readily accept that one needs good eye sight 
(sensors) and strong muscles (actuators) to play tennis at 
this level, but these attributes are not sufficient. Indeed 
eye-hand coordination (i.e. control) is also crucial to 
success.
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Disturbances and Uncertainty

One of the things that makes control science 
interesting is that all real life systems are acted on by 
noise and external disturbances. These factors can 
have a significant impact on the performance of the 
system. As a simple example, aircraft are subject to 
disturbances in the form of wind-gusts, and cruise 
controllers in cars have to cope with different road 
gradients and different car loadings.
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In order to make progress in control engineering (as 
in any field) it is important to be able to justify the 
associated expenditure.  This usually takes the form 
of a cost benefit analysis.
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Signals and systems terminology 

Tangible examples Examples of mathematical
approximation

Examples of properties

Signals set point, control
input, disturbances,
measurements, ...

continuous function, sample-
sequence, random process,...

analytic, stochastic, sinu-
soidal, standard deviations

Systems process, controller,
sensors, actuators, ...

differential equations, difference
equations, transfer functions, state
space models, ...

continuous time, sampled,
linear, nonlinear, ...
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Principles of FeedbackPrinciples of Feedback
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We have seen that feedback is a key tool that can be 
used to modify the behaviour of a system.

This behaviour altering effect of feedback is a key 
mechanism that control engineers exploit           
deliberately to achieve the objective of acting on a 
system to ensure that the desired performance 
specifications are achieved.
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Performance specifications

The key performance goals for this problem are:

� Safety: Clearly, the mould level must never be in danger of 
overflowing or emptying as either case would result in 
molten metal spilling with disastrous consequences.             

� Profitability: Aspects which contribute to this requirement 
include:
� Product quality
� Maintenance
� Throughput
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Modelling

To make progress on the control system design problem, 
it is first necessary to gain an understanding of how the 
process operates.  This understanding is typically 
expressed in the form of a mathematical model.
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Definition of the control problem

Abstracting from a particular problem, we can 
introduce:

Definition
The central problem in control is to find a technically The central problem in control is to find a technically 
feasible way to act on a given process so that the feasible way to act on a given process so that the 
process behaves, as closely as possible, to some desired process behaves, as closely as possible, to some desired 
behaviour. Furthermore, this approximate behaviour behaviour. Furthermore, this approximate behaviour 
should be achieved in the face of uncertainty of the should be achieved in the face of uncertainty of the 
process and in the presence of uncontrollable external process and in the presence of uncontrollable external 
disturbances acting on the process.disturbances acting on the process.
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From open to closed loop 
architectures

Unfortunately, the open loop methodology does not lead to a 
satisfactory solution to the control problem unless:

� the model on which the design of the controller has been 
based is a very good representation of the plant,

� the model and its inverse are stable, and

� disturbances and initial conditions are negligible.

We are thus motivated to find an alternative solution to the 
problem which retains the key features but which does not 
suffer from the above drawbacks.
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Figure 2.9: Open loop controller 

Figure 2.10: Closed loop control 
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� The first thing to note is that, provided the model 
represents the plant exactly, and that all signals are 
bounded (i.e. the loop is stable), then both 
schemes are equivalent, regarding the relation 
between r(t) and y(t). The key differences are due 
to disturbances and different initial conditions.               

� In the open loop control scheme the controller 
incorporates feedback internally, i.e. a signal at 
point A is fed back.
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� In the closed loop scheme, the feedback signal depends on 
what is actually happening in the plant since the true plant 
output is used.

We have seen that this modified architecture has 
many advantages including:

� insensitivity to modelling errors;

� insensitivity to disturbances in the plant (that are not 
reflected in the model).
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Figure 2.11: Closed loop control with sensors 
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Desirable attributes of sensors

� Reliability. It should operate within the necessary range.           

� Accuracy. For a variable with a constant value, the 
measurement should settle to the correct value.                 

� Responsiveness. If the variable changes, the measurement 
should be able to follow the changes. Slow responding 
measurements can, not only affect the quality of control but 
can actually make the feedback loop unstable. Loop instability 
may arise even though the loop has been designed to be stable 
assuming an exact measurement of the process variable.
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Figure 2.12: Typical feedback loop 

In summary, a typical feedback loop (including sensor 
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ModellingModelling
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The power of a mathematical model 
lies in the fact that it can be simulated 
in hypothetical situations, be subject 
to states that would be dangerous in 
reality, and it can be used as a basis 
for synthesizing controllers.
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Model Complexity

In building a model, it is important to bear in mind 
that all real processes are complex and hence any 
attempt to build an exact description of the plant is 
usually an impossible goal. Fortunately, feedback is 
usually very forgiving and hence, in the context of 
control system design, one can usually get away with 
rather simple models, provided they capture the 
essential features of the problem.
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Building Models

A first possible approach to building a plant model is to postulate a 
specific model structure and to use what is known as a black box
approach to modeling.  In this approach one varies, either by trial and 
error or by an algorithm, the model parameters until the dynamic
behavior of model and plant match sufficiently well.
An alternative approach for dealing with the modeling problem is to 
use physical laws (such as conservation of mass, energy and 
momentum) to construct the model.  In this approach one uses the fact 
that, in any real system, there are basic phenomenological laws which 
determine the relationships between all the signals in the system.
In practice, it is common to combine both black box and 
phenomenological ideas to building a model.
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State Space Models

For continuous time systems

For discrete time systems

dx

dt
= f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

x[k + 1] = fd(x[k], u[k], k)
y[k] = gd(x[k], u[k], k)
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Linear State Space Models

dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)



08/06/2006 37

Digital Control Course Introduction

� Models are classified according to properties of the equation 
they are based on. Examples of classification include:

� In many situations nonlinear models can be linearised 
around a user defined operating point.

