BRIAN D. O. ANDERSON
JOHN B. MOORE

Optimal
Filtering

INFORMATION AND SYSTEM SCIENCES SERIES

Thomas Kailath
Editor




PRENTICE-HALL INFORMATION
AND SYSTEM SCIENCES SERIES

ANDERSON & MOORE
BERGER

D1 FraNnco & RUBIN
DowNING

Duses

FRANKS

GLORIOSO

GOLOMB, ET AL.
KAILATH

LINDSEY

LINDSEY & SIMON
MELSA & SAGE

PATRICK
RAEMER
STIFFLER
VAN DER ZIEL

Thomas Kailath, Editor

Optimal Filtering

Rate Distortion Theory:

A Mathematical Basis for Data Compression
Radar Detection

Modulation Systems and Noise

The Theory of Applied Probability

Signal Theory

Engineering Cybernetics

Digital Communications with Space Applications
Linear System Theory

Synchronization Systems

in Communication and Control
Telecommunication Systems Engineering

An Introduction to Probability

and Stochastic Processes

Fundamentals of Pattern Recognition

Statistical Cc%mmunication Theory and Applications
Theory of Synchronous Communications

Noise: Sources, Characterization, Measurement



OPTIMAL
FILTERING

Brian D. O. Anderson

John B. Moore

Professors of Electrical Engineering

University of Newcastle
New South Wales, Australia

PRENTICE-HALL, INC.
Englewood Cliffs, New Jersey 07632



Library of Congress Cataloging in Publication Data
ANDERSON, BRIAN D O
Optimal filtering.

(Information and system sciences series)

Includes bibliographies and index.

1. Signal processing. 2. Electric filters.
1. Moore, John Barratt, date joint author.
II. Title,
TKS5102.5.A53 621.3815'32 78-8938
ISBN 0-13-638122-7

© 1979 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 21

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ‘ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand



CONTENTS

PREFACE

INTRODUCTION

11
1.2
1.3
14

Filtering 1

History of Signal Filtering 2
Subject Matter of this Book 4
QOutline of the Book 6
References 7

FILTERING, LINEAR SYSTEMS,
AND ESTIMATION

21

2.2
23

Systems. Noise, Filtering,

Smoothing, and Prediction 9

The Gauss-Markov Discrete-time Model 12
Estimation Criteria 23

References 34



vi

3

CONTENTS

THE DISCRETE-TIME KALMAN FILTER

3.1 The Kalman Filter 36

3.2 Best Linear Estimator Property
of the Kalman Filter 46

3.3 /dentification as a Kalman
Filtering Problem 50

3.4 Application of Kalman Filters 53
References 59

TIME-INVARIANT FILTERS

4.1 Background to Time Invariance
of the Filter 62

4.2 Stability Properties of Linear,
Discrete-time Systems 63

4.3 Stationary Behaviour of Linear Systems

4.4 Time Invariance and Asymptotic
Stability of the Filter 76

4.5 Frequency Domain Formulas 85
References 88

KALMAN FILTER PROPERTIES

5.1 Introduction 90
5.2 Minimum Variance and Linear Minimum
Variance Estimation,; Orthogonality
and Projection 92
5.3 The Innovations Sequence 700
5.4 The Kalman Kilter 105
5.5 True Filtered Estimates
and the Signal-to-Noise
Ratio Improvement Property 115
5.6 [Inverse Problems:
When is a Filter Optimal ? 122
References 127

COMPUTATIONAL ASPECTS

6.1 Signal Model Errors, Filter Divergence,
and Data Saturation 129

6.2 Exponential Data Weighting—-
A Filter with Prescribed
Degree of Stability 135

36

62

68

90

129



6.3 The Matrix Inversion Lemma
and the Information Filter 138
6.4 Sequential Processing 142
6.5 Square Root Filtering 147
6.6 The High Measurement Noise Case 753
6.7 Chandrasekhar-Type, Doubling,
and Nonrecursive Algorithms 155
References 7162

SMOOTHING OF DISCRETE-TIME SIGNALS

7.1 Introduction to Smoothing 165

7.2 Fixed-point Smoothing 170

7.3 Fixed-lag Smoothing 176

7.4 Fixed-interval Smoothing 187
References 190

APPLICATIONS IN NONLINEAR FILTERING

8.1 Nonlinear Filtering 183

8.2 The Extended Kalman Filter 795

8.3 A Bound Optimal Filter 205

8.4 Gaussian Sum Estimators 211
References 221

INNOVATIONS REPRESENTATIONS,
SPECTRAL FACTORIZATION,
WIENER AND LEVINSON FILTERING

9.1 /Introduction 223
9.2 Kalman Filter Design from Covariance Data 227
9.3 [Innovations Representations
with Finite Initial Time 230
9.4 Stationary Innovations Representations
and Spectral Factorization 238
9.5 Wiener Filtering 254
9.6 Levinson Filters 258
References 264

PARAMETER IDENTIFICATION
AND ADAPTIVE ESTIMATION

10.1 Adaptive Estimation via Parallel Processing 267
10.2 Adaptive Estimation via Extended Least Squares
References 286

CONTENTS

279

vii

165

193

223

267



wiii

CONTENTS

COLORED NOISE AND SUBOPTIMAL
REDUCED ORDER FILTERS

11.1  General Approaches
to Dealing with Colored Noise 288
11.2 Filter Design with Markov Qutput Noise 290
11.3 Filter Design with Singular
or Near-singular Output Noise 292
11.4 Suboptimal Design Given Colored Input
or Measurement Noise 296
11.5 Suboptimal Fifter Design
by Model Order Reduction 30171
References 304

APPENDIXES

BRIEF REVIEW OF RESULTS

OF PROBABILITY THEORY

A1 Pure Probability Theory 308

A.2 Stochastic Processes 316

A.3 Gaussian Random Variables,
Vectors, and Processes 320
References 323

BRIEF REVIEW OF SOME RESULTS
OF MATRIX THEORY

References 339

BRIEF REVIEW OF SEVERAL MAJOR RESULTS
OF LINEAR SYSTEM THEORY

References 346

LYAPUNOV STABILITY

References 349

AUTHOR INDEX

SUBJECT INDEX

288

307

324

340

347

3561

354



PREFACE

This book is a graduate level text which goes beyond and augments
the undergraduate exposure engineering students might have to signal
processing; particularly, communication systems and digital filtering theory.
The material covered in this book is vital for students in the fields of control
and communications and relevant to students in such diverse areas as sta-
tistics, economics, bioengineering and operations research. The subject matter
requires the student to work with linear system theory results and elemen-
tary concepts in stochastic processes which are generally assumed at graduate
level. However, this book is appropriate at the senior year undergraduate
level for students with background in these areas.

Certainly the book contains more material than is usually taught in one
semester, so that for a one semester or quarter length course, the first three
chapters (dealing with the rudiments of Kalman filtering) can be covered
first, followed by a selection from later chapters. The chapters following
Chapter 3 build in the main on the ideas in Chapters 1, 2 and 3, rather than
on all preceding chapters. They cover a miscellany of topics; for example,
time-invariant filters, smoothing, and nonlinear filters. Although there is a
significant benefit in proceeding through the chapters in sequence, this is not
essential, as has been shown by the authors’ experience in teaching this course.

The pedagogical feature of the book most likely to startle the reader
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is the concentration on discrete-time filtering. Recent technological develop-
ments as well as the easier path offered students and instructors are the two
reasons for this course of action. Much of the material of the book has been
with us in one form or another for ten to fifteen years, although again, much
is relatively recent. This recent work has given new perspectives on the earlier
material; for example, the notion of the innovations process provides helpful
insights in deriving the Kalman filter.

We acknowledge the research support funding of the Australian Research
Grants Committee and the Australian Radio Research Board. We are
indebted also for specific suggestions from colleagues, Dr. G. Goodwin and
Dr. A. Cantoni; joint research activities with former Ph.D. students Peter
Tam and Surapong Chirarattananon; and to the typing expertise of Dianne
Piefke. We have appreciated discussions in the area of optimal filtering with
many scholars including Professors K. Astrom, T. Kailath, D. Mayne, J.
Meditch and J. Melsa.

B. D. O. ANDERSON

New South Wales, Australia J. B. MOORE



CHAPTER 1

INTRODUCTION

1.1 FILTERING

Filtering in one form or another has been with us for a very long time.
For many centuries, man has attempted to remove the more visible of the
impurities in his water by filtering, and one dictionary gives a first meaning
for the noun filter as “a contrivance for freeing liquids from suspended
impurities, especially by passing them through strata of sand, charcoal,
etc.”

Modern usage of the word filter often involves more abstract entities than
fluids with suspended impurities. There is usually however the notion of
something passing a barrier: one speaks of news filtering out of the war zone,
or sunlight filtering through the trees. Sometimes the barrier is interposed by
man for the purpose of sorting out something that is desired from something
else with which it is contaminated. One example is of course provided by water
purification; the use of an ultraviolet filter on a camera provides another
example. When the entities involved are signals, such as electrical voltages,
the barrier—in the form perhaps of an electric network—becomes a filter in
the sense of signal processing.

It is easy to think of engineering situations in which filtering of signals
might be desired. Communication systems always have unwanted signals, or
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noise, entering into them. This is a fundamental fact of thermodynamics. The
user of the system naturally tries to minimize the inaccuracies caused by the
presence of this noise—by filtering. Again, in many control systems the con-
trol is derived by feedback, which involves processing measurements derived
from the system. Frequently, these measurements will contain random inac-
curacies or be contaminated by unwanted signals, and filtering is necessary in
order to make the control close to that desired.

1.2 HISTORY OF SIGNAL FILTERING

Filters were originally seen as circuits or systems with frequency selec-
tive behaviour. The series or parallel tuned circuit is one of the most funda-
mental such circuits in electrical engineering, and as a “wave trap” was a
crucial ingredient in early crystal sets. More sophisticated versions of this
same idea are seen in the IF strip of most radio receivers; here, tuned circuits,
coupled by transformers and amplifiers, are used to shape a passband of
frequencies which are amplified, and a stopband where attenuation occurs.

Something more sophisticated than collections of tuned circuits is nec-
essary for many applications, and as a result, there has grown up an extensive
body of filter design theory. Some of the landmarks are constant £ and
m-derived filters [1], and, later, Butterworth filters, Chebyshev filters, and
elliptical filters [2]. In more recent years, there has been extensive development
of numerical algorithms for filter design. Specifications on amplitude and
phase response characteristics are given, and, often with the aid of sophisti-
cated computer-aided design packages which allow interactive operation, a
filter is designed to meet these specifications. Normally, there are al§o
constraints imposed on the filter structure which have to be met; these con-
straints may involve impedance levels, types of components, number of com-
ponents, etc.

Nonlinear filters have also been used for many years. The simplest is the
AM envelope detector [3], which is a combination of a diode and a low-pass
filter. In a similar vein, an automatic gain control (AGC) circuit uses a low-
pass filter and a nonlinear element [3]. The phase-locked-loop used for FM
reception is another example of a nonlinear filter [4], and recently the use of
Dolby® systems in tape recorders for signal-to-noise ratio enhancement has
provided another living-room application of nonlinear filtering ideas.

The notion of a filter as a device processing continuous-time signals and
possessing frequency selective behaviour has been stretched by two major
developments.

The first such development is Jigital filtering [5-7], made possible by
recent innovations in integrated circuit technology. Totally different circuit
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modules from those used in classical filters appear in digital filters, e.g.,
analog-to-digital and digital-to-analog converters, shift registers, read-only
memories, even microprocessors. Therefore, though the ultimate goals of
digital and classical filtering are the same, the practical aspects of digital
filter construction bear little or no resemblance to the practical aspects of,
say, m-derived filter construction. In digital filtering one no longer seeks to
minimize the active element count, the size of inductors, the dissipation of
the reactive elements, or the termination impedance mismatch. Instead, one
may seek to minimize the word length, the round-off error, the number of
wiring operations in construction, and the processing delay.

Aside from the possible cost benefits, there are other advantages of this
new approach to filtering. Perhaps the most important is that the filter param-
eters can be set and maintained to a high order of precision, thereby achiev-
ing filter characteristics that could not normally be obtained reliably with
classical filtering. Another advantage is that parameters can be easily reset or
made adaptive with little extra cost. Again, some digital filters incorporating
microprocessors can be time-shared to perform many simultaneous tasks
effectively.

The second major development came with the application of statistical
ideas to filtering problems [8-14] and was largely spurred by developments
in theory. The classical approaches to filtering postulate, at least implicitly,
that the useful signals lie in one frequency band and unwanted signals, nor-
mally termed noise, lie in another, though on occasions there can be overlap.
The statistical approaches to filtering, on the other hand, postulate that
certain statistical properties are possessed by the useful signal and unwanted
noise. Measurements are available of the sum of the signal and noise, and the
task is still to eliminate by some means as much of the noise as possible
through processing of the measurements by a filter. The earliest statistical
ideas of Wiener and Kolmogorov [8, 9] relate to processes with statistical
properties which do not change with time, i.e., to stationary processes. For
these processes it proved possible to relate the statistical properties of the
useful signal and unwanted noise with their frequency domain properties.
There is, thus, a conceptual link with classical filtering.

A significant aspect of the statistical approach is the definition of a
measure of suitability or performance of a filter. Roughly the best filter is
that which, on the average, has its output closest to the correct or useful
signal. By constraining the filter to be linear and formulating the performance
measure in terms of the filter impulse response and the given statistical prop-
erties of the signal and noise, it generally transpires that a unique impulse
response corresponds to the best value of the measure of performance or
suitability.

As noted above, the assumption that the underlying signal and noise
processes are stationary is crucial to the Wiener and Kolmogorov theory. It
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was not until the late 1950s and early 1960s that a theory was developed
that did not require this stationarity assumption [11-14]. The theory arose
because of the inadequacy of the Wiener-Kolmogorov theory for coping with
certain applications in which nonstationarity of the signal and/or noise was
intrinsic to the problem. The new theory soon acquired the name Kalman
filter theory.

Because the stationary theory was normally developed and thought of in
frequency domain terms, while the nonstationary theory was naturally
developed and thought of in time domain terms, the contact between the two
theories initially seemed slight. Nevertheless, there is substantial contact, if
for no other reason than that a stationary process is a particular type of non-
stationary process; rapprochement of Wiener and Kalman filtering theory is
now easily achieved.

As noted above, Kalman filtering theory was developed at a time when
applications called for it, and the same comment is really true of the Wiener
filtering theory. It is also pertinent to note that the problems of implementing
Kalman filters and the problems of implementing Wiener filters were both
consistent with the technology of their time. Wiener filters were implementable
with amplifiers and time-invariant network elements such as resistors and
capacitors, while Kalman filters could be implemented with digital integrated
circuit modules.

The point of contact between the two recent streams of development,
digital filtering and statistical filtering, comes when one is faced with the
problem of implementing a discrete-time Kalman filter using digital hard-
ware. Looking to the future, it would be clearly desirable to incorporate the
practical constraints associated with digital filter realization into the mathe-
matical statement of the statistical filtering problem. At the present time,
however, this has not been done, and as a consequence, there is little contact
between the two streams.

1.3 SUBJECT MATTER OF THIS BOOK

This book seeks to make a contribution to the evolutionary trend in
statistical filtering described above, by presenting a hindsight view of the
trend, and focusing on recent results which show promise for the future. The
basic subject of the book is the Kalman filter. More specifically, the book
starts with a presentation of discrete-time Kalman filtering theory and then
explores a number of extensions of the basic ideas.

There are four important characteristics of the basic filter:

1. Operation in discrete time
2. Optimality
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3. Linearity
4. Finite dimensionality

Let us discuss each of these characteristics in turn, keeping in mind that
derivatives of the Kalman filter inherit most but not all of these charucter-
istics.

Discrete-time operation. More and more signal processing is becoming
digital. For this reason, it is just as important, if not more so, to understand
discrete-time signal processing as it is to understand continuous-time signal
processing. Another practical reason for preferring to concentrate on discrete-
time processing is that discrete-time statistical filtering theory is much easier
to learn first than continuous-time statistical filtering theory; this is because
the theory of random sequences is much simpler than the theory of con-
tinuous-time random processes.

Optimality. An optimal filter is one that is best in a certain sense, and
one would be a fool to take second best if the best is available. Therefore,
provided one is happy with the criterion defining what is best, the argument
for optimality is almost self-evident. There are, however, many secondary
aspects to optimality, some of which we now list. Certain classes of optimal
filters tend to be robust in their maintenance of performance standards when
the quantities assumed for design purposes are not the same as the quantities
encountered in operation. Optimal filters normally are free from stability
problems. There are simple operational checks on an optimal filter when it is
being used that indicate whether it is operating correctly. Optimal filters are
probably easier to make adaptive to parameter changes than suboptimal
filters.

There is, however, at least one potential disadvantage of an optimal
filter, and that is complexity; frequently, it is possible to use a much less
complex filter with but little sacrifice of performance. The question arises as
to how such a filter might be found. One approach, which has proved itself
in many situations,involves approximating the signal model by one that is
simpler or less complex, obtaining the optimal filter for this less complex
model, and using it for the original signal model, for which of course it is
suboptimal. This approach may fail on several grounds: the resulting filter
may still be too complex, or the amount of suboptimality may be unacceptably
great. In this case, it can be very difficult to obtain a satisfactory filter of
much less complexity than the optimal filter, even if one is known to exist,
because theories for suboptimal design are in some ways much less developed
than theories for optimal design.

Linearity. The arguments for concentrating on linear filtering are those
of applicability and sound pedagogy. A great many applications involve
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linear systems with associated gaussian random processes; it transpires that
the optimal filter in a minimum mean-square-error sense is then linear. Of
course, many applications involve nonlinear systems and/or nongaussian
random processes, and for these situations, the optimal filter is nonlinear.
However, the plain fact of the matter is that optimal nonlinear filter design
and implementation are very hard, if not impossible, in many instances. For
this reason, a suboptimal linear filter may often be used as a substitute for an
optimal nonlinear filter, or some form of nonlinear filter may be derived which
is in some way a modification of a linear fiiter or, sometimes, a collection of
linear filters. These approaches are developed in this book and follow our
discussion of linear filtering, since one can hardly begin to study nonlinear
filtering with any effectiveness without a knowledge of linear filtering.

Finite dimensionality. 1t turns out that finite-dimensional filters should
be used when the processes being filtered are associated with finite-dimen-
sional systems. Now most physical systems are not finite dimensional;
however, almost all infinite-dimensional systems can be approximated by
finite-dimensional systems, and this is generally what happens in the modeling
process. The finite-dimensional modeling of the physical system then leads to
an associated finite-dimensional filter. This filter will be suboptimal to the
extent that the model of the physical system is in some measure an inaccurate
reflection of physical reality. Why should one use a suboptimal filter?
Though one can without too much difficulty discuss infinite-dimensional
filtering problems in discrete time, and this we do in places in this book,
finite-dimensional filters are very much to be preferred on two grounds: they
are easier to design, and far easier to implement, than infinite-dimensional
filters.

1.4 OUTLINE OF THE BOOK

The book falls naturally into three parts.

The first part of the book is devoted to the formulation and solution of
the basic Kalman filtering problem. By the end of the first section of Chapter
3, the reader should know the fundamental Kalman filtering result, and by
the end of Chapter 3, have seen it in use.

The second part of the book is concerned with a deeper examination of
the operational and computational properties of the filter. For example, there
is discussion of time-invariant filters, including special techniques for com-
puting these filters, and filter stability; the, Kalman filter is shown to have a
signal-to-noise ratio enhancement property.

In the third part of the book, there are a number of developments taking
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off from the basic theory. For example, the topics of smoothers, nonlinear
and adaptive filters, and spectral factorization are all covered.

There is also a collection of appendices to which the reader will probably
refer on a number of occasions. These deal with probability theory and
random processes, matrix theory, linear systems, and Lyapunov stability
theory. By and large, we expect a reader to know some, but not all, of the
material in these appendices. They are too concentrated in presentation to
allow learning of the ideas from scratch. However, if they are consulted when
a new idea is encountered, they will permit the reader to learn much, simply
by using the ideas.

Last, we make the point that there are many ideas developed in the
problems. Many are not routine.
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CHAPTER 2

FILTERING, LINEAR SYSTEMS,
AND ESTIMATION

21 SYSTEMS, NOISE, FILTERING, SMOOTHING,
AND PREDICTION

Our aim in this section is to give the reader some feel for the concepts
of filtering, smoothing, and prediction. Later in this chapter we shall consider
a specific filtering problem, and in the next chapter present its solution. This
will provide the basis for the definition and solution of most of the other
problems discussed in this book.

In order to have any sort of filtering problem in the first place, there
must be a system, generally dynamic, of which measurements are available.
Rather than develop the notion of a system with a large amount of mathe-
matical formalism, we prefer here to appeal to intuition and common sense
in pointing out what we mean. The system is some physical object, and its
behaviour can normally be described by equations. It operates in real time,
so that the independent variable in the equations is time. It is assumed to be
causal, so that an output at some time ¢ = ¢, is in no way dependent on inputs
applied subsequent to ¢ = ¢,. Further, the system may operate in discrete or
continuous time, with the underlying equations either difference equations or
differential equations, and the output may change at discrete instants of time
or on a continuous basis.
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Later, we shall pose specific mathematical models for some systems, and
even formally identify the system with the model.

In discussing filtering and related problems, it is implicit that the systems
under consideration are noisy. The noise may arise in a number of ways. For
example, inputs to the system may be unknown and unpredictable except for
their statistical properties, or outputs from the system may be derived with
the aid of a noisy sensor, i.e., one that contributes on a generally random
basis some inaccuracy to the measurement of the system output. Again,
outputs may only be observed via a sensor after transmission over a noisy
channel.

In virtually all the problems we shall discuss here, it will be assumed that
the output measurement process is noisy. On most occasions, the inputs also
will be assumed to be noisy.

Now let us consider exactly what we mean by filtering. Suppose there is
some quantity (possibly a vector quantity) associated with the system opera-
tion whose value we would like to know at each instant of time. For the sake
of argument, assume the system in question is a continuous time system, and
the quantity in question is denoted by s(.).* It may be that this quantity is
not directly measurable, or that it can only be measured with error. In any
case, we shall suppose that noisy measurements z(-) are available, with z(-)
not the same as s(-).

The term filtering is used in two senses. First, it is used as a generic term:
filtering is the recovery from z(+) of s(.), or an approximation to s(-), or
even some information about s{+). In other words, noisy measurements of a
system are used to obtain information about some quantity that is essentially
internal to the system. Second, it is used to distinguish a certain kind of
information processing from two related kinds, smoothing and prediction.
In this sense, filtering means the recovery at time ¢ of some information about
s(¢) using measurements up till time 7. The important thing to note is the
triple occurrence of the time argument ¢. First, we are concerned with obtain-
ing information about s(-) at time ¢, i.e., s(¢). Second, the information is
available at time ¢, not at some later time. Third, measurements right up to,
but not after, time ¢ are used. [If information about s(¢) is to be available at
time ¢, then causality rules out the use of measurements taken later than time
t in producing this information.]

An example of the application of filtering in everyday life is in radio
reception. Here the signal of interest is the voice signal. This signal is used to
modulate a high frequency carrier that is transmitted to a radio receiver. The
received signal is inevitably corrupted by noise, and so, when demodulated,
it is filtered to recover as well as possible the original signal.

* Almost without exception throughout the book, x(r) will denote the value taken by
a function at time ¢, and x(-) will denote that function. Therefore, x(¢) is a number, and
x(-) an infinite set of pairs, {¢, x(#)}, for 7 ranging over all possible values.



~

Sec. 2.1 SYSTEMS, NOISE, FILTERING, SMOOTHING, AND PREDICTION 11

Smoothing differs from filtering in that the information about s(¢) need
not become available at time ¢, and measurements derived later than time ¢
can be used in obtaining information about s(¢). This means there must be a
delay in producing the information about s(¢), as compared with the filtering
case, but the penalty of having a delay can be weighed against the ability to
use more measurement data than in the filtering case in producing the
information about s(¢). Not only -does one use measurements up to time ¢,
but one can also use measurements after time r. For this reason, one should
expect the smoothing process to be more accurate in some sense than the
filtering process.

An example of smoothing is provided by the way the human brain
tackles the problem of reading hastily written handwriting. Each word is
tackled sequentially, and when word is reached that is particularly difficult to
interpret, several words after the difficult word, as well as those before it,
may be used to attempt to deduce the word. In this case, the s(-) process
corresponds to the sequence of correct words and the z(.) process to the
sequence of handwritten versions of these words.

Prediction is the forecasting side of information processing. The aim is
to obtain at time ¢ information about s(t + A) for some 1 > 0, i.e., to obtain
information about what s(-) will be like subsequent to the time at which the
information is produced. In obtaining the information, measurements up till
time ¢ can be used.

Again, examples of the application of prediction abound in many areas
of information processing by the human brain. When attempting to catch a
ball, we have to predict the future trajectory of the ball in order to position a
catching hand correctly. This task becomes more difficult the more the ball is
subject to random disturbances such as wind gusts. Generally, any prediction
task becomes more difficult as the environment becomes noisier.

Outline of the Chapter

In Sec. 2.2, we introduce the basic system for which we shall aim to
design filters, smoothers, and predictors. The system is described by linear,
discrete-time, finite-dimensional state-space equations, and has noisy input
and output.

In Sec. 2.3, we discuss some particular ways one might try to use noisy
measurement data to infer estimates of the way internal variables in a system
may be behaving. The discussion is actually divorced from that of Sec. 2.2,
in that we pose the estimation problem simply as one of estimating the value
of a random variable X given the value taken by a second random variable Y,
with which X is jointly distributed.

Linkage of the ideas of Secs. 2.2 and 2.3 occurs in the next chapter.
The ideas of Sec. 2.3 are extended to consider the problem of estimating the
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successive values of a random sequence, given the successive values of a sec-
ond random sequence; the random sequences in question are those arising
from the model discussed in Sec. 2.2, and the estimating device is the Kalman
filter.

The material covered in this chapter can be found in many other places;
see, e.g., [1} and [2).

Problem 1.1. Consider the reading of a garbled telegram. Defining signal-to-
noise ratio as simply the inverse of the probability of error for the reception of each
word letter, sketch on the one graph what you think might be reasonable plots of
reading performance (probability of misreading a word) versus signal-to-noise ratio
for the following cases.

. Filtering—where only the past data can be used to read each word

. One-word-ahead prediction

. Two-words-ahead prediction

. Smoothing—where the reader can look ahead one word

. Smoothing—where the reader can look ahead for the remainder of the
sentence

AV IE -V S

Problem 1.2. Interpret the following statement using the ideas of this section:
“It is easy to be wise after the event.”

2.2 THE GAUSS-MARKOV DISCRETE-TIME MODEL

System Description

We shall restrict attention in this book primarily to discrete-time sys-
tems, or, equivalently, systems where the underlying system equations are
difference equations rather than differential equations.

The impetus for the study of discrete-time systems arises because fre-
quently in a practical situation system observations are made and control
strategies are implemented at discrete time instants. An example of such a
situation in the field of economics arises where certain statistics or economic
indices may be compiled quarterly and budget controls may be applied
yearly. Again, in many industrial control situations wherever a digital com-
puter is used to monitor and perhaps also to control a system, the discrete-
time framework is a very natural one in which to give a system model
description—even in the case where the system is very accurately described
by differential equations. This is because a digital computer is intrinsically
a discrete-time system rather than a continuous-time system.

The class of discrete-time systems we shall study in this section has as a
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prototype the linear, finite-dimensional system depicted in Fig. 2.2-1. The
system depicted may be described by state-space equations*

Xer = Foxp + Gewy (2.1

e = Y + v = Hiex + vy (2.2

The subscript is a time argument; for the moment we assume that the initial

time at which the system commences operating is finite. Then by shift of the

time origin, we can assume that (2.1) and (2.2) hold for k > 0. Further, we
shall denote successive time instants without loss of generality by integer k.

<

+

+ K+l X, Y
W, —»{ G, Delay H 2,
+

|

Fig. 2.2-1 Finite-dimensional linear system serving as signal model.