Model
Attribute Contrasting Attribute Asserts whether or not …

Single input
Single output Multiple input multiple output … the model equations have one input and one output only
Linear Nonlinear … the model equations are linear in the system variables
Time varying Time invariant … the model parameters are constant
Continuous Sampled … model equations describe the behavior at every instant of

time, or only in discrete samples of time
Input-output State space … the model equations rely on functions of input and output

variables only, or also include the so called state variables.
Lumped
parameter

Distributed parameter … the model equations are ordinary or partial differential
equations
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Continuous Time SignalsContinuous Time Signals
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Mathematical Topics

Specific topics to be covered include:

� linear high order differential equation models

� Laplace transforms, which convert linear differential 
equations to algebraic equations, thus greatly simplifying 
their study

� methods for assessing the stability of linear dynamic 
systems

� frequency response.
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Linear Continuous Time Models

The linear form of this model is:

Introducing the Heaviside, or differential, operator ρ〈o〉:

dny(t)
dtn

+ an−1
dn−1y(t)
dtn−1

+ . . . + a0y(t) = bn−1
dn−1

dtn−1
u(t) + . . . + b0u(t)

ρ〈f(t)〉 = ρf(t) � df(t)
dt

ρn〈f(t)〉 = ρnf(t) = ρ
〈
ρn−1〈f(t)〉〉 =

dfn(t)
dtn

ρny(t) + an−1ρ
n−1y(t) + . . . + a0y(t) = bn−1ρ

n−1u(t) + . . . + b0u(t)

We obtain:
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Laplace Transforms

The study of differential equations of the type 
described above is a rich and interesting subject. Of 
all the methods available for studying linear 
differential equations, one particularly useful tool is 
provided by Laplace Transforms. 
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Transfer Functions

Taking Laplace Transforms converts the differential equation 
into the following algebraic equation

where

and

G(s) is called the transfer function.

Y (s) = G(s)U(s)

G(s) =
B(s)
A(s)

A(s) =sn + an−1s
n−1 + . . . + a0

B(s) =bn−1s
n−1 + bn−2s

n−2 + . . . + b0

sn Y(s) + an  1 sn  1Y(s) + : : : + a0 Y(s)

= bn  1sn  1U(s) + : : : + b0 U(s) + f (s; xo)

- -

- -
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Often practical systems have a time delay between 
input and output. This is usually associated with the 
transport of material from one point to another.  For 
example, if there is a conveyor belt or pipe 
connecting different parts of a plant, then this will 
invariably introduce a delay.
The transfer function of a pure delay is of the form:

where Td is the delay (in seconds).  Td will typically 
vary depending on the transportation speed.

H(s) = e−sTd
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Systems with Delay

The transfer function from input to the output is 
approximately of the form:

H(s) =
Ke−sTd

(τs + 1)
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Summary

Transfer functions describe the input-output 
properties of linear systems in algebraic form.
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Stability of Transfer Functions

We say that a system is stable if any bounded input produces 
a bounded output for all bounded initial conditions.  In 
particular, we can use a partial fraction expansion to 
decompose the total response of a system into the response of 
each pole taken separately.  For continuous-time systems, we 
then see that stability requires that the poles have strictly 
negative real parts, i.e., they need to be in the open left half
plane (OLHP) of the complex plane  s .  This implies that, for 
continuous time systems, the stability boundary is the 
imaginary axis.
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Steady State Step Response

The steady state response (provided it exists) for a unit step is 
given by

where  G(s)  is the transfer function of the system.

)0(
1

)(lim)(lim
0

G
s

sGsyty
st

===
→∞∞→
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We define the following indicators:
Steady state value,  y∞:  the final value of the step response 

(this is meaningless if the system has poles in the CRHP).

Rise time, tr: The time elapsed up to the instant at which the 
step response reaches, for the first time, the value kry∞. The 
constant kr varies from author to author, being usually 
either 0.9 or 1. 

Overshoot, Mp: The maximum instantaneous amount by 
which the step response exceeds its final value.  It is 
usually expressed as a percentage of y∞
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Undershoot, Mu: the (absolute value of the) maximum 
instantaneous amount by which the step response falls 
below zero.

Settling time, ts: the time elapsed until the step response 
enters (without leaving it afterwards) a specified deviation 
band, ±δ, around the final value. This deviation δ, is 
usually defined as a percentage of y∞, say 2% to 5%.
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Figure 4.3:  Step response indicators
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Poles, Zeros and Time Responses

We will consider a general transfer function of the 
form

β1, β1,…, βm and α1, α2, ,,, αn are the zeros and poles 
of the transfer function, respectively. The relative 
degree is               . mnnr −=

∆

H(s) = K

∏m
i=1(s − βi)∏n
l=1(s − αl)
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Poles

Recall that any scalar rational transfer function can 
be expanded into a partial fraction expansion, each 
term of which contains either a single real pole, a 
complex conjugate pair or multiple combinations 
with repeated poles.
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First Order Pole

A general first order pole contributes

The response of this system to a unit step can be 
computed as

H1(s) =
K

τs + 1

y(t) = L−1

[
K

s(τs + 1)

]
= L−1

[
K

s
− Kτ

τs + 1

]
= K(1 − e−

t
τ )
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A Complex Conjugate Pair

For the case of a pair of complex conjugate poles, it 
is customary to study a canonical second order 
system having the transfer function.

H(s) =
ω2

n

s2 + 2ψωns + ω2
n
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Step Response for Canonical 
Second Order Transfer Function

On applying the inverse Laplace transform we 
finally obtain

Y (s) =
1
s
− s + ψωn

(s + ψωn)2 + ω2
d

− ψωn

(s + ψωn)2 + ω2
d

=
1
s
− 1√

1 − ψ2

[√
1 − ψ2

s + ψωn

(s + ψωn)2 + ω2
d

− ψ
ωd

(s + ψωn)2 + ω2
d

]

y(t) = 1 − e−ψωnt√
1 − ψ2

sin(ωdt + β)
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Figure 4.5:  Pole location and unit step response of a   
canonical second order system.
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Zeros

The effect that zeros have on the response of a 
transfer function is a little more subtle than that due 
to poles.  One reason for this is that whilst poles are 
associated with the states in isolation,  zeros rise 
from additive interactions amongst the states 
associated with different poles.  Moreover, the zeros 
of a transfer function depend on where the input is 
applied and how the output is formed as a function 
of the states.
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Frequency Response