Equations of the type just given can arise in considering a continuous-
time linear system with sampled measurements, as described in Appendix C
in some detail.

To denote the set {(x,, k)| k > 0}, we shall use the symbel {x,}. As usual,
x, will be a value taken by {x,]} at time k. In (2.1) and (2.2), x, is, of course,
the system state at time k. Under normal circumstances, y, = H,x, would be
the corresponding system output, but in this case there is added to {y,} a
noise process {v,}, which results in the measurement process {z,}. The input
process to the system is {w,}, and like {v,}, it is a noise process. Further
details of {v,} and {w,} will be given shortly, as will some motivation for
introducing the whole model of Fig. 2.2-1.

Of course, the processes {v,}, {wi}, {x:}, {¥:}, and {z,} in general will be
vector processes. Normally we shall not distinguish between scalar and
vector quantities.

Our prime concern in this and the next chapter will be to pose in precise
terms, and solve, a filtering problem for the system depicted. In loose terms,
the filtering problem is one of producing an estimate at time k of the system
state x, using measurements up till time k; i.e., the aim is to use the
measured quantities z,, z,, ..., z, to intelligently guess at the value of x,.
Further, at each time instant k, we want the guess to be available.

*These and other key equations are summarized at the end of the section.



Noise Descriptions

As those with even the most elementary exposure to probability theory
will realize, almost nothing can be done unless some sort of probabilistic
structure is placed on the input noise process {w,} and output noise process
{v,}. Here, we shall make the following assumptions:

AssuMpTION 1. {v,} and {w,} are individually white processes. Here we
speak of a white process* as one where, for any k and [ withk # [, v,
and v, are independent random variables and w, and w; are independent
random variables.

ASSUMPTION 2. {v,} and {w,} are individually zero mean, gaussian pro-
cesses with known covariances.

AssuMPTION 3. {v,} and {w,} are independent processes.

Assumption 2 under normal circumstances would mean that the joint
probability density of, say, vy,, Vs, - - - » ¥s, fOr arbitrary mand k, is gaussian.
In view of the whiteness of {v,} guaranteed by Assumption 1, the joint
probability density is simply the product of the individual densities, and
is therefore gaussian if the probability density of v, for each single k is
gaussian.

Here, we remind the reader that the probability density of a gaussian
random variablet v is entirely determined by the mean m and covariance R
of », which are defined by

m = E[v] R = E[(v — m)(v — m)’] 2.3)
When v has dimension » and R is nonsingular, the probability density is

P®) = oz TR P [-3@—mR@w-—m] @4

If R is singular, p,(v) is now no longer well defined, and probabilistic prop-
erties of v are more easily defined by its characteristic function, viz.

¢,(s) = Elexp ju's] = exp (jm's — 45'Rs) ©.5)

Since {v,]} is white, we can arrange for Assumption 2 to be fulfilled if we
specify that v, has zero mean for each k and the covariance E{v,vi]is known
for all k. (For note that the process covariance is the set of values of £ [vvi]

*Historically, white processes have often been defined as those uncorrelated from
instant to instant, as being also stationary, and usually having zero mean. The definition
above is less restrictive.

+See Appendix A for a review of a number of ideas of probability theory and stochastic
processes.

14
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for all k and /. However, we see that for k = /
E[v,v]] = E[v,]E[v]] by the whiteness assumption
=0 by the zero mean assumption)

Consequently, if we know that E[v,v;] = R, say, then the covariance of the
{v,} process is given by

E[v,v]] = ROy, (2.6)

for all k and /, where §,, is the Kronecker delta, which is 1 for k =/ and 0
otherwise. Likewise, the covariance of the {w,} process, which is zero mean,
is completely specified by a sequence of matrices {Q,} such that

E(w,w)] = Qudy 27

Of course, Q, and R, are nonnegative definite symmetric for all k. Note also
that Assumption 3 and the zero mean assumption imply

E[v,w]] =0 (2.8)

for all k and /. [Later in the book, we shall frequently relax (2.8). Prob. 2.6
considers the case of dependent v, and w,.]

For convenience, we can sum up the assumptions on {w,} and {v,} as
follows:

The processes {v,} and {w,} are zero mean, independent gaussian
processes with covariances given by (2.6) and (2.7).

Initial State Description

So far, we have not specified an initial condition for the difference equa-
tion (2.1). Under normal circumstances, one might expect to be told that at
the initial time k = 0, the state x, was some prescribed vector. Here, however,
we prefer to leave our options more open. From the practical point of view,
if it is impossible to measure x, exactly for arbitrary k&, it is unlikely that x,
will be available. This leads us to the adoption of a random initial condition
for the system. In particular, we shall assume that x, is a gaussian random
variable of known mean x, and known covariance P, i.e.,

E[x,] = %,  E{[x, — Xollxo — %]’} = Py (2.9)
Further, we shall assume that x, is independent of v, and w, for any k.

At this stage, the reader is probably wondering to what extent all the
assumptions made are vital, and to what extent they are suggested by physical
reality. Why shouldn’t one, for example, choose an arbitrary probability
density for x,? Why should x, have to be independent of v, ?

We hope to indicate in subsequent parts of the book relaxations of many
assumptions, and we hope also to indicate by way of examples the reason-
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ableness of many. At this point we simply comment that experiments estab-
lish that many naturally occurring processes are gaussian; that by modelling
certain natural processes as resulting from the sum of a number of individual,
possibly nongaussian, processes, the central limit theorem of probability
theory [3] suggests an approximately gaussian character for the sum; and
finally, that the filtering problem is generally easier to solve with the gaussian
assumption. So it is a combination of experiment, analysis, and pragmatism
that suggests the gaussian assumption.

ExampLE 2.1. In order to illustrate where a state-space signal model might
be used in an engineering situation, consider the problem of prediction of
air pollution levels to control the pollutants in an industrial district. The
control would perhaps be to limit or close down an industrial process when
certain pollutant levels were expected to rise beyond a certain threshold with-
out such control. To meet such a requirement in Tokyo, a research team in a
study reported in [4] selected five kinds of pollutants—OX, NO, NO,, SO,,
and CO—as state variables in a state model and Kalman predictor. The meteo-
rological conditions such as temperature, wind speed, and humidity could also
have been included in the state vector, but their effects as studied in a factor
analysis were shown to be relatively less significant.

The structure of one of the models considered in [4] is simply x;,, =
Fyx, + by + w, (regarded in [4] as a linear multiple regression model). Here,
X, is the state vector consisting of the concentrations of the pollutants, Fy is a
system matrix, b is a bias vector and wy is a vector of model errors. The
observations are y, = xi + v, where v, is the measurement noise. The system
parameters including bias are not in this case obtained from a study of the
physics and chemistry of the pollution dispersion, but are nonphysical param-
eters derived from an identification procedure not discussed here. In order to
improve the model so as to whiten wy, an increased order model

Xie1 = ArXxp + Apxiey + o0 A ApXeem + b+ Wi

is also studied in [4). This is readily reorganized as a higher order state model
where now the state vector is [x%, xi—y, . . . , Xk—m] and the measurements are
again y; = X + vk.

We see that the model errors are treated as system noise, and the measure-
ment errors are taken into account as observation noise. The dimension of the
model is not necessarily the dimension of the measurement vector; and in
estimating the states from the measurements it may well be that in a model one
or more of the measurements may contribute very little to the estimation (or
prediction). In (4], predictors are developed based on Kalman filtering ideas,
and the model is validated on actual data. The model is shown to be more useful
than simpler autoregressive models, which are but a special class of the models
discussed in this section, as pointed out in the next example.

ExaMpLE 2.2. Provided that correlation:of input and output noise is allowed,
we can represent scalar autoregressive (AR), moving average (MA), and
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ARMA processes in the standard form. Let {w,] be a sequence of independent
N(0, 1) random variables (i.e., each w, is gaussian with mean zero and vari-
ance 1). Firstly, the process {z,} defined by

Zp = Wi + CiWiey + o0+ CaWir_p

for constants ¢, is a moving average process of order n. We set, with x, an
n-vector,

010 0 0
0 0 1 0 0
X4y = Xe + Wi
000 -.- 1 0
.0 0 0 --- 0] 1]
(Then xx = [Wk—y Wi_psq wik_1]".) Also
2z =[c, €poy cilxe + vi

where v, = w,. Secondly, with {w,} as above, the process {z,} defined by

Zx +Q1zp o AuZiesn = Wi
with the a; constants is called an autoregressive process of order n. (Usually,
the zeros of z» 4+ g;z""! + --- 4+ g, lie in|z| < 1, since this actually ensures

that {z,} is stationary if k, = —oo; this point need not, however, concern us
here.) The process can be obtained in the following way:

—a, —a, —Qp_y —day
1 0 0 0
0 1 0 0
Xeve1 = Xk + Wk
0 0 s 1 0 0|
zx = —[a; a, alx, + v

with v, = wy. (To see this, observe that from the state equation, with &, =
xi, we have
- X =[O Oy Ox_nl’
and
Okp1 = —ailly — Qg -+ — Ayl _, + Wy
From the output equation, we have

Ze = —a 0 — 00y -+ > — Qllg_, + Wi

Thus z; = ¢, ,, and the autoregressive equation is immediate.) The ARMA
equation is examined in the problems.

Gaussian and Markov Properties of the System State

We wish to note three important properties of the random process {x,}

of the fundamental system of Fig. 2.2-1.
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First, x, is a gaussian random variable. (In other words, the gaussian
character of the system input {w,} and the initial state x, propagates so as to
make x, gaussian for arbitrary k.) Why is this so? Observe from (2.1) that

k-1
Xy = @ oxo + ;) (Dk,l+1lel (2.10)
where
Qk.l:Fk—IFk—Z...FI (k>l) q)k,kzl (2.11)

(Recall that ®@, , for all k and / constitutes the transition matrix for the
homogeneous equation X,., = F,x,. As such, it has the important prop-
erties ®, , = I and O, @, , = @, , forallk, /, and m withk > [ >m.)

Equation (2.10) expresses x, as a linear combination of the jointly
gaussian random vectors X,, wo, W, . . ., Wi_;- (Note that the variables are
jointly gaussian as a result of their being individually gaussian and indepen-
dent.) Now since linear transformations of gaussian random variables preserve
their gaussian character,* it follows that x, is a gaussian random variable.

The second property is: {x,} is a gaussian random process. Of course,
this property is simply an extension of the first. In effect, one has to show that
for arbitrary m and &, i=1,...,m, the set of random variables x,, is
jointly gaussian. The details will be omitted.

Finally, we claim that {x,} is a Markov process. In other words, if k,
<k, < -+ <k, <k, the probability density of x, conditioned on x;,,
Xip - - - X, is simply the probability density of x, conditioned on x,_:

PO X by Xiegs -+ 5 X)) = p(xi [ Xi)
This property is essentially a consequence of two factors: the whiteness of w,

and the causality of the system (2.1). In outline, one can argue the Markov
property as follows. From (2.1), one has

k=t
X = D ko Xe, + Iz); D1 Giw, (2.12)

Now the summation in this equation involves w, for / > k,,, with k,, > k;
for all i < m. Hence the particular w, are all independent of x;,, Xx,, - - - »
Xi.. Knowing X, Xi, - - s Xews therefore, conveys no information what-
soever about these w, Of the sequence xi,, X, - . ., Xk, O0ly X, can be
relevant as a conditioning variable for x,. This is the essence of the Markov
property.

What of the measurement process {z,}? Certainly, it too is a gaussian
process, for essentially the same reasons as {x}. In fact, {x.} and {z,} are
Jjointly gaussian. But {z,} is, perhaps surprisingly at first glance, no longer a
Markov process (except in isolated instances). Roughly speaking, the reason
is that the process {y,]} is not white, nor is the correlation between y, and y,

*Once more, we remind the reader of the existence of Appendix A, summarizing many
results of probability theory and stochastic processes.
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normally zero if |k — [} > 1. This means that y, _, and y,_, may convey more
information jointly about y, than y,_, alone. Consequently, {y,} is not
usually Markov and so neither is {z.}.

Propagation of Means and Covariances

As just noted, {x,} and {z,} are jointly gaussian processes. Therefore,
their probabilistic properties are entirely determined by their means and
covariances. We wish here to indicate what these means and covariances are.
The means are easily dealt with. From (2.10), the linearity of the expectation
operator, and the fact that E[w,] = O for all k, we obtain

E[x;] = . 0% (2.13)
Equivalently,
E[xp41] = FLE[x,] (2.14)
which equally follows from (2.1) as from (2.13). From (2.2), we have
E[z,] = HiE[x,] (2.15)

Now let us consider the covariance functions. For ease of notation, we
shall write %, for E[x,] and shall compute the quantity

P = E{[x, — %]x; — %]} (2.16)

for k > 1. (The case k </ can be recovered by matrix transposition.) The
calculation is straightforward. From (2.10) and (2.13), we have

P, = E{[(Dk,o(xo — Xy)

k-1 -1 i
+ mgo (Dk,m+lewm][‘Dl, O(XO - io) + g:o (I)l,n-i-lanni‘}

Next, we use the fact that the random variables x, — X5, Wy, . .., W, _, are
all independent. This means that when expectations are taken in the above
expression, many terms disappear. One is left with

P.,= O, Eflx, — Xollxo — %1190
-1
+"§0 q)k.m+leQmG:n®;,m+l
I-1
= 0,0, PO + 3 0,0Ga0uCollinsr]  @17)

In obtaining the first equality in (2.17), we have used the independence prop-
erty, and E[w,w,] = Q0. se€ (2.7). The second equality follows from the
assumptions on x, and from Eq. (2.11) for @, ;. Equations (2.13) and (2.17)
together provide all the probabilistic information there is to know about the
gaussian process {x,}. However, an alternative formulation is sometimes
helpful: just as the mean X, satisfies a difference equation [see (2.14)], so we
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can see how to obtain P, , from a difference equation. First, specializing
(2.17) to the case k = I, we obtain

k-t
Pk.k = q)k,OPO(D;c,O =+ ".Z:o (I)k,m+1GQOGlrn ;(.m+l (2-18)

Let us adopt the notation P, in lieu of P, , in view of the frequent future
reoccurrence of the quantity. Observe that this notation is consistent with
the use of P, to denote E{[x, — X,][x, — X,]'} since

P, = P, = E{[x, — X, J[xx — %]’} (2.19)

Now using either (2.18) or the state equation (2.1), it is straightforward to
show that

Py = FkPkFll( + GkaG; (2-20)
Equation (2.20) constitutes a difference equation for P,, allowing computa-
tion of this quantity recursively, starting with the known quantity P,. Once

P, is obtained for all k, the matrix P, ; for all £ and / follows. Reference to
(2.17) (which is valid for k >> /) and (2.18) shows that

Pk,lzcbk,IPl kZl (221)
From (2.16), it is evident that P, , = P/, ; so for k < [ we must obtain
P.,=P, 0, k<<l (2.22)

Equations (2.20) through (2.22) together give another way of obtaining the
state covariance.

The mean of the {z,} process has already been studied. The covariance
essentially follows from that for {x,}. Recall (2.2):

z, = Hix, + v, 2.2)
Let us write z, for E[z,]. It follows that
cov [z, z) = E{[z, — Z,)[z; — 2]}
= E{Hi[x, — X ][x, — %} H}

+ E{Hi[x, — %:Jvi}

+ E{v [x; — X' H)}

+ E{v,vi}
Evidently the first summand in this expression can be written as

E{H\[x, — X ]lx, — x)H} = H:E{[x, — %,][x; — X]'}H,
= HP..H,

Noting that {v,} must be independent of {x, — %,} (the latter process being
determined by x, and {w,}, which are independent of {v,}), we see that the
second and third summands are zero. The fourth summand has been noted
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to be R, 4,,. Therefore
cov [z,, z) = H®, ,PH, + R, k>1
= H. PO H, + RS, k<l (2.23)

Dropping the Gaussian Assumption

Hitherto, x,, {v,}, and {w,} have been assumed gaussian. If this is not the
case, but they remain described by their first order and second order statis-
tics, then all the calculations still carry through in the sense that formulas for
the mean and covariance of the {x,} and {z,} sequences are precisely as before.
Of course, in the gaussian case, knowledge of the mean and covariance is
sufficient to deduce deunsity functions of any order. In the nongaussian case,
knowledge of the mean and covariance does not provide other than incom-
plete information about higher order moments, let alone probability density
functions.

Main Paints of the Section

The most important points to understand in this section are the form of
the model—its linearity and finite dimensionality and the assumptions
regarding the input noise, measurement noise, and initial state. The fact that
the mean and covariance of the {x,} and {z,} process can be calculated is
important, as is their gaussian nature. While the particular formulas for
these means and covariances are not of prime importance, the student could
well remember that these formulas can be obtained by solving difference
equations.

The particular formulas are as follows:

Signal model. With x,, {v,}, {w,} independent and gaussian,
Xpo1 = Fx + Gow, k>0

Iy = Vi T 0 = Hixy - v,
with
E[w,] = 0, E[w,w]] = Qi1 E[v,] = 0, Elvv] = ROy
Elx,] = X, E{[xo — Xollx, — X,]'} = Py
State statistics. {x,} is gaussian and Markov with
X = E[x,] = @, X, Xpv1 = FiXy
k-1
E{[x, — x]lx; — X'} = P, = (Dk,opoq);c.o + ";0 | S G0 N €

Pk+1 = FkPkFJ’c + GkaG;c
E{lx, — xJlx; — X'} =P, =0, ,P k=>1
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Output statistics. {z,} is gaussian (in fact jointly gaussian with {x,}), but
not normally Markov, with

7, = Elz,] = Hix,
E{[Zk — Zildlz — Z—I]’} = Hl’((pk,IPIHI + Rkékl k>1

Expressions for the mean and covariance of the {x,} and {z,} processes
are still valid if x,, {v,}, and {w,]} fail to be gaussian.

Problem 2.1. (This problem shows that for jointly gaussian random variables,
the properties of zero correlation and independence are equivalent.) Let a and b be
two jointly gaussian vector random variables, with E[a)E[b'] = E[ab’]). Show that
the variables are independent. (Since the probability densities of @ and  may not
exist, prove independence by showing that the joint characteristic function of @ and
b is the product of the separate characteristic functions of a and 4.)

Problem 2.2. In setting up a description of the system of Fig. 2.2-1, (See
p. 13), we assumed x, to be a gaussian random variable of known mean and
covariance. Can one retain this notion and at the same time cover the case when x,
takes a prescribed value?

Problem 2.3. Establish the recursive formula (2.20) for P, both from (2.18)
and directly from (2.1) with k = [. How is the formula initialized ?

Problem 2.4. Adopt the same model as described in this section, save that the
noise processes {v;} and {w,} possess nonzero known means. Find a new equation
for the evolution of the mean of x,, and show that the covariance of the {x,} process
is unaltered.

Problem 2.5. Show for the model described in this section that cov [z, z;] can

be written in the form
ABil(k — 1) + Bir A — k) + Ciu

where 1(k — [)is O for k — [ < 0, and 1 otherwise, and A, and B, are matrices for
each k.

Problem 2.6. With {w,} a sequence of independent N(0, 1) random variables,
define a process z; by

Zie FaA1Zpy F o b QuZios = Wi + CiWrog 00 Tt CaWin

Establish that a signal model like that of this section can be obtained from the AR

signal model of Example 2.2 by varying only the output equation.

Problem 2.7. What variations should be made to the state and output statistics
calculations in case E[vgwj] = Ci0«; for some Cy 7= 0?
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2.3 ESTIMATION CRITERIA

In this section, we wish to indicate how knowledge of the value taken by
one random variable can give information about the value taken by a second
random variable. Particularly, we shall note how an estimate can be made
of the value taken by this second random variable. The detail of this section
is independent of that of the previous section, but there is a conceptual link
to be explored in the next chapter. In the last section, we introduced, amongst
other things, two random sequences {x,} and {z,} and posed the filtering
problem as one of finding at time k some information about x, from z,, z,,
...,z Now think of z,,z,,...,z, as one (vector) random variable Z,.
Then the task of filtering at any one fixed time instant which is to find infor-
mation about the random variable x, given the value of the random variable
Z,, is a particular instance of the general problem considered in this section.

Much of this section could logically have been placed in Appendix A;
it is, however, so crucial to what follows that we have elected to give it
separate treatment.

Notation. As in Appendix A, we shall use in the remainder of this section
an upper-case letter to denote a random variable, and a lowercase letter to
denote a value taken by that variable; i.e., if the random variable is X and the
underlying probability space Q has elements w, the symbol x will in effect be
used in place of X(w) and the symbot X in place of X(.), or the set of pairs
{w, X(w)} as w ranges over Q.

If X and Y are two vector random variables, what does the knowledge
that ¥ = y tell us about X'? The answer to this question is summed up in the
concept of conditional probability density. Suppose that before we know that
Y = y, the random variable X has a probability density p,(x). Being told that
Y = y has the effect of modifying the probability density. The modified
density, termed the conditional probability density, is

Px.y(%, )

pxixly) = 5(7)

assuming that p,(y) # 0.

We shall present a number of examples to point up this and later ideas,
and we caution the reader that these examples form an integral part of the
text, and reference in the future will be made to them.

ExaMmpLE 3.1. Consider the simple relationship

y=x-+n

for the values of scalar random variables Y, X, and N. Suppose a value Y = y
is measured. For the case when X and N are independent and gaussian with

23
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zero means and variances X, and X, the conditional probability density
DPxy(x|y) can be evaluated as follows:

Prix(r{0px(x) _ _ prix(r|X)px(x)

Pxiv(x|y) = o
POY [ | 0pate)

— pX+N(X(x -+ n}X)Px(x)
[ prewixtx + nl0p2() dx

_ __ Py — x)px(x)
j_ Pr(y — X)px(x) dx

_ QaZ)"12 exp [—4(y — x)?Z,'J2RE,) "1/ exp (—§x2E;")
Q@A) H(E, T,/ j " exp[—Hy — x)2Z;! — $x25; 1 dx

-0

Qr 1(ZEZ) 2 exp {—H(y — x)2Z;! 4+ x2E;']}
Qr)y~V2(Z, + ) V2 exp {(—4yH2x + )7

X, 1/2 1/( YE s 2 TY. O\
(2"2 +>:) °"p{ 2\* T T; +z)(z,+>:,) }
The first of the above steps makes use of Bayes’ rule. The remaining steps

are straightforward from the probability point of view, except perhaps for the
evaluation of the integral

[T exp (—4 — 0Tt + 0B D dx

By writing this integral in the form

o [ exp (—lalx — ko)) dx
and using
+oo e
[ exp(—4xt)ax = V77

one can evaluate the integral.

Notice that in the above example pyy(x| ) is itself a gaussian density,
with mean yZ (T, + Z,)"! and variance L,Z(Z, + Z,)°'. It is actually a
general property that for two jointly gaussian random variables X and Y, the
conditional density py(x |y) is also gaussian. (Note that in Example 3.1, Y

is gaussian, being the sum of two gaussian variables.) This is shown in the
following example.

ExaMPLE 3.2. Let the pair of vectors X and Y be jointly gaussian, i.e., with
=[X’ Y’Y; Z is gaussian with mean and covariance

x Tox Z
m=| " d = [ ”:]
[:)’:' aﬂ ny Z.vy

respectively. We shall show that X is conditionally gaussian.
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Assuming nonsingularity of £ and Z,,, we have

Pxiy(xly) = EX_;'}%}:)_”
1 1Z, M exp {4l — % Ly — I — %y — 31}
QY2 (S |72 P (=30 =T =)

(Here, N is the dimension of X.) Now we shall rewrite this density, using the
easily checked formula

[1 —E,,Z;,‘}z[ 1 0j| _ [Z,, —~ 2T T, 0 ]
0 I Lz, I 0 %,

First, taking determinants in this formula, we have

lzl = |Exx - zxyz;ylzyxllzyyl
Second, it yields

X =%y -y =%y —§T
-, o I 0[(Zsx — .50 2, O
=k -xiy _Y][_z,—,rz;, 1][ 0 z;;]
« ’:I —):,,,2;,1} [x' _ y, _ }';’]’
0 I ’
= = X)Zsx — Lyl L) M (x — X) + (' — Yy — P)
where
E=X+Z,5,/(0— 7
Therefore, we have

1
Pxir(x]y) = QAT 1y — Lyl 2y | 172

X €xp ['—%(X, - x-’)(zxx - Exyz;ylzyx)_](x - X)]

As claimed then, X is indeed conditionally gaussian. In fact, this is true
even when T or X,, are singular; in this case one must eschew the use of
probability densities and work with characteristic functions. Further, one must
use the next best thing to an inverse of X,,, and this is the pseudo-inverse,
described in Appendix B; when an inverse exists, it equals the pseudo-inverse.
The result is that X conditioned on Y =y has conditional mean x +
2.,2%(y — ¥) and conditional covariance T ., — X, Z5Y,,. Thus the inverse
in the usual formula is simply replaced by a pseudo-inverse. Notice that the
conditional covariance is independent of y; this is a special property associated
with the particular form of density assumed—one cannot expect it in general.

Estimates of X GivenY =y

The conditional probability density pyy(x|y) with a particular value
substituted for y and with x regarded as a variable sums up all the informa-
tion which knowledge that Y = y conveys about X. Since it is a function
rather than a single real number or vector of real numbers, it makes sense to
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ask if one can throw away some of the information to obtain a simpler entity.
One might, for example, seek a single estimate of the value taken by X given
the knowledge that Y = y. How might one intelligently generate such an
estimate ?

Obviously, one such estimate would be the value of x maximizing
DPxr(x|y), that is, the maximum a posteriori estimate. However, we shall
find it helpful to introduce a different kind of estimate, namely the mini-
mum variance estimate (more properly, a conditional minimum variance esti-
mate).

Minimum Variance Estimate

Let us denote an estimate of the value taken by X as £ when we know that
Y = y. Then, in general, X will not equal x, the actual value taken by X. On
occasions, x — £ may be small, on other occasions large. An average measure
of the error is provided by

E{l X — 2|*| Y = y}

where || 2]|* = a’a. Remember that X, the estimate, has to be determined
somehow from y. It is therefore a fixed number (or vector of numbers) in the
above expectation. On the other hand, knowledge of y does not pin down X,
and so X remains a random variable in the expectation.

We define a minimum variance estimate % as one for which

Ef|X — 2P| Y =y} < E{| X — z|P | Y = y} 3.1

for all vectors z, determined in some way from y. As we shall see in a moment,
% is unique. Other names for £ are: least squares estimate, minimum mean-
square estimate, and recognizable variants on these terms.*

A major property of the minimum variance estimate is contained in the
following theorem; as a study of the theorem statement shows, the theorem
also serves to establish uniqueness and to point out another reason that
makes £ an intelligent choice of estimate.

THEOREM 3.1. Let X and Y be two jointly distributed random vectors,
and let Y be measured as taking the value y. Let £ be 2 minimum variance
estimate of X as defined above. Then £ is also uniquely specified as the
conditional mean of X given that Y = y, i.e.,

$=EX|Y=y1= [ xpapxly)dx (3.2)

*Some of these names involve some abuse of nomenclature, since they may fail to
suggest the conditional nature of the estimate and the fact that a priori probability informa-
tion is used.
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Proof. Observe that, with z possibly dependent on y but not depending
on x,

E{| X — z|P|Y = y}

- J:j (x — 2)'(x — Dpxiv(x]y) dx
= J.: x'xpyy(x|y) dx — 2z’ J.:c xprp(x|y)dx + 'z
= [z’ — J'_: xpxi(xy) dx]\:z - J.: xpxin(x1p) dx}

[ X xpantely) dx — H [T xpxixlyy ax |

The expression on the right side, regarded as a function of z, has a unique
minimum when z = E[X| Y = y].

As a byproduct, the proof of the above theorem contains the value of
the average mean square error associated with the estimate £. On setting z
= X in the last equality, we obtain

EQX —2[P| Y =y} = EIXIP1 Y =y} — || 2]
Note that the theorem provides yet another descriptive term for this type of

estimate, viz., conditional mean estimate.