We next study the system response to a rather special input, 
namely a sine wave.  The reason for doing so is that the 
response to sine waves also contains rich information about 
the response to other signals.
Let the transfer function be

H(s) = K

∑m
i=0 bis

i

sn +
∑n−1

k=1 aksk

H(jω) = |H(jω)|ejφ(ω)where

Then the steady state response to the input  sin(wt) is
y(t) = |H(jw)|sin(wt + φ(w))
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In summary:

A sine wave input forces a sine wave at the output 
with the same frequency. Moreover, the amplitude of 
the output sine wave is modified by a factor equal to 
the magnitude of H(jw) and the phase is shifted by a 

quantity equal to the phase of H(jw).
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Bode Diagrams

Bode diagrams consist of a pair of plots. One of 
these plots depicts the magnitude of the frequency 
response as a function of the angular frequency, and 
the other depicts the angle of the frequency response, 
also as a function of the angular frequency.
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Summary

� There are two key approaches to linear dynamic 
models:

� the, so-called, time domain, and

� the so-called, frequency domain

� Although these two approaches are largely 
equivalent, they each have their own particular 
advantages and it is therefore important to have a 
good grasp of each.
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� With respect to the important characteristic of stability, a 
continuous time system is

� stable if and only if the real parts of all poles are strictly 
negative

� marginally stable if at least one pole is strictly 
imaginary and no pole has strictly positive real part

� unstable if the real part of at least one pole is strictly 
positive

� non-minimum phase if the real part of at least one zero 
is strictly positive.
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Analysis of Analysis of 
SISO Control LoopsSISO Control Loops
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Topics to be covered

For a given controller and plant connected in 
feedback we ask and answer the following questions:

� Is the loop stable?
� What are the sensitivities to various disturbances?
� What is the impact of linear modeling errors?
� How do small nonlinearities impact on the loop?

We recall several analysis tools; specifically

� Root locus
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Figure 5.1: Simple feedback control system 
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In the loop shown in Figure 5.1 we use transfer 
functions and Laplace transforms to describe the 
relationships between signals in the loop.  In 
particular, C(s) and G0(s) denote the transfer 
functions of the controller and the nominal plant 
model respectively, which can be represented in 
fractional form as:

C(s) =
P (s)
L(s)

Go(s) =
Bo(s)
Ao(s)
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Link to Characteristic Equation

Lemma

Consider the nominal closed loop depicted in Figure 
5.1. Then the nominal closed loop is internally stable 
if and only if the roots of the nominal closed loop 
characteristic equation 

all lie in the open left half plane. We call A0L + B0P 
the nominal closed-loop characteristic polynomial.

Ao(s)L(s) + Bo(s)P (s) = 0
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Stability and Polynomial Analysis

Consider a polynomial of the following form:

The problem to be studied deals with the question of 
whether that polynomial has any root with 
nonnegative real part. Obviously, this equation can 
be answered by computing the n roots of p(s). 
However, in many applications it is of special 
interest to study the interplay between the location of 
the roots and certain polynomial coefficients.

p(s) = sn + an−1s
n−1 + . . . + a1s + a0
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Root Locus (RL)

A classical tool used to study stability of equations of the type 
given above is root locus. The root locus approach can be 
used to examine the location of the roots of the characteristic 
polynomial as one parameter is varied.
Consider the following equation

with λ ≥ 0 and M, N have degree  m, n respectively.

1 + λF (s) = 0 where F (s) =
M(s)
D(s)
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Nominal Stability using 
Frequency Response

A classical and lasting tool that can be used to assess the stability 

of a feedback loop is Nyquist stability theory. In this approach, 

stability of the closed loop is predicted using the open loop 

frequency response of the system. This is achieved by plotting a

polar diagram of the product G0(s)C(s) and then counting the 

number of encirclements of the (-1,0) point. We show how this 

works below.
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Discussion

� If the system is open loop stable, then for the closed 
loop to be internally stable it is necessary and 
sufficient that no unstable cancellations occur and 
that the Nyquist plot of G0(s)C(s) does not encircle 
the point (-1,0).
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Relative Stability:  Stability margins

In control system design, one often needs to go 
beyond the issue of closed loop stability. In particular, 
it is usually desirable to obtain some quantitative 
measures of how far from instability the nominal loop 
is, i.e. to quantify relative stability.  This is achieved 
by introducing measures which describe the distance 
from the nominal open loop frequency response to the 
critical stability point (-1,0).
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Figure 5.7:  Stability margins
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� The gain margin, Mg, and the phase margin Mf

are defined as follows (see Figure 5.7):

Mg
�
= −20 log10(|a|)

Mf
�
= φ
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Figure 5.8:  Stability margins in Bode diagrams
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� Well designed, feedback can

� make an unstable system stable;

� increase the response speed;

� decrease the effects of disturbances;

� decrease the effects of system parameter 
uncertainties, and more.
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Classical PID ControlClassical PID Control
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This lecture examines a particular control structure that has 
become almost universally used in industrial control.  It is 
based on a particular fixed structure controller family, the so-
called PID controller family.  These controllers have proven 
to be robust and extremely beneficial in the control of many 
important applications.

PID stands for: P (Proportional)

I (Integral)

D (Derivative)
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The Current Situation

Despite the abundance of sophisticated 
tools, including advanced controllers, the 
Proportional, Integral, Derivative (PID 
controller) is still the most widely used in 
modern industry, controlling more that 
95% of closed-loop industrial processes*

* Åström K.J. & Hägglund T.H. 1995, “New tuning methods for PID controllers”, Proc. 3rd European 
Control Conference, p.2456-62;  and
*Yamamoto & Hashimoto 1991, “Present status and future needs:  The view from Japanese industry”, 
Chemical Process Control, CPCIV, Proc. 4th Inter-national Conference on Chemical Process Control, Texas, 
p.1-28.
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PID Structure

Consider the simple SISO control loop shown  in 
Figure 6.1:

Figure 6.1: Basic feedback control loop

C(s)
R(s) E(s) Y (s)U(s)

−+
Plant
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The standard form PID are:

CP (s) = Kp

CPI(s) = Kp

(
1 +

1
Trs

)

CPD(s) = Kp

(
1 +

Tds

τDs + 1

)

CPID(s) = Kp

(
1 +

1
Trs

+
Tds

τDs + 1

)

Proportional only:

Proportional plus Integral:

Proportional plus derivative:

Proportional, integral and 
derivative:
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Tuning of PID Controllers

Because of their widespread use in practice, we 
present below several methods for tuning PID 
controllers.  Actually these methods are quite old and 
date back to the 1950’s.  Nonetheless, they remain in 
widespread use today.

In particular, we will study.
�� ZieglerZiegler--Nichols Oscillation MethodNichols Oscillation Method
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Ziegler-Nichols (Z-N) Oscillation Method

This procedure is only valid for open loop stable 
plants and it is carried out through the following 
steps

� Set the true plant under proportional control, with a 
very small gain.

� Increase the gain until the loop starts oscillating.  Note 
that linear oscillation is required and that it should be 
detected at the controller output.
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� Record the controller critical gain Kp = Kc and the 
oscillation period of the controller output,  Pc.

� Adjust the controller parameters according to Table 
6.1 (next slide);  there is some controversy regarding 
the PID parameterization for which the Z-N method 
was developed, but the version described here is, to the 
best knowledge of the authors, applicable to the 
parameterization of  standard form PID.
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Table 6.1:  Ziegler-Nichols tuning using the 
oscillation method

Kp Tr Td

P 0.50Kc

PI 0.45Kc
Pc

1.2
PID 0.60Kc 0.5Pc

Pc

8
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Lead-lag Compensators

Closely related to PID control is the idea of lead-lag 
compensation.  The transfer function of these 
compensators is of the form:

If  τ1 > τ2, then this is a lead network and when τ1 < τ2, 
this is a lag network.

C(s) =
τ1s + 1
τ2s + 1
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Figure 6.9:  Approximate Bode diagrams for lead lead 
networksnetworks (τ1=10τ2)
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1
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1
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Observation

We see from the previous slide that the lead network 
gives phase advance at  ω = 1/τ1 without an increase 
in gain.  Thus it plays a role similar to derivative 
action in PID.
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Figure 6.10: Approximate Bode diagrams for lag lag 
networksnetworks (τ2=10τ1)
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Observation

We see from the previous slide that the lag network 
gives low frequency gain increase.  Thus it plays a 
role similar to integral action in PID.
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Summary

� PI and PID controllers are widely used in 
industrial control.

� From a modern perspective, a PID controller is 
simply a controller of (up to second order) 
containing an integrator.  Historically, however, 
PID controllers were tuned in terms of their P, I
and D terms.

� It has been empirically found that the PID 
structure often has sufficient flexibility to yield 
excellent results in many applications.
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� The basic term is the proportional term,  P,  which causes a 
corrective control actuation proportional to the error.

� The integral term, I gives a correction proportional to the 
integral of the error.  This has the positive feature of 
ultimately ensuring that sufficient control effort is applied 
to reduce the tracking error to zero.  However, integral 
action tends to have a destabilizing effect due to the 
increased phase shift.
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� The derivative term, D, gives a predictive 
capability yielding a control action proportional to 
the rate of change of the error.  This tends to have 
a stabilizing effect but often leads to large control 
movements.

� Various empirical tuning methods can be used to 
determine the PID parameters for a given 
application.  They should be considered as a first 
guess in a search procedure.
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Synthesis of SISO Synthesis of SISO 
ControllersControllers
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Pole Assignment

In the previous chapter, we examined PID control.  
However, the tuning methods we used were essentially 
ad-hoc.  Here we begin to look at more formal methods 
for control system design.  In particular, we examine 
the following key synthesis question:  

Given a model, can one systematically synthesize 
a controller such that the closed loop poles are 
in predefined locations?

This lecture will show that this is indeed possible. We 
call this pole assignment, which is a fundamental idea 
in control synthesis. 
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Polynomial Approach

In the nominal control loop, let the controller and 
nominal model transfer functions be respectively given 
by:

with

C(s) =
P (s)
L(s)

Go(s) =
Bo(s)
Ao(s)

P (s) = pnpsnp + pnp−1s
np−1 + . . . + p0

L(s) = lnl
snl + lnl−1s

nl−1 + . . . + l0

Bo(s) = bn−1s
n−1 + bn−2s

n−2 + . . . + b0

Ao(s) = ansn + an−1s
n−1 + . . . + a0
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Consider now a desired closed loop polynomial 
given by

Acl(s) = ac
nc

snc + ac
nc−1s

nc−1 + . . . + ac
0
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Goal

Our objective here will be to see if, for given values 
of  B0 and  A0,  P and  L can be designed so that the 
closed loop characteristic polynomial is Acl(s).

We will see that, under quite general conditions, this 
is indeed possible.
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PI and PID Synthesis Revisited 
using Pole Assignment

The reader will recall that PI and PID controller 
synthesis using classical methods were reviewed in 
Lecture 6.  

During laboratory sessions we place these results in 
a more modern setting by discussing the synthesis of 
lead/lag networks and PID controllers based on pole 
assignment techniques (via root locus analysis).(via root locus analysis).
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� The key synthesis question is:
Given a model, can one synthesize a controller such that 
the closed loop poles (i.e. sensitivity poles) are in pre-
defined locations.

� Stated mathematically:
Given polynomials  A0(s), B0(s) (defining the model) and 
given a polynomial Acl(s) (defining the desired location of 
closed loop poles), is it possible to find polynomials  P(s)  
and  L(s)  such that  A0(s)L(s) + B0(s)P(s) = Acl(s)?  This 
lecture shows that this is indeed possible. 
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After ContinuousAfter Continuous--Time Time 
Control…Control…

… Models for… Models for
Sampled Data SystemsSampled Data Systems
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Motivation

Up to  this point, we have assumed that the control systems we have 
studied operate in continuous time and that the control law is 
implemented in analogue fashion.  Certainly in the early days of 
control, all control systems were implemented via some form of 
analogue equipment.  Typically controllers were implemented using 
one of the following formats:

� hydraulic

� pneumatic

� analogue electronic
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However, in recent times, almost all analogue controllers 
have been replaced by some form of computer control.