ExaMPLE 3.3. Asin Example 3.1, let X and N be two independent, zero mean,
gaussian random variables of variances X, and X,. Let Y = X + N, and sup-
pose Y is measured in an experiment as having the value y. Then the condi-
tional mean estimate of the value taken by X is

+o0
x= J. xpxiy(x|y) dx

= (rgrty) J: vew [~z (x - 5 (57 ]

We are using the expression for pyy(x|y) computed in Example 3.1. The
integral can be evaluated to yield

PRSD
B
Alternatively, this follows immediately from the fact that px;y(x|y) is

N( z, pIDIN )

DIEED 4D TS

as noted earlier. The conditional error variance Ef|| X — £||2| Y = y} is simply
the variance associated with the density py y(x|y) since X is the mean of this
density, and is accordingly X,X,/(Z, + X,). Of course if some other form of
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estimate were used, one would not expect the error variance to be the same as
the variance associated with the conditional density.

ExaMPLE 3.4. As in Example 3.2, let X and Y be jointly distributed, gaussian
random vectors with mean and covariance

N

y- E;}' Z.Vy

Suppose Y is measured as having the value y. Then the conditional mean esti-
mate of the value taken by X is known from the parameters of the gaussian

density pxy(x|y) (or the gaussian characteristic function in case the density
does not exist). Thus

E=EX|Y=)]l=3x+Z,5/)(y—)

Thus X is derived from y by an affine transformation, i.e., one of the form
y — Ay + b = %. As for the scalar case, the conditional error covariance is
the same as the covariance of the conditioned random variable when the esti-
mate is the conditional mean, namely Z,, — Z, Z;'%},. The average mean
square error is the trace of this quantity. (Show this in two lines!)

Estimates and Estimators*

Hitherto, we have described a procedure which involves the use of a
known vector of numbers, namely y, to produce with the aid of a conditional
density another known vector of numbers, namely £, termed the estimate of x.
But clearly, what we have done is to have given a general rule for passing
from any vector of numbers y to the associated %. In other words, we have
defined a function. The domain of this function is the set of values y, or the
random variable Y. As a function of a random variable, it is itself a random
variable, which we shall call X. A particular value of X is %, given by E{X|Y
=y}, i.e.,

X(y) =% = E{(X| Y =y}
So evidently,
£ = E(x| 1} (3.3)

Since we wish to use the term estimate for a particular value % of X taken as a
result of a particular value y taken by Y, we shall term X an estimator of X
in terms of Y. Thus the estimator is a rule—or a function, in the sense that a
function is a rule—for associating particular values of two variables. In con-
trast, an estimate is a value taken by the estimator, regarded as a function.
The distinction is illustrated in Fig. 2.3-1.

*This material is not essential to the first and simplest derivation of the Kalman filter
given in the text, but is essential for the more sophisticated proof in Chaps. 3 and 5.
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v I %9 =
Input to ESTIMATOR]| Estimate = Output
Estimator of Estimator

Fig. 2.3-1 The estimator is a function, or a device for assigning a num-
ber, given a measurement.

ExaMpLE 3.5. In estimating the value of a random variable X given a measure-
ment of a random variable ¥ = X + N, with X and N having densities as
described in Example 3.1, we found

el Ee_
RN i
The associated estimator is
- T,
X = E————x TS Y

Note that X, as a function of a random variable, is itself a random variable;
and thus it has its own mean, viz.,

rZLY 9 N

EX] = E|s=5 =g g E(Y1-0

and its own variance
L
(Z, + )2

3

ELXT) = 5L

E[Y?] =

Minimum Variance Estimator Property

As we have seen, X is, in the sense of minimum error variance, the best
estimate of the value taken by X, given that Y = y. We would then imagine
that X would be, in the sense of minimum error variance, the best estimator.
In other words, if Z(-) is an arbitrary function mapping values taken by
Y into a space of the same dimension as X, we might have

Ex (| X — X)) < Ex I X — Z(N) 11} (3.4)

(the subscripts on the expectation operator indicate the variables with respect
to which expectation is being taken.) Here the expectation is not a condi-
tional one, but is over all possible values of X and Y.

This conjecture is nontrivially different from (3.1), but may be verified as
follows. For the verification, we recall the following properties of the condi-
tional expectation operator:

Ex {i(X, VY'Y =y} = Ex {H(X, )Y = »} (3.5)
and
ELExp lhlX, Y)Y = y}} = Exv{h(X, Y)} (3.6)
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Now to verify the conjecture, we have from (3.1) that
Eqrlll X — XD IP 1Y =y} < Explll X — ZO) P | Y = )
and by (3.5),
Explll X = XY =y} < Exp | X — Z(V) || ¥ = »}

Now take expectations with respect to Y. The inequality is preserved, and by
(3.6) we have, as required,

Exll X — X(NIP} < Exlll X — Z(N 12}
In effect, we have proved the following theorem:

THEOREM 3.2. Let X and Y be two jointly distributed random vectors.
Then the minimum variance estimator X of X in terms of Y is

X = E{x| Y} (3.3)

Equation (3.4) may sometimes be written loosely as
E{| X — 2|} < E{Il X — z|*} (3.7

where the expectation is over X and Y. This equation is inconsistent with our
notational convention, in that X represents a particular value taken by a
random variable, so that taking its expectation is a meaningless operation in
the above context. The meaning which (3.7) is intended to convey should
however be clear enough. It is precisely the meaning conveyed by the statement
“X is a minimum variance estimator of X given Y”, where the word “condi-
tional” does not appear.

ExAMPLE 3.6. Let X, Y be jointly gaussian with mean and covariance as in
Example 3.2. Then
X(Y)=EX|Y]=%+ Z,5MY — 5
and
E{[X — XONX — XOWIY =y} =, — Z,Z5/%,%
Also
Exy{[X — XX — X(V))} = B Exipl[X — X(VIX — XV} Y = )]
= E[Z. — zxyE;yIZ;y]
=X — nyz;yIZLy
and
Ex (Il X — X()|]?} = trace [Z,, — Z,,%,/)Z},]

In formal terms, we have shown that rhe (unconditioned) error variance as-
sociated with the conditional mean estimate is the same as the conditional error
covariance stemming from a particular Y = y; but note that this would not
normally be the case in the absence of the gaussian assumption.



Unbiased Estimates and Estimator Properties

As a further illustration of the above remarks distinguishing the condi-
tional nature of a property of an estimate from the unconditioned nature of
the associated property of an estimator, we consider the question of bias.
We can talk of X as being an unbiased estimate in that the conditional
expected error in using £ as an estimate of X, given y, is zero:

EXIY{X—';CIY:}’}:Exly{XIY:y}‘“;‘

=0 (3.8)
We can talk of X as being an unbiased estimator in that both
Exp{X — XY =y} =0 (3.9)
and
Ex X —X(¥)}=0 (3.10)

In later sections and chapters, we shall often use the same symbol to denote
a random variable and the value taken by it; in particular, the same symbol
may be used to denote an estimator and an estimate. There should be no con-
fusion if the above distinctions are kept in mind.

ExampLE 3.7. Let X and Y be jointly distributed random variables as in
Example 3.2. Then
E[X|Y=y]l=x+ ZXyZ;yl(y - %)
and
X(Y) =% + 50 — §)
It follows that
E[X(Y)) = % + Z,Z,(E(Y) — )

=X

= E[X]
as expected.

Other Estimation Criteria

As we have shown, the conditional mean estimate is that which mini-
mizes the average value of ||x — X||>. It is somewhat arbitrary that one
chooses to measure the error associated with an estimate as ||x — %[|?,
rather than, say, ||x — %], {{x — X|{*, or cosh ||x — £]|*. Two alterna-
tive error measures and the associated estimates are described in the prob-
lems of this section. The estimates both have some intuitive significance,
being the conditional median and conditional mode (also termed the maxi-
mum a posteriori estimate).

For a gaussian density with x scalar, the median is identical with the

31
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mean in view of the symmetry of the density. For any gaussian density the
mode is identical with the mean; thus maximum a posteriori estimates are
precisely conditional mean estimates. Other types of estimates also agree with
the conditional mean estimate for gaussian densities and indeed certain other
densities (see {1, 5, 6]).

It is also possible to demand that estimators have a certain structure, e.g.,
that they define an affine function; one then seeks the best estimator within
the class defined by this structure. Some development along these lines is
given in a later chapter; it turns out that the error measure provided by the
average value of ||x — %]|* is particularly suited to the development of
estimators which are constrained to be linear.

Main Points of the Section

For arbitrary densities,

1. pxiy(x|y) for fixed y and variable x, sums up the information that
the equality Y = y provides about X.
2. The conditional mean estimate X = JM Xpxy(x|y) is also the condi-
tional minimum variance estimate:
EJ|X = 2|P| Y=y} < E{| X —z()(P | Y = )}
for all functions z of y, and
E{l X — 2|P| Y =y} = E{j X|?| Y =y} — |I2]]"
3. The estimator X = E[X|Y] is a function of Y, with 20 =
E[X|Y = y] = %, and is a minimum variance estimator. That is,
Ex ll X — XN < Ex lll X — Z(N)113
for all functions Z(+), and is unbiased, i.e., Ex.y[£(Y)] = E[X]

For x, y jointly gaussian with mean and covariance

'i Zxx Exy

_ and

¥ L. Z,
x conditioned on y is gaussian, with conditional mean and conditional
covariance

X + nyz;y](y - y—) and Exx - 2xy:):’;ylz".vx
The conditional mean is also 2 maximum a posteriori estimate, and the
conditional covariance is the conditional error covariance associated with
use of a conditional mean estimate and, being independent of the measure-

ment, is also an unconditional error covariance associated with the condi-
tional mean estimator.
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Problem 3.1. Suppose X and Y are jointly distributed random variables.
When Y is unknown, an intelligent estimate of the value of X is x = E[X]. This
estimate has the property that E{]| X — x||2} < E{]] X — z]|*} for all z, and has
average error Ef]| X — x||2}. Now suppose that one is told that ¥ = y. Let £ =
E{X|Y = y]. Show that

E{l X — 2|2| Y=y} = E{| X — Z|2| ¥ =y} — || £ — %|]2

Conclude the intuitively reasonable result that the mean estimation error
E{jl X — %I} averaged over all values of X and Y will be bounded above by
E{|| X — x||?}. When will the bound not be attained, i.e., when will there be a strict
improvement in the knowledge of X? Extend the argument to cover the case when
X, Y, and Z are three jointly distributed random variables and one knows that
Y=yand Z = z.

Problem 3.2. The conditional mean estimate may not always be a reason-
able estimate. Construct an example where X can only take discrete values and
E{X| Y = y} may not equal any of these values. In this case, a maximum a poste-
riori estimate may be appropriate.

Problem 3.3. Let X and Y be two jointly distributed random variables with
X scalar, and let Y take the value y. Let £ be an estimate chosen so that

E(|X — 2| Y =)} < E(fX — z|| Y =y}

In other words, £ is chosen to minimize the average value of the absolute error
between £ and the actual value taken by X. Show that X is the median of the condi-
tional density py)y(x|y). [The median of a continuous density p4(a) is that value of
a, call it &, for which P(4 < &) = P(4A > a).]

Problem 3.4. Let X and Y be two jointly distributed random variables, and
let Y take the value y. Weight the error between the value taken by X and an esti-
mate £ uniformly for the region I, defined by || x — X|| > €, and give it zero weight
for || x — %] < €. In other words, define a performance of the estimator by

P= j priv(x]y) dx
Te

Show that in the limit as € — 0, the best estimate (in the sense of maximizing P) is
the maximum a posteriori estimate, or the conditional mode. [Assume pxy(x|y) is
continuous in x.]

Problem 3.5.* Suppose py)y(x|y) is gaussian. Show that the conditional mean
estimate is the same as the conditional modal and maximum a posteriori estimates,
using the results of Probs. 3.3 and 3.4.

Problem 3.6.* Let L(-) be a scalar function with L(0) = 0, L(y) > L(z) for
Iyl =1lzll, L(y) = L{—y), and with L(-) convex. Let py;(x| y) be symmetric

*These problems refer to material which may have been omitted at a first reading.
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about ¥ = E{X|Y = y}. Prove that for all z,
E{L(X ~ DY =) < E(L(X - Y =}

[Hint: Set ¥ = x — £, Z = z — X, and show that

E(L(X = | ¥ = %} = [ L2 — Dpan(E1) d% = [ L2 + Dpan(E]y) dx

i s o Yy o ~
= f F[L(Z — %) + L(Z + D)pa(R|y) dX
Then use the evenness and convexity of L(-).]

Problem 3.7. Assume X and N are independent gaussian random variables of
means X, i and covariance matrices £, and Z,. Then Y = X + N is gaussian and
Px)¥(x|y) is gaussian. Show that the associated conditional mean and covariance
are

and
Ex - Ex(zx + En)-lzx = Ex(zx + En)_ly-‘n = (E;l + E;l)_l

[Assume the various inverses exist, and first find the joint density px,y(x, ¥).]

Problem 3.8, Let X and Y be jointly gaussian random vectors and let )?( Y)
= E[X| Y]. Show that X (Y), thought of as a random variable, is itself gaussian.
[Note: This is quite a different statement from the fact that pyy(x|y) is gaussian.}
Find its mean and covariance in terms of the associated mean and covariance of
X v
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CHAPTER 3

THE DISCRETE-TIME
KALMAN FILTER

3.1 THE KALMAN FILTER

Outline of Chapter

In this section, we shall tie together the ideas of the previous chapter to
state the Kalman filter problem, and we shall indicate what the solution to
the problem is. We offer a derivation of the filter that is simple and direct
but to some degree uninspiring, and we offer a number of preliminary com-
ments about the filter. In the next section, we illustrate a major property
of the Kalman filter. The final two sections of the chapter present some
motivating applications.

In a later chapter, we give an alternative derivation of the Kalman filter,
and in the process derive many important properties of the filter, The reason
for the early presentation of the filter, with a concomitant delay in the pres-
entation of an interesting proof, is solely to let the student see first the sim-
plicity and strength of the Kalman filter as an engineering tool.