This is a very natural move since control can be conceived 
as the process of making computations based on past 
observations of a system’s behavior so as to decide how one 
should change the manipulated variables to cause the system 
to respond in a desirable fashion.

The most natural way to make these computations is via 
some form of computer.
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A huge array of control orientated computers are 
available in the market place.

A typical configuration includes:

� some form of central processing unit (to make the necessary 
computations)



08/06/2006 107

Digital Control Course Introduction

� analogue to digital converters (to read the analogue process 
signals into the computer).

(We call this the process of SAMPLING)

� digital to analogue converters (to take the desired control 
signals out of the computer and present them in a form 
whereby they can be applied back onto the physical process).

(We call this the process of SIGNAL RECONSTRUCTION)
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Why Study Digital Control?
A simple (engineering) approach to digital control is to 
sample quickly and then to make some reasonable 
approximation to the derivatives of the digital data. For 
example, we could approximate the derivative of an 
analogue signal,  y(t),  as follows:

where  ∆ is the sampling period.
The remainder of the design might then proceed exactly as 
for continuous time signals and systems using the 
continuous model.

∆
∆−−

≈
)()(

)(
tyty

ty
dt
d
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Actually, the above strategy turns out to be quite good 
and it is certainly very commonly used in practice.

However, there are some unexpected traps for the 
unwary.  These traps have lead to negative experiences 
for people naively trying to do digital control by 
simply mimicking analogue methods.  Thus it is 
important to know when such simple strategies make 
sense and what can go wrong. We will illustrate by a 
simple example below.
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General Digital Control Scheme

The set-up for digital control of this system is shown 
schematically below:

input

Digital
controller

A=D

Plant
output

D =A

The objective is to cause the output y(t), to follow a 
given reference signal, y*(t).

u(t)
)()( * tyty →

y(k∆)u(k∆)
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Modelling

Since the control computations will be done inside 
the computer, it seems reasonable to first find a 
model relating the sampled output
{y(k∆); k = 0, 1, … } 
to the sampled input signals generated by the 
computer, which we denote by 
{u(k∆), k = 0, 1, … }.  

Here ∆ is the sample period.
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Modelling Issues

This lecture is principally concerned with modelling modelling 
issuesissues, i.e. how to relate samples of the output of a 
physical system to the sampled data input.
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Specific topics to be covered are:

�� DiscreteDiscrete--time signalstime signals

�� ZZ--transformstransforms and Delta transforms

�� Sampling and reconstructionSampling and reconstruction

� Aliasing and anti-aliasing filters

�� SampledSampled--data control systemsdata control systems
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Sampling

The result of sampling a continuous time signal is 
shown below:

continuous-tim e signal

xx
x
xx xxxxxxx

x
x
x

x

sam pled signal

A /D

Analog to digitalconverter

Figure 12.10: The result of sampling
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There will always be loss of information due to 
sampling. However, the extent of this loss depends 
on the sampling method and the associated 
parameters. For example, assume that a sequence of 
samples is taken of a signal f(t) every ∆ seconds, 
then the sampling frequency needs to be large 
enough in comparison with the maximum rate of 
change of f(t). Otherwise, high frequency 
components will be mistakenly interpreted as low 
frequencies in the samples sequence.
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Figure 12.1:  Figure 12.1:  Aliasing effect when using low sampling Aliasing effect when using low sampling 
raterate
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Signal Reconstruction

The output of a digital controller is another sequence of 
numbers {u[k]} which are the sample values of the 
intended control signal.  These sample values need to be 
converted back to continuous time functions before they 
can be applied to the plant.  Usually, this is done by 
interpolating them into a staircase function u(t) as 
illustrated in Figure 12.2.

input

Digital
controller

A=D

Plant
output

D =A

u(t)

u(k∆)
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Illustration of Signal Reconstruction

xx
x
x
xx xxxxxxx

x
x
x

D /A

D igitalto analog convertersam pled signal reconstructed signal

Figure 12.2: The result of reconstructionThe result of reconstruction
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Linear Discrete Time Models

A useful discrete time modeldiscrete time model of the type referred to 
above is the linear version of the high order 
difference equation model.  In the discrete case, this 
model takes the form:

Note that we saw a special form of this model in 
relation to the example presented earlier.

y[k + n] + an−1y[k + n − 1] + · · · + a0y[k]

= bn−1u[k + n − 1] + · · · + b0u[k]
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The Shift Operator

Forward shift operator

In terms of this operator, the model given earlier 
becomes:

For a discrete time system it is also possible to have 
discrete state space models. In the shift domain these 
models take the form:

q(f [k]) � f [k + 1]

qny[k] + an−1q
n−1y[k] + · · · + a0y[k] = bmqmu[k] + · · · + b0u[k]

qx[k] = Aqx[k] + Bqu[k]
y[k] = Cqx[k] + Dqu[k]
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ZZ--TransformTransform

Analogously to the use of Laplace Transforms for 
continuous time signals, we introduce the Z-transform 
for discrete time signals.

Consider a sequence {y[k]; k = 0, 1, 2, …}.  Then the 
Z-transform pair associated with {y[k]} is given by

Z [y[k]] = Y (z) =
∞∑

k=0

z−ky[k]

Z−1 [Y (z)] = y[k] =
1

2πj

∮
zk−1Y (z)dz

08/06/2006 122

Digital Control Course Introduction

How do we use Z-transforms ?

We saw earlier that Laplace Transforms have a 
remarkable property that they convert differential 
equations into algebraic equations. 

Z-transforms have a similar property for discrete 
time models, namely they convert difference 
equations (expressed in terms of the shift operator q) 
into algebraic equations.
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Discrete Transfer Functions

Taking Z-transforms on each side of the high order 
difference equation model leads to

where  Yq(z), Uq(z)  are the Z-transform of the sequences 
{y[k]} and {u[k]} respectively, and

Aq(z)Yq(z) = Bq(z)Uq(z) + fq(z, xo)

Aq(z) = zn + an−1z
n−1 + · · · + ao

Bq(z) = bmzm + bm−1z
m−1 + · · · + bo
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We then see that (ignoring the initial conditions) the 
Z-transform of the output Y(z) is related to the Z-
transform of the input by  Y(z) = Gq(z)U(z) where

Gq(z) is called the discretediscrete ((shift formshift form) transfer ) transfer 
function.function.

Gq(z)
�
=

Bq(z)
Aq(z)
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Discrete Time ModelsDiscrete Time Models

We next examine several properties of discrete time 
models, beginning with the issue of stability.
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Discrete System Stability

Relationship to Poles

We have seen that the response of a discrete system 
(in the shift operator) to an input  U(z) has the form

where  α1 … αn are the poles of the system.

We then know, via a partial fraction expansion, that  
Y(z) can be written as

Y (z)= G q(z)U (z)+
fq(z;xo)

(z 1)(z 2) (z n)

Y (z)=
nX

j= 1

jz

z j
+ term sdepending on U (z)
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where, for simplicity, we have assumed non repeated poles.

The corresponding time response is

Stability requires that [αj]k → 0, which is the case if [αj] < 1.  

Hence stability requires the poles to have magnitude less than poles to have magnitude less than 
11, i.e. to lie inside a unit circle centered at the origin.

y[k]= j [ j]
k + term sdepending on theinput
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Digital control of a continuous time plantDigital control of a continuous time plant

input

Digital
controller

A=D

Plant
output

D =A
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Details of how the plant input is 
reconstructed

When a zero order hold is used to reconstruct  u(t), then

Note that this is the staircase signal shown earlier in Figure 
12.2.  Discrete time models typically relate the sampled signal 
y[k]  to the sampled input  u[k].  Also a digital controller 
usually evaluates  u[k]  based on  y[j] and r[j], where {r(k∆)} 
is the reference sequence and  j ≤ k.

u(t)= u[k] for k t< (k+ 1)

08/06/2006 130

Digital Control Course Introduction

Using Continuous Transfer 
Function Models

We observe that the generation of the staircase signal  
u(t),  from the sequence  {u(k)} can be modeled as in 
Figure 12.5.

us(t) 1 e s

s

u[k] m (t)

ZO H

Figure 12.5: Zero order hold
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Figure 12.6: Discrete time equivalent model with 
zero order hold

G h0(s) G o(s)
y(t)us(t)u(k )

y(k )

Combining the circuit on the previous slide with the 
plant transfer function G0(s), yields the equivalent 
connection between input sequence, u(k∆), and 
sampled output y(k∆) as shown below:
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We saw earlier that the transfer function of a discrete time 
system, in Z-transform form is the Z-transform of the output 
(the sequence  {y[k]}) when the input, u[k], is a Kronecker 
delta, with zero initial conditions. We also have, from the 
previous slide, that if u[k] = δK[k], then the input to the 
continuous plant is a Dirac Delta, i.e. us(t) = δ(t).  If we 
denote by Heq(z) the transfer function from Uq(z) to Yq(z), we 
then have the following result.

H oq(z)= Z [thesam pled im pulse response ofG h0(s)G o(s)]

= (1 z 1)Z [thesam pled step response ofG o(s)]
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Frequency ResponseFrequency Response of Sampled 
Data Systems
We evaluate the frequency response of a linear discrete time 
system having transfer function Hq(z). Consider a sine wave 
input given by

where

Following the same procedure as in the continuous time case 
(see Lecture 4) we see that the system output response to the 
input is

where

u(k )= sin(!k )= sin 2 k
!

!s
=

1

2j
ej2 k !

! s e j2 k !
! s

.2
∆

= πω s

y(k )= (!)sin(!k + (!))

H q(e
j! )= (!)ej (!)
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Figure 12.7: Periodicity in the frequency response of 
sampled data systems.
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Figure 12.8: Figure 12.8: Continuous and sampled data systemsContinuous and sampled data systems

yq[k]

y(t)

uq[k]
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a
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1 e s
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Figure 12.9: Asymptotic behavior of a sampled data Asymptotic behavior of a sampled data 
transfer functiontransfer function
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Causes of the Poor Response

It turns out that there are many reasons for the 
poor response.  Some of these are:

1. Intersample issues
2. Noise

The purpose of this chapter is to understand 
these issues.  To provide motivation for the 
reader we will briefly examine these issues for 
a simple example.
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1. Intersample Issues

If we look at the output response at a rate faster than 
the control sampling rate then we see that the actual 
response is as shown on the next slide.
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Simulation result showing full 
continuous output response
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2. Noise

One further point that we have overlooked is that 
causing  y(t)  to approach y* as quickly as possible 
gives a very wide bandwidth controller.  However, it 
should be clear that such a controller will necessarily 
magnify noise.  Indeed, if we look at the steady 
response of the system (see the next slide) then we 
can see that noise is indeed causing problems.
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Summary
� Very few plants encountered by the control engineer are digital,

most are continuous.  That is, the control signal applied to the
process, as well as the measurements received from the process, 
are usually continuous time.

� Modern control systems, however, are almost exclusively 
implemented on digital computers.

� Compared to the historical analog controller implementation, the
digital computer provides
� much greater ease of implementing complex algorithms,
� convenient (graphical) man-machine interfaces,
� logging, trending and diagnostics of internal controller and
� flexibility to implement filtering and other forms of signal processing 

operations.



08/06/2006 143

Digital Control Course Introduction

� Digital computers operate with sequences in time, rather 
than continuous functions in time.
Therefore,
� input signals to the digital controller-notably process 

measurements - must be sampled;

� outputs from the digital controller-notably control signals - must be 
interpolated from a digital sequence of values to a continuous 
function in time.