The Filtering Problem

Recall that in the last chapter we introduced the system depicted in Fig,.
3.1-1 and described for £k > 0 by the following equations:
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Xeor = Fixp + Gow, (1.1)
z, = Hyx, + v, (1.2)

Below, we shall recall the probabilistic descriptions of {v,}, {w,}, and x,.
More general models will be considered later. One generalization involving
external inputs is studied in Prob. 1.1.

The filtering problem has been stated in broad terms to have been one
requiring the deduction of information about x,, using measurements up till
time k. In order to obtain the simplest filtering equations, we shall initially
modify the filtering problem slightly by seeking to deduce information about
X, using measurements up till time k — 1. In effect then, we are considering a
one-step prediction problem. Convention has it, however, that this is still
termed a filtering probelm.

Bearing in mind the material of the last chapter dealing with estimation,
we can refine this one-step prediction problem to one of requiring computation
of the sequence E{x;|zg, 2y, ..., 2,4} for k=0,1,2,.... We shall denote
this quantity by £,,_, and shall use the symbol Z,_, to denote the set
{2o» 215+ -+ » 2x_1}. This use of a capital letter and lower-case letters is a
variation on the notation used earlier.

)
W,—s1 G, = Delay w1 H | Z,

Fig. 3.1-1 Basic signal model.

At the same time as knowing £/z_,, it is obviously of interest to know
how good the estimate £,,,_, is. We shall measure this estimate by the error
covariance matrix X, _,, where

Zerk-1 = E{[xy — Zepe—1][xi — Sim-1) 1 Ze-1} (1.3)
We shall aim to calculate this quantity also. Notice that, in view of the for-
mula trace (4B) = trace (BA) for two matrices 4 and B,
trace Teu-1 = E{tr [(x; — Za/eo 1 Xxe — X)) N Z o211}
= Ef{|| xx — Zesie-l 1 Z,-1}
is the conditional error variance associated with the estimate £,,,_, and the
conditional mean estimate minimizes this error variance.

Plainly, it will sometimes be relevant to aim to compute the true filtered
estimate E[x,| Z,], which we shall denote by X, instead of £,,,_,. At the
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same time, we would seek to know the associated error covariance matrix
X,/ It turns out that the estimate X,,, can be obtained in essentially the same
way as X.,x_1, @S can its error covariance, save that the formulas are more
complicated.

Evidently the notation E{x, | Z,_,} suggests that %;,,_, can only be com-
puted when £ — 1 > 0, or £ >> 1. By convention, we shall define %, _, for
k =0 (i.e., %5,_,) to be X, = E{x,}, i.e., the expected value of x, given no
measurements. For the same reason, we take Z,,_, to be P,.

Now let us combine all the above ideas with those of the last chapter.
We can state the basic filtering problem as follows.

Discrete-time Kalman filtering problem. For the linear,
finite-dimensional, discrete-time system of (1.1) and (1.2)
defined for k >0, suppose that {v,} and {w,} are indepen-
dent, zero mean, gaussian white processes with

E[v,vi] = Rid E{w,w]] = Q0 (1.4)
Suppose further that the initial state x, is a gaussian random
variable with mean x, and covariance P,, independent of
{v.} and {w,}. Determine the estimates
Rik-r = E[x¢| Z 1] Rene = E[x | Z4] (1.5)

and the associated error covariante matrices X,,_, and
sk

Solution of the Kalman Filter Problem

Let us now note what the solution to the filtering problem is. Then we
shall give a proof.
The Kalman filter comprises the system depicted in Fig. 3.1-2 and is
described for & > 0 by the equations
Revie = [Fre — K HiR ek + Kz (1.6)
with
Roj-1 = Xo 1.7

~

+ X1 7k K/ k=1
z, — K Delay >

+

x>

Fk - K, H,

Fig. 3.1-2 Structure of filter.
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The gain matrix K, is determined from the error covariance matrix by*
K, = szk/k—lHk[HI/(zk/k—lHk + RJ]! (1.8)
assuming the inverse exists, and the conditional error covariance matrix is
given recursively by a so-called discrete-time Riccati equation
Lok = FulZusu-1 — T H(HZoio Hy + R HiZa i JFS + G, Q,Gh
(1.9)
This equation is initialized by
Zo/-1 = Py (1.10)
One obtains %, and X, as follows:
e = X1 + T H(HiZeeo  Hy + Rz — HiZepeoy)  (1.11)
Lise = Zask-1 — a1 Hl(HiZy oo Hy + R HRZ ks (1.12)

“First-Principles’” Derivation of the Kalman Filter Equations

Recall from the last chapter (see end of Sec. 2.3) that if X and Y are
jointly gaussian, with Z = [X’' Y’} possessing mean and covariance

[ x ] [Z,, ny}
_ and
y L, I,
then the random variable X, when conditioned on the information that
Y = y, is gaussian, with mean and covariance,
X+ I, (y—p) and I, —Z X%,

respectively. (A pseudo-inverse can replace the inverse if the inverse fails to
exist.) There is an obvious extension of this result which we shall use, and
which we state here without proof. Suppose that there is introduced another
random variable W so that X, Y, and W are jointly gaussian. Also suppose
that the mean and covariance of Z above are not those given a priori but are,
in fact, the mean and covariance conditioned on the fact that W = w. Then
the a posteriori mean and covariance stated apply to the random variable
X conditioned on the information that Y = y and also that W = w. In short,
one can condition all variables without affecting the result.

Returning to the signal model of interest [see (1.1), (1.2) and (1.4)],
we proceed as follows.

1. The random variable [x; z;]" has mean [x, x,H,] and covariance

{ PO POHO :|
H,P, H,P,H, -+ R,

*We shall assume nonsingularity of H¢Zs/x—1Hx + Rx. This normally holds, and is
guaranteed if Ry is positive definite.
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Hence x, conditioned on z, has mean
Xosp = X, + PoHo(H(gPoHo + Ro)_l(zo — Hyxy)
and covariance
To0 = Py — PoH(HoPHy + Ry) ' HoPy

2. From (1.1) and the various independence assumptions, it follows
that x, conditioned on z, is gaussian with mean and covariance

R0 = Fofopp and I, = FoZo,0Fs + GoQ,Gho

3. From these equations and (1.2) it follows that z, conditioned on z,
is gaussian with mean and covariance

210 = H\%, and HZ,H, + R
It also follows that
E{[x, — Zipllz) — 210l 120} = Zy00H,y

so that the random variable [x; z] conditioned on z, has mean and
covariance

I: 210 ] [ Zi/o Zy0H, ]
. and , ,
H%\ HX,, H\Z,,H, + R,

4. Applying the basic result, we conclude that x, conditioned on z, and
z, has mean

R = R0 + ZioH (HIZy0H + R)T(E — Hi%1/0)
and covariance \
T = Zi — ZioH(HIZ i oHy + R) T H Z i
5. With updating of time indices, step 2 now applies to yield
o = FyXyp
Ty = FiZi0F1 + G0,6)
6. More generally, repetition of steps 2 through 4 yields
R = Rapeot + T HH i1 Hie + R (2 — HiRepieos)
s = F X
ek = Zaseet — Zuko 1t Hil(H e Hy + R HiZrie-s
e = FiZunfFi + GQiGr

(When the inverse fails to exist, a pseudo-inverse can be used.) The
equations taken together yield (1.6) through (1.12). We remark that
the equations yielding £, and Z,/, from X, x_, and %, are some-
times termed measurement-update equations, while the equations
yielding %,/ and Z,. ., from £, and X,/ are known as time-
update equations.
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While the above proof is perhaps quick and easy, it has a number of
drawbacks. Thus a gaussian assumption is necessary, and it proves unsuited
to developing deeper properties of the Kalman filter, e.g., those relating to
innovations and smoothing, discussed in later chapters. It is harder to cope
with correlated {v,} and {w,} sequences, as we shall want to do.

Obvious Properties of the Filter

We now list a number of properties of the Kalman filter, the importance
of which is in no way lessened by the ease with which some can be seen.

1. The Kalman filter is a linear, discrete-time, finite-dimensional system.
From the point of view of someone wishing to build a filter, this is a
marvelous stroke of good fortune, even if it is the only logical out-
come of the problem specification. After all, one might have con-
jectured that the filter was nonlinear, or infinite dimensional.

2. The input of the filter is the process {z,}, the output is {%,,,_,}.
Obviously, the particular set of numbers appearing as X,,,_; depends
on the particular set of numbers appearing at the input as z,, z,,
..., Zz;. On the other hand, the conditional error covariance mat-
rix equation (1.9) shows that

Towo1 = E{[x, — ZemoilXe — Zapioi]' 1 Zoo i} (1.3)
is actually independent of Z,_,. No one set of measurements helps
any more than any other to eliminate some uncertainty about x,.
The gain K, is also independent of Z,_,. Because of this, the error
covariance L,,,_, and gain matrix K, can be computed before the filter
is actually run. (Such phenomena are usually not observed in nonlinear
filtering problems.)

3. The filter equation (1.6) can be thought of either as an equation
yielding the estimator (the rule for passing from any sequence {z,} to
the associated conditional mean estimate) or as an equation yielding
the estimate (the value £, _,, expressed in terms of a set of values
taken by the {z,} process). We do not distinguish in notation between
the conditional mean estimator and estimate. The conditional cov-
ariance definition of (1.3) however identifies X, ,_, as the covariance
associated with a particular estimate. Note too that because X, _, is
independent of Z,_,, we may take the expectation of both sides of
(1.3) over all possible Z, _, to conclude that

Zik-1 = E{lx — R llXe — Zaje-1l} (1.13)
This equation means that Z,,,_, is an unconditional error covariance
matrix associated with the Kalman filter; i.e., Z,,,., is also the
covariance matrix associated with the estimator.
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4. Consider the redrawing of Fig. 3.1-2 in the form of Fig. 3.1-3. Sup-
pose also for the moment that the input and output additive noises in
the system of Fig. 3.1-1 are not present, so that we have

Xeo1 = Fpxy (1.14)

2, = Hyx, (1.15)

Then we can argue that the arrangement of Fig. 3.1-3 represents a

logical form of state estimator for (1.14) and (1.15). We argue first

on qualitative grounds. If at some time instant k it is true that

Re/m-1 = X, then it is evident from Fig. 3.1-3 that the input to the

gain block K, (the output of the differencing element) will be zero.
Accordingly, we will then have

Xivrie = Fifpne1 = FiuX = X

At time k + 1, the input to the gain block K,,, will again be zero.
This will lead to

Xieva/k+vt = Xg+2

and so on. Precisely because part of the Fig. 3.1-3 scheme is a copy
of the original system, tracking will occur. Now in the event that
X, # Xux-1, there will be an input to the K, block. Hopefully, this
affects £, to steer it toward x,,,. Quantitatively, we have

Sevime = FiZipor + Kz — HiZepeo1) (1.16)

with z, — H;%.,_, a measure of the estimation error. This equation
may be rewritten as

Revim = Filpper + KeHil(xe — Xeppeot)
and, together with (1.14), implies
Kprr — X)) = (Fie — KeH) (X — Zape-1) (1.17)
Let W, , denote the transition matrix associated with (1.17). If

o . — - — - Copy of
! y Original
+< ) '+ Koo ik Kt 1 System
z, | K, ,——»@—» Delay - N
i {
—_ \ + \
| e
' I R
i Fk - i
| |
b e e e e e e = - - 4

Fig. 3.1-3 Filter redrawn to emphasize its siructure as a copy of original
system driven by estimation error.
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Yime — 0asm —> co, we can expect X, , .- to ultimately track
X, +m, DeCalUse

Xiwm = Xpwmmem— = Promile — Xepe1) (1.18)

Estimator design in the noiseless case amounts, therefore, to correct
selection of {K;} to ensure that \V, , has the requisite property.

When (1.14) and (1.15) do not hold and the original noisy
arrangement of Fig. 3.1-1 applies, it is reasonable to conjecture that
the arrangement of Fig. 3.1-3 functions as a state estimator. How-
ever, presence of the noise renders unlikely the possibility of x, —
X1 approaching zero as k — co.

. Because {x,} and {z,} are jointly gaussian processes as discussed in

the last chapter, it follows that x, conditioned on Z,_, is gaussian.
The conditional density of x, 1s, therefore, in effect defined by the
conditional mean, which is £,,_,, and the conditional covariance,
which is 2, ., [see (1.3)]. It follows that the Kalman filter equations
provide a procedure for updating the entire conditional probability
density of x,.

. In Eqs (1.8) and (1.9), the inverse of the matrix H.Z;_H, + R,

occurs. This matrix may not be nonsingular, although it is nonnega-
tive definite, since £,,,_, and R,, being covariance matrices, are
individually nonnegative definite. One way to force positive defini-
teness of H X, ._.H, + R, is to demand a priori that R, be positive
definite. This has the significance that no measurement is exact (see
Prob. 1.3), and is therefore often reasonable on physical grounds. In
the event that the H X, H, + R, is singular, however, its inverse
may be replaced in (1.8) and (1.9) by its pseudo-inverse.

. Suppose the underlying signal model is time invariant and the input

and output noise processes are stationary. Thus F,, G,, H,, Q,, and
R, are constant. In general, X, _, and therefore K, will not be con-
stant, so the Kalman filter will normally still be time varying despite
time invariance and stationarity in the signal model.

. Throughout this section almost all our discussion has been in terms

of the quantities £, ., and Z,,_, rather than %, ,, and Z,.. Some of
the problems explore what can be said about 2, and £, ,.

A Generalization

As we shall see in a later section, it is possible to have a situation in
which one or more of the matrices F,, G, H,, Q,, and R, take values depend-
ing on Z,_,. In this case some, but not all, of the previous statements hold
true. Most importantly, %,,,._, and Z,,,_, are still given by Eqs. (1.6) through
(1.10). But now, the gain matrix K, and error covariance matrix I, ,_, are



44 THE DISCRETE-TIME KALMAN FILTER Ch. 3

not precomputable, and they depend on Z,_,. This means also that while
Zi/x_1 is a conditional error covariance, it is not an unconditioned one. (In
contrast, we shall later encounter situations in which the same equations
yield Z,,,_, as an unconditioned error covariance matrix which is nor also a
conditional error covariance matrix.) The “first-principles” derivation offered
earlier works with little or no change if F,, G,, etc. depend on Z, _,.