� Sampling (see next slide) is carried out by A/D (analog to 
digital converters.
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� The converse, reconstructing a continuous time signal from 
digital samples, is carried out by D/A (digital to analog) 
converters.  There are different ways of interpolating 
between the discrete samples, but the so called zero-order 
hold (see next slide) is by far the most common.

continuous-tim e signal

xx
x
xx xxxxxxx

x
x
x

x

sam pled signal

A /D

Analog to digitalconverter

Figure 12.10: The result of sampling
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� When sampling a continuous time signal,
� an appropriate sampling rate must be chosen
� an anti-aliasing filter (low-pass) should be included to avoid 

frequency folding.

� Analysis of digital systems relies on discrete time versions 
of the continuous operators.

xx
x
x
xx xxxxxxx

x
x
x

D /A

D igitalto analog convertersam pled signal reconstructed signal

Figure 12.11: The result of reconstruction
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� The chapter has introduced the discrete operator:
� the shift operator,  q, defined by ]1[][ +∆ kxkqx

� The shift operator, q,
� is the traditional operator;

� is the operator many engineers feel more familiar with;

� is used in the majority of the literature.
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� Analysis of digital systems relies on discrete time versions 
of the continuous operators:
� the discrete version of the differential operator is difference 

operator;
� the discrete version of the Laplace Transform is the Z-transform

(associated with the shift operator).

� With the help of these operators,
�� continuous time differential equation models can be converted tocontinuous time differential equation models can be converted to

discrete time difference equation models;discrete time difference equation models;
�� continuous time transfer or state space models can be converted continuous time transfer or state space models can be converted to to 

discrete time transfer or state space models in either the shiftdiscrete time transfer or state space models in either the shift oror δδ
operators.operators.
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Digital ControlDigital Control
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A key idea is that if one is only interested in the at-
sample response, these samples can be described by 
discrete time models in the delta operator.  For 
example, consider the sampled data control loop 
shown below

Cq(z)
R q(z)

G h0(s) G o(s)
Y (s)

+

Digitalcontroller Hold device Plant

sam pler
F (s)

Anti-aliasing lter

Yf(s)

E q(z)

Figure 13.1: Sampled data control loop
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If we focus only on the sampled response then it is 
straightforward to derive an equivalent discrete model 
for the at-sample response of the hold-plant-anti-
aliasing filter combination.

We use the transfer function form, and recall the 
following forms for the discrete time model:

(a)  With anti-aliasing filter  F

(b) Without anti-aliasing filter

{ })()()(),(][ 0000 ofresponseimpulsesampled sGsGsFZzGFG hqh

{ })()(),(][ 0000 ofresponseimpulsesampled sGsGZzGG hqh



08/06/2006 151

Digital Control Course Introduction

Are there special features of 
digital control models?

Many ideas carry directly over to the discrete case.  
For example, one can easily do discrete pole 
assignment.  Of course, one needs to remember that 
the discrete stability domain is different from the 
continuous stability domain.  However, this simply 
means that the desirable region for closed loop poles 
is different in the discrete case.

We are led to ask if there are any real conceptual 
differences between continuous and discrete.
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Continuous-Discrete Poles

Functions converge to the underlying continuous 
time descriptions.  In particular, the relationship 
between continuous and discrete poles is as follows:

where            denote the discrete (z-domain) poles 
and continuous time poles, respectively.

i
d
i pp ,

niTppep i
d
i

Tpd
i

i ,,1,1or L=+≅=
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Continuous-Discrete Zeros

The relationship between continuous and discrete zeros
is more complex.  Perhaps surprisingly, all discrete 
time systems turn out to have relative degree 1 
irrespective of the relative degree of the original 
continuous system.

Hence, if the continuous system has n poles and m(< n) 
zeros then the corresponding discrete system will have 
n poles and (n-1) zeros. Thus, we have  n-m+1 extra 
discrete zeros.  We therefore (somewhat artificially) 
divide the discrete zeros into two sets.
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In the control of discrete time systems special 
care needs to be taken with the sampling 
zeros.  For example, these zeros can be non-
minimum phase even if the original 
continuous system is minimum phase.  
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Is a Dedicated Digital Theory Really 
Necessary?

We could well ask if it is necessary to have a separate 
theory of digital control or could one simply map over a 
continuous design to the discrete case.  The possible 
design options are:
1)1) Design the controller in continuous time, discretise the result Design the controller in continuous time, discretise the result 

for implementation and ensure that the sampling constraints do for implementation and ensure that the sampling constraints do 
not significantly affect the final performance.not significantly affect the final performance.

2)2) Work in discrete time by doing an exact analysis of the Work in discrete time by doing an exact analysis of the atat--samplesample
response and ensure that the intersample response is not too response and ensure that the intersample response is not too 
surprising.surprising.

We will analyze and discuss these possibilities below.
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1. Approximate Continuous Designs

Given a continuous controller, C(s), we mention the 
methods drawn from the digital signal processing 
literature for determining an equivalent digital controller.

1.1 Simply take a continuous time controller expressed in 
terms of the Laplace variable, s and then replace every 
occurrence of  s by the corresponding shift domain 
operator z.  This leads to the following digital control law:

where C(s) is the transfer function of the continuous time 
controller and where is the resultant transfer 
function of the discrete time controller in the shift form.

( ) ( )
T

z
s

sCzC 11 −
=

=

( )zC1
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1.2 Convert the controller to a zero order hold discrete 
equivalent.  This is called a step invariant transformation,
Hold Equivalence (HE). This leads to

where C(s), Gh0(s) and              are the transfer functions 
of the continuous time controller, zero order hold and 
resultant discrete time controller respectively.   

)(2 γC

C 2( )= D [sam pled im pulse response offC (s)G h0(s)g]
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1.2.1 Convert the controller to a simple discrete 
equivalent.  This leads to

where C(s) and              are the transfer functions of the 
continuous time controller and the resultant discrete time 
controller, respectively.   