Main Points of the Section

The Kalman filter equations should be committed to memory, and the
following points remembered. The Kalman filter is a linear, discrete-time,
finite-dimensional system. Normally, the covariance matrix Z, -, is both a
conditional error covariance matrix associated with the state estimate, and
an unconditional error covariance matrix associated with the filter qua esti-
mator; it can be precomputed, as can the filter gain. The filter has the same
structure as a class of deterministic estimators. The Kalman filter equations
define the evolution of the gaussian conditional probability density of the
state. The Kalman filter equations are also valid for the case when F,, G,,
H,., O, and R, are not necessarily independent of Z,_,, in which case the
covariance matrix X, _,, though still a conditional error covariance matrix,
is not an unconditional error covariance. The equations are summarized for
convenience:

SIGNAL MODEL:
Xer1 = FipXp + GoWi
Z =Y T v = Hix, + v,
Xo, {0}, {wi} are jointly gaussian and mutually independent; x, is N(X,, P,);
{v,} is zero mean, covariance R,J,;; {w,} is zero mean, covariance Q,d,;.
KALMAN FILTER:
e = (Fr — KLl )x ey + K2z, Ko/ = X
Ky = Filipe 1 HCH o H + R)T!
Zioin = FelZum-r — Zepmat Hl(HLZ g jie 1 Hi + R T HiZy i1 JFi + G0, G
= E{[xXie1 — ZpsrnillXeer — Zevrnl 1 Z0} Lo = Py
Tk = Zupe-r + T Hil(HiZsx - Hy + Ri) (20 — HiRije-1)
Zie = Zask—1 — Zasme Hi(HiZe 1 Hy + Ri) ™ HiZee-
Problem 1.1. Suppose that the arrangement of Fig. 3.1-1 is augmented by the

insertion of a known input sequence {u;}, as shown in Fig. 3.1-4. The equations
describing this arrangement are

Xka1 = Fexe + Grwie + Doty

2 = H,ﬁxk + v



Sec. 3.1 THE KALMAN FILTER 45

+ X1 X A
Wy —] Gk Delay > H, x z,
+ +
+
Uy I Fu

Fig. 3.1-4 Signal model with addition of external, known input.

The processes {v;} and {w,} and the initial state x, are as given earlier. By using the
deterministic state estimator ideas discussed toward the end of the section, conjec-
ture a filter structure.

Problem 1.2. The matrix X,/ is nonnegative definite symmetric because it
is a covariance matrix. Show by an induction argument that (1.9) implies, on purely
algebraic grounds, that X ., is nonnegative definite symmetric for all k; use the
fact that Q, is nonnegative definite symmetric for all k and £,,_, = P, is nonnega-
tive definite symmetric. (Hint for proving nonnegativity: Show that

Tevim = Fll b — Zpeo  Hi(HiZg -1 He + Ri)™)

I 0 0
X {[Hljzk/k—l[l Hk]+[0 Rk]}

. :l
X _ Fi 4 G QkGy)
[—'(Hllczk/k——lHk + R Hi Lk
Problem 1.3. The “measurement equation” we have used is z, = Hixy + vy,
with v, gaussian, of zero mean, and covariance R,. Show that if R, is singular, some
linear functional of x, is determined by z, with zero error; i.e., there exists a vector
a of dimension equal to that of x, such that z; determines a’x,.

Problem 1.4. In the previous chapter, it was shown that the quantity P, =
E[x.x,] associated with the system of (1.1) with E[x,] = O could be obtained from
Py, = F P Fr + G.Q:Gk. Using this equation and the recursive equation for
Zk+1/x, Show that Pr,y — Xy .14 = 0. Give an interpretation of this result.

Problem 1.5. Find recursive equations expressing Xx.,/x+1 10 terms of Xy,
and Z; ;1/x+1 in terms of X /.. Observe the structural complexity in this latter equa-
tion in comparison with that associated with the recursive equation for .., in
terms of Xy k—1.

Problem 1.6. (a) Does the recursive equation for X.,, computed in solving
Prob. 1.5 show that X, is obtainable as the output of a linear, discrete-time, finite-
dimensional system ?

(b) Is X, both a conditional and unconditional error covariance?
(c) Is there an interpretation of the X, filter as a copy of the original system driven
by an estimation error?



3.2 BEST LINEAR ESTIMATOR PROPERTY
OF THE KALMAN FILTER

In this section, we shall take a completely different viewpoint of the
Kalman filter. We drop the assumption that x,, {v,}, and {w,} are jointly
gaussian, and we seek that particular filter among a limited class of linear filters
which will produce an estimate minimizing a mean square error. We find
that the Kalman filter defined in the last section is the optimal filter in this
class of linear filters. The major tool will be the type of analysis of the last
chapter, allowing the calculation of the mean and covariance of the state
and output of a linear system. The proof is patterned after one in {1].

As before, we shall consider the signal model

Xer1 = Fix + Gow, (2.1
Zp = H,ka + Ve (2.2)

and assume that E[v,] =0, E[w]=0, E[x,]= %, Ev]= R,
E[wow)]) = Qub4, Ef[xs — Xo)[xo — ¥,)'} = Py, and that {v,}, {w,}, and x,
are uncorrelated. We shall study the particular class of filters defined by

Xgsie = (Fp — KiHu)x5k-1 + Kizy (2.3)

Here, the set of matrices {K}} is arbitrary. The general importance of this
class of filters in tackling the problem of designing a state estimator for a
noiseless plant was discussed in the last section. Also, the Kalman filter is a
member of the class. Actually, a widening of the class is described in Prob.
2.2.

We shall show that by taking

X4/_1 = X, K=K, forall k 2.4)

with K, as defined in the previous section, we minimize, in a sense to be made
precise below,

It -1 = E{[xp — Xt l[xe — X5n-11'} 2.5
for all k. At the same time, we have that
Elx, — Xi/x-1]=0 (2.6)

for all k. The equalities (2.4), of course, serve to make the filter (2.3) coincide
with the Kaiman filter defined in the last section.

The quantity x, — x§,_ is the error associated with the estimate x§ .,
of x,, and (2.6) implies that this estimation error, which is a random variable
for any one k, has zero mean. Note that this is indeed a property possessed
by the estimate %,,,_, of the previous section, precisely because it is a con-
ditional mean:

46
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E{x, — Xen-1) = Elx ) — E[E[x,} Z,_,]]
= E[x,] — E[x]
=0
Equation (2.5) is a matrix measure of the error associated with the
estimator x5, _, defined by (2.3). [Were the expectation in (2.5) conditioned on
Z,_,, the matrix would measure the error associated with the estimate x§, . _,

resulting from a particular Z,_ ]
We shall show that for arbitrary K§, we have*

Thsk-1 2= Lisk-1 (2.1

for all k, with equality being attained if and only if K = K,. Computations
defining £, _; were set out in the last section, where it was also claimed that
¥,/x-1 was both the conditional error covariance matrix associated with the
Kalman filter estimate, and the unconditioned error covariance matrix
associated with the Kalman filter regarded as an estimator,t provided that
Xo, Wi}, and {v, } are jointly gaussian.

To obtain additional significance for (2.7), we recall the following prop-
erties of the trace operator:

1. A= A" >0 implies tr 4 > 0, with equality if and only if 4 = 0.
2. tr AB = tr BA.
3. E[tr A] = tr E[A], where the entries of 4 are random variables.

Then (2.7) implies

tr E{{x, — X% 1) — x50l =t E{fx, — X )lxe — -]}

or
E{|lx, — Xipe-1 17 = El x — Zapien 17} (2.8)

As noted, we shall show that (2.7), and therefore (2.8), holds with equality if
and only if K¢ = K,. Therefore, the mean square error on the left side of
(2.8) will be minimized precisely when K¢ = K,. At least among the set of
filters of the form (2.3), that which was defined in the previous section is the
minimum variance filter, whether or not certain variables are gaussian.

Let us now sum up the main result in a theorem statement.

THEOREM 2.1. Consider the system defined for £ > 0 by (2.1) and (2.2),
with {v,} and {w,} uncorrelated, zero mean processes with

E{vv]} = R0y E{w,w]} = 0,0,

Suppose also that x, has mean %, and covariance matrix P, and is
uncorrelated with {v,} and {w,}.

*For symmetric matrices 4 and B, the notation 4 = B means 4 — B>0,0or4 — B
is nonnegative definite.

tActually, if one or more of Fg, G, ... depends on Z,_,, the second interpretation
is not valid.
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Let quantities K, and X,,,_, be defined recursively by

Kk = szk/k—lHk[Hllczk/k—lHk -+ Rk]ﬁl (2-9)
Zevin = FilZem-r — Zan-1t Hl(HiZase- 1 Hy + Re) "HiZy/x-1)Fx
+ G, Q.G 2.10)

with X,,_, = P,. Let a filter estimating {x,} be defined by (2.3). Then the
estimation error matrix

Tk-1 = Ellx, — xtpmo % — X5se-1]’} 2.5
satisfies
fik-1 = Zisk—1 @7

and the minimum possible value of /. _,, namely Z;/x_,, is attained if
and only if x§,_, = %, and K{ = K, for all k. Moreover, the estimator
is unbiased, i.e.,

Elx, — Xip-1]1 =0 (2.6)

Proof. We present an outline proof; see [1] for details. We note also
that material in Chap. 5 will provide an alternative approach.

1. The error x, — xi,_, satisfies the following recursive equation.

w
Xps1 — Xioip = (Fr — KiH)(x, — xip-) +[Ge  —K{] [’Ukjl
k

2. The error covariance matrix X%, ;. satisfies
chn/k = (Fk - KI:HI:)Z;/I‘—I(FI: - KI:H;')I + GkaG;c + KI:RI;KI:,
(2.11)

3. Xi,_, > P, (basis step of an induction).
4, Tt 1 = Tun-, implies £, = I, .4 (recursion step of induction).
5. Equation (2.6) is almost immediate.

It is important to realize that the proof outlined above is of itself rigor-
ous, but fails to establish the overall optimality of the Kalman filter, whether
or not gaussian assumptions are made. Among the set of filters of a restricted
class, the Kalman filter is without question optimal in the sense that it is a
minimum error variance estimator, whether or not gaussian assumptions are
made.

We comment also that in this section we have given a formal demonstra-
tion that X, , _, is in actual fact the unconditional error covariance associated
with the Kalman filter. It is not, in general, also a conditional error co-
variance, although, as we know from the last section, with the assumption
that x,, {v,} and {w,]} are jointly gaussian it is true that X, , _, is a conditional
error covariance. (In fact, we also described briefly in the last section a
special situation in which Z,,,_, was a conditional but 7ot an unconditional
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error covariance!) Note, though, that in proving here that the Kalman filter
is a minimum variance estimator, we are implicitly proving it provides a
minimum variance estimate for each set of measurements Z,_,. In other
words, we know that

E{|[ e — X1 1 Zai}

is minimized, even though we have not shown in this section that its minimum
value is tr £, . _, for all Z,_, or that

E{[x, — Xim-1)X — X5u-1) 1 Zooi} = Zijems (2.12)

forall Z,_,.
The reader will have noticed that although the filter (2.3) has the form
Xerre = Xy + Kizy (2.13)

with Ky arbitrary, the matrix 4, was not arbitrary, but forced to be F, —
K¢H;. One of the problems explores the possibility of choosing the best pos-
sible matrix A4, in (2.13) in order to minimize the error covariance matrix,
This has been done for the corresponding continuous time problem in [2].

Main Points of the Section

Among a class of linear estimators, the Kalman filter produces the
smallest unconditional error covariance matrix whether or not x,, {v,} and
{w,} are gaussian. The notion of smallest is a technical one of matrix theory,
but also implying here smallest minimum mean square error. The uncondi-
tional error covariance matrix is Z,,,_, as defined in the previous section.

Problem 2.1. Show that, among the set of linear filters considered in this sec-
tion, the Kalman filter determines that estimate xi, -, of x, which minimizes
Eflxy — x%/x-1) Alxy — x5/x-1]} for any nonnegative definite symmetric A. (Hint:
Begin by writing the matrix 4 as B’B for some B. This is always possible when A is
nonnegative definite.)

Problem 2.2. In lieu of an assumed filter structure of the form (2.3), with K}
to be chosen, assume a structure of the form (2.13), with 4, and K§ to be chosen.
Suppose that for all initial means x, of xq, the same filter is to be used. Show that
the requirement that x%,x—; be an unbiased estimator of x, i.e., E[x%/k-1 — x,] = 0
for all x,, and an assumption that F; is nonsingular for all & imply that

Ak = Fk - Kl:H]l‘

Problem 2.3. Two equivalent equations for X,/ are
Zivte = FulZii-r — Zasio 1 He(HiZi - 1He + RV HiZeje-11Fk + G QxGi
= (Fr — KiHi)Zpse-1(Fe — KeHyi)' + KeReKi + G QxGr

where K, is given by the usual formula. Compare from the computational point
of view the implementation of these two equations.



3.3 IDENTIFICATION AS A KALMAN FILTERING
PROBLEM

In this and the next section, we aim to introduce the reader toengineering-
type applications of the Kalman filter. Hopefully, this will engender con-
fidence as to its wide applicability.

Kalman filtering can be applied to provide a technique for the identifica-
tion of the coefficients in a scalar ARMA equation of the form

Ve +aly i+ oo FaPy,, =a" Py 4 oo a3

Measurements of the system input {«,} and output {y,} become available in
real time, and the aim is to estimate the values of the coefficients a', . ..,
a"*™ using these measurements, as discussed in [1] and [3, 4].

Equations of the form (3.1) can arise in the study of systems controlled
and measured on a sampled data basis. In reference [1], there is a description
of a paper mill via an equation like (3.1); the problem is to identify the
coefficients and then develop control strategies.