)(1.2 γC

{ }[ ]C(s) of response impulse sampledD)(1.2 =γC
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1.3 We could use a more sophisticated mapping from  s to  γ.  
For example, we could carry out the following 
transformation, commonly called a bilinear transformation
with pre-warping.  We first let

The discrete controller is then defined by

s=
2 + 1

( ) =
s

2 s

C 3( )= C (s)js=
2

+ 1
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2.  At-Sample Digital Design

The next option we explore is that of doing an exact 
digital control system design for the sampled 
response.

We recall that the sampled response is exactly 
described by appropriate discrete-time-models 
(expressed in either the shift operator z).
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Time Domain Design

Any algebraic technique (such as pole assignment) 
has an immediate digital counterpart.  Essentially all 
that is needed is to work with  z (or γ)  instead of the 
Laplace variable, s, and to keep in mind the different 
region for closed loop stability.
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Frequency Domain Design

Automatic design techniques can be exploited for 
frequency domain design.

Common frequency domain design tools are:

� Bode plots;
� Root locus;
� Nyquist diagrams.

•• See laboratory experiences and practical applications… See laboratory experiences and practical applications… 
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Summary

� There are a number of ways of designing digital control 
systems:
� design in continuous time and discretise the controller prior to

implementation;
� model the process by a digital model and carry out the design in

discrete time.

� Continuous time design which is discretised for 
implementation:
� Continuous time signals and models are utilized for the design;
� Prior to implementation, the controller is replaced by an equivalent 

discrete time version;
� Equivalent means to simply map  s to  z (where z is the shift 

operator);
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� Caution must be exercised since the analysis was carried out in 
continuous time and the expected results are therefore based on the 
assumption that the sampling rate is high enough to mask sampling 
effects;

� If the sampling period is chosen carefully, in particular with 
respect to the open and closed loop dynamics, then the results 
should be acceptable.

� Discrete design based on a discretised process model:
� First the model of the continuous process is discretised;
� Then, based on the discrete process, a discrete controller is 

designed and implemented;
� Caution must be exercised with so called intersample behavior:  

the analysis is based entirely on the behavior as observed at 
discrete points in time, but the process has a continuous behavior 
also between sampling instances;
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� Problems can be avoided by refraining from designing 
solutions which appear feasible in a discrete time 
analysis, but are known to be unachievable in a 
continuous time analysis.

� The following rules of thumb will help avoid 
intersample problems if a purely digital design is 
carried out:
� sample 10 times the desired closed loop bandwidth;

� always check the intersample response.
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Hybrid Control…Hybrid Control…

Final Comments, RemarksFinal Comments, Remarks
and Conclusionand Conclusion
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Motivation

In this lecture we will introduce the concept of 
Hybrid Control.  By this terminology we mean the 
combination of a digital control law with a 
continuous-time system.  We will be particularly 
interested in analysing the continuous response and 
the connections with the sampling points.

We recall the motivations and the main design 
concepts presented in the slides for the previous 
lectures.
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The set-up for digital control of this system is shown 
schematically below:

input

Digital
controller

A=D

Plant
output

D =A

The objective is to cause the output shaft position, 
y(t), to follow a given reference signal, y*(t).
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Notice that the above control law expresses the 
current control u(k∆) as a function of

� the reference,

� past output measurements,

� past control signals,   

( ) ( ) ( ) ( ) ( ) ( )
1

3221 2211*

β
ββαα ∆−−∆−−∆−−∆−−∆+=∆ kukukykyky

ku

( )∆+1* ky

( ) ( )∆−∆− 2,1 kyky

( ) ( )∆−∆− 2,1 kuku
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Models for Hybrid Control Systems

A hybrid control loop containing both continuous 
and discrete time elements is shown in Figure 14.1.

We denote the discrete equivalent transfer function 
of the combination {zero order hold + Continuous 
Plant + Filter} as [FG0Gh0]q.  We have

[F G oG h0]q = Z fsam pled im pulse response ofF (s)G o(s)G h0(s)g
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Figure 14.1: Sampled data control loop.  Block form

+

G h0(s)

u(t) G o(s) y(t)

F (s)

yf(t)

r[k]e[k]Cq(z)u[k]

yfq[k]

Sam pling period

Pre-sam pling
lter

Continuous outputContinuous tim e
plant

Discrete
controller

Continuous input

Zero-order
hold
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Design Remarks and Design Remarks and 
Recalling...Recalling...
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Link between Link between zz and and s s planes planes (1)(1)

ss planeplane zz planeplane
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Link between Link between zz and and s s planes planes (2)(2)

zz planeplaness planeplane
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Discrete Model StabilityDiscrete Model Stability

11
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Design Strategy OverviewDesign Strategy Overview

Continous
Process

Continous
Data

Discrete
Data

Estimate
of G(s) 

Estimate
of G(z) 

Modelling - Identification

Estimate
of G(w) 

D(s)
Controller 

D(z)
Controller 

D(w)
Controller 

Discretisation

leadc
lagc
pidc
rootl

leadc
lagc
pidc
rootl

pidd
rootl

wplaneconvert
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22ndnd order system Step Response order system Step Response (1)(1)

(1)(1)

Settling TimeSettling Time
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(2)(2)

22ndnd order system Step Response order system Step Response (2)(2)

OvershootOvershoot
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ss planeplane

zz planeplane

TT neez ωδσ ==

δφ =cos
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Figure 14.2: Connections between  yf(t), yf[k] and 
ŷf(t) for yf(t) = sin(2πt), ∆=0.1

��
��
��
��

yf(t)

yf[k]

ŷf(t)

( ) ( )22sin2sin Ttt −→ ππ

Zero Order Hold Effects...Zero Order Hold Effects...
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Phase Margin Degradation!Phase Margin Degradation!

2/)0( TMM f
h

f −≅ !!!!!!
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Discretisation Techniques...Discretisation Techniques...

EulerEuler

Hold EquivalenceHold Equivalence

Sampled Impulse RensponseSampled Impulse Rensponse
DiscretisationDiscretisation
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Summary

� Hybrid analysis allows one to mix continuous and 
discrete time systems properly.

� Hybrid analysis should always be utilized when 
design specifications are particularly stringent and 
one is trying to push the limits of the 
fundamentally achievable.