If (3.1) is taken as the equation describing the system and the measure-
ment process, and if the a‘' are constant, the identification problem is almost
trivial and, with sufficient measurements, the coefficients can be found by
solving a set of linear equations. It is, however, more realistic to model the
a'” as being subject to random perturbations and to model the measurements
as being noisy. So we suppose that for each i

afs, = ad + wy (3.2)

where {w{} is a zero mean, white, gaussian random process, independent of
{wi"} for i = j. Also, we assume that (3.1) is replaced by

(1 _ 1
Vet ailyio + o Falyi, = al u 4 o et Mu 4 v,

3.3)

where {v,} is a zero mean, white gaussian random process, independent of
the processes {wi}.

We need to assume values for the variances of w{’ and »,, and in assign-
ing these values, the fullest possible knowledge must be used of the physical
arrangement of which (3.2) and (3.3) constitute a representation. In other
words, a variance for v, should be assigned on the basis of our knowledge of
the noise introduced by measurement sensors, and we should assign a vari-
ance to w{ after an assessment, possibly subjective, of the way the af are
likely to vary.

Finally, we need to assume an a priori mean and variance for each
a”, reflecting our estimate before measurements are taken of the value of
these coeflicients and the likely error in the estimate respectively. To apply
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the Kalman filtering theory, we assume too that the a{’ are gaussian
random variables. (We could alternatively drop the gaussian assumptions
and still obtain the Kalman filter as a best linear estimator, as argued in the
last section.)

Now we can pose the identification problem in Kalman filter terms.
Define an (n + m)-dimensional state vector x, by

x = afh, x? = a?, e, xprm = giprm 3.9)

Define also the (n -+ m)-dimensional, white, zero mean, gaussian process
{w.} as the vector process formed from the {w}}. Then Eqgs. (3.2) and (3.4) lead
to the state equation

Xery = X + Wy (3.5)
Next, define the matrix, actually a row vector,
Hy=[=yic1 —Vi-2 =" ~Vien Wer Uiz o0 Uen] (3.6)
and the process {z,} by z, = y,. Then (3.3) and (3.6) yield
z, = Hix, + v, 3.7

Notice that at time 0, we cannot say what H, is for £k > 0. However, by the
time z, is received, the value of H, is known. This is sufficient for the pur-
poses of defining the Kalman filter. The filter in this case becomes

Zevine = — KH )R peor + Kizy (3.8)
with

Ky = ZepeHi[HiZp e Hie + R (3.9
and

an/k = Ek/k—l - Ek/k—lHk[HLEk/k—lHk + Rk]—lHll:zk/k—l + Qk (3-10)

Here, R, = E[v}] and Q, = E[w,w;]. Equation (3.8) is initialized with %,,_,
set equal to the vector of a priori estimates of the coefficients, and Eq. (3.10)
is initialized with Z,,_, set equal to the a priori covariance matrix of the
coefficients.

Three important comments on the above material follow.

1. Because of the dependence of H, on the actual system measurements,
Z,/x-1 and K, cannot be computed a priori. Since X/, _, is no longer
independent of the measurements, it loses its interpretation as an
unconditional error covariance matrix of the estimator, though it is
still a conditional error covariance matrix. For the case when {w,}
and {v,} are not gaussian, even this conditional error covariance
interpretation for £, _,, as calculated in (3.10), is lost. We note too
that X,/ is not derived by simple linear processing of the measure-
ments.

2. In case the af are known or thought to be constant, one might
attempt to replace (3.5) by

Xp+1 = X
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This has the effect of setting Q, = 0 in (3.10). It turns out that this
procedure is fraught with peril for the uninitiated, as is argued in a
later chapter. In broad terms, there is the possibility that the smallest
of modeling errors can lead, in time, to overwhelming errors—not
predicted from the error covariance formula—in the estimates of
a’. (A simple example is contained in Prob. 3.2.) The solution is
simply to take each w{ as having a small, nonzero covariance.

3. To the extent that the error covariance matrix ¥, ,_, depends on th
measurements via H,, it is evident that poor identification may resul
with some sets of measurements. {In particular, if , = 0 for all k
no identification of a*v, ..., a""*™ can take place.] Effectively
what one wants is £, .., << p. I for (almost) all measurement s¢
quences, with p, a sequence of scalars approaching zero, or at lea:
a small number p, as k& — oo. Then for almost all measureme:r
sequences the mean square parameter estimation error will approac
zero, or some small quantity. Tt is possible to lay down some criteri
on the excitation «, which guarantee effective identification. Basicall
u, cannot be too small for too many k, and should persistently exci
all modes of the system (3.1) {5].

Besides offering several formal results, this section illustrates an impn
tant point: with judicious modeling assumptions, it is possible to bring
bear the exact, mathematical Kalman filter theory—admittedly in an ad h
fashion—onto a situation to which, strictly speaking, it is not applicat
The engineer should constantly be alert to such a possibility. On the otl
hand, it would only be fair to point out that trouble can frequently arise
trying to stretch the theory; this point is illustrated at greater length i
later chapter dealing with computational aspects and modeling errx

Problem 3.1. An alternative model for the variation of the coefficients in (*
is provided by
ally = fiald + wid
with w{ as before and /; a scalar constant. Show that if { f;| < 1, E[(a{"?]
proaches a limit as k — oo. Argue that this model for the variation of the a1
then be more relevant than that of (3.2). How might the f; be selected in pract

Problem 3.2. Consider the identification of &Y in the equation )
aVu, ., + ve. Model the variation of @'V by al};, = a'’; i.e., assume a'¥’ is st1
constant. Assume v, has constant variance. Argue, making assumptions on u.
required, that Z;. % — 0 as kK — oo, and obtain the limiting form of the :
Then consider how this filter performs if E[v;] = €, where € is an arbitrarily :

but nonzero constant.

Problem 3.3. For the signal model (3.3), with af’ =0 fori=n -+ 1,7
.., it is clear that the input sequence {u,} is not required for the identific
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Show that knowledge of R, is also not required. [The signal model of this problem
is termed an autoregressive (AR) model.]

3.4 APPLICATION OF KALMAN FILTERS

In this section, we mention a number of “real world” problems that
have been successfully solved using Kalman filtering ideas. Invariably,
assumptions are introduced to manipulate the problem to a form amenable
to the application of the Kalman filtering results of the previous sections.
The intention is to achieve in each case a near optimum yet workable solution
to the original problem. The details for one of the applications are then
further explored.

A pollution estimation (prediction) and control application [6] has been
mentioned in Section 2.2. Other chemical process applications abound, for
example [7, 8], which require extended Kalman filtering theory as developed
in Chap. 8.

Kalman filtering (and smoothing) has been applied in filtering noise
from two-dimensional images. Early attempts [9] employed a low (fifth)
order state vector with an assumption that the scanned picture is a stationary
process {obviously such an assumption is not especially well founded since
it overlooks the periodic discontinuities associated with jumping from one
line or field to the next.) More recent attempts have designated the entire
scanned, digitized picture (or suboptimally, a portion of the picture) as the
state vector, but the results are perhaps no better than using a state con-
sisting of the four or so pixels (picture elements) in the immediate vicinity of
the pixel being processed and applying simple adaptive schemes for the
parameters of the digital filter. In picture enhancement we see clearly the
costs and limitations of optimal estimation techniques. One alternative is to
work with high order state vectors and the consequent high computational
burden with possible sensitivity problems. The other alternative is to select low
order suboptimal models which may be inappropriate for some situations.

In the previous section, model identification via Kalman filtering ideas
was discussed. A further application and extension of these methods to a
civil engineering application is discussed in [10]. In [10], stream flow model
identification via Kalman smoothing from very few data points is employed
to achieve stream flow prediction.

Later in the text we will explore an application of Kalman filtering ideas
(in particular the extended Kalman filter of Chap. 8) to the demodulation of
frequency modulated signals in communication systems. This is but one
application of Kalman filtering ideas to demodulation and detection schemes
in communication system design. Demodulation is simply a state or signal
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estimation problem. As it turns out, for detection, too, the crucial step is
often the design of a filter, termed a whitening filter; and in turn (and as will
be later shown), whitening filter design is equivalent to Kalman filter design.
One of the earliest references in this field is {11]. Examples of developments
of the ideas of [11} are given in [12, 13]. Detection problems including appli-
cation to radar signal processing are discussed in [14, 15, 16]. More recently,
adaptive equalization for communication channels has been approached
using Kalman filtering [17, 18] (see also Chap. 10).

Another area of application of state-estimation techniques as expounded
in this text is to the area of determining the state of a power system. (See, for
example, [19].)

Much of the early impetus for the developments of Kaiman filter theory
and application came from problems in the aerospace industry, as for example
in [20, 21). The state variables in such applications are frequently the position
(usually three state variables) and the velocity (a further three variables).
We now move on to explore in more detail an application involving such
state variables.

The basic task is to estimate as accurately as possible the position and
the velocity of a moving object from noisy measurements of its range and
bearing. The moving object could be a vehicle such as a ship, aircraft, or
tractor; or it could be a whale, school of fish, etc. The measuring equipment
could involve radar, sonar, or optical equipment.

In order to keep the problem within manageable proportions, we restrict
attention to the case where the movement is constrained to two dimensions.
Actually this constraint is not too severe, since movement is frequently in
two dimensions, at least to a first order of approximation.

Associated with the tracking problem, there will frequently be a control
problem, or a differential game problem. For example, when aircraft in the
vicinity of an airport are tracked, there will also be some control; general
pursuit-evasion problems exemplify situations in which tracking and control
(on both sides) are involved. However, we shall not consider the control
aspects further here.

As a first step in tackling the tracking problem, we derive a discrete-
time signal model with a state vector consisting of both the position and the
velocity of the moving vehicle. The general problem of deriving a discrete-
time model by sampling a continuous-time system is discussed in Appendix
C. Here we shall proceed more from a “first-principles” approach in deriving
the model. Using the two-dimensional rectangular xy coordinate system, we
select as state vector

Xy

fo=| " (4.1)
Y

Y
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Here, x, and y, are the position coordinates and x, and y, arc the com-
ponents of velocity in the x and y directions. The discrete time instants are
k=0,1,2,....

In order to express the measurement data as a linear combination of
the components of the state vector, we choose as a data vector

. = [rk sin 0,‘} 42)
r. cos 8,

where r, denotes the range measurement and 8, denotes the bearing mea-
surement at the discrete time instant k. With this selection of data vector,
we have an equation for z, as

5, = H'x, + v, (4.3)
where
01 0 0
H' = (4.4)
0 0 0 1

and v, denotes the noise perturbations on the measurement of H'x,.

Before proceeding with a description of the noise perturbations z,, we
comment on what might appear at this stage to be a more suitable selection
of a state vector, namely [F, r, ék 6,.). This selection of state vector
would allow the data vector to be simply [r, 6,), rather than one involving
sine and cosine terms as in (4.2). Unfortunately, the full state equations for
even the very simple case of a vehicle moving at a constant speed on a fixed
course are more complicated if we use this vector, as opposed to the state
vector of (4.1). Tt is this fact which has influenced the choice of the vector.

Returning to our descriptions of the noise perturbations v,, we com-
ment that the statistical characteristics of the noise v, depend to a large
extent on the measuring equipment. Sonar, radar, and optical equipment
each have their own error characteristics. For the purpose of this analysis we
assume that measurement noises on the range and bearing are independent,
and each is of zero mean. The respective variances are known quantities g}
and oZ. We make no further assumptions about the probability density
functions of the noise at this point. It follows that the mean Ef»,]is zero and
the covariance matrix of our measurement noise vector v, is approximately

[0,2 sin? @, + rig?cos* 8, (0! — rig})sin b, cos 9,(1

R, = E[v,vi ] =
(62 — rio?)sinf,cos @, olcost8, + ricisin®f,

—

(4.5)

The approximation arises from an assumption that the fluctuations are
small, i.e., 0, <<€ 1 and o, < r,. Next, rather than determining the prob-
ability density function associated with the measurement noise v, from the
corresponding functions governing range and bearing measurement noise,
and keeping in mind that the Kalman filter theory is optimum only for the
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case of gaussian noise, we use our engineering judgment and tentatively
assume that the measurement noise v, is nearly gaussian. More precisely, we
assume the noise is sufficiently near gaussian that when a filter is designed on
the basis that the noise is gaussian and then used with the actual noise, the
resulting performance is not far from that predicted by the gaussian assump-
tion. This may lead us into error. On the other hand, it may represent the
only feasible solution to the filtering problem, given the present status of
theory and application. Alternatively, we could adopt the viewpoint that we
know nothing about the noise statististics, save R,, and are simply seeking
the best filter within a certain class of filters.

A second problem arising with the use of the covariance matrix R, is
that it depends on the state vector which we are trying to estimate or, at least,
on the positional coordinates of the state vector. Since the state vector is
unknown, it makes sense, at least from a heuristic point of view, to replace
the formula for R, given above by one involving the current estimates of all
the relevant quantities. Thus we would have the 1-2 entry of R as

- . X
[0 — (* + §M)oi] 2*2—)‘)-)75

Again, we are making an engineering assumption which can only be validated
by seeing what happens in practice.

In our discussion of the signal model we have so far said nothing about
the evolution of the state vector x. The use of sonar, radar, and the like
generally means that the measurements are made in discrete time, and it then
makes sense to look for a discrete-time model for the evolution of the state
vector. It is here that we again mould our problem somewhat in order to be
able to apply theoretical results. We consider a state-space model for the
vehicle motion as

Xpoy = Fx — w, (4.6)
where
e« 0 0 O
A1 0 O
F = “.7
0 0 a O
0 0 A 1

The quantity A is the time interval between measurements. The zero mean,
gaussian random vector w, allows us to consider random manoeuvering of
the vehicle under observation. The quantity & will be discussed below.

To understand (4.6), and particularly the reason why F has the form of
(4.7), consider first a target moving with constant speed on a fixed course.
Then we should have x,,, = %, and x,., = x, + Ax,, with like equations
for y and y. This would lead to w, in (4.6) being zero and an F matrix as in
(4.7) with ¢ = 1.
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Now suppose the target is maneuvering. The entries of w, will be used
to account for the randomness in its motion. First, we can examine the
capability of the target for speed change and course change during the
interval A; from a knowledge of the performance capabilities and operating
patterns of the target, we could derive quantities g2 and o2, representing the
mean square change in forward speeds and in the course 8 which occur in
any interval A. It would be reasonable to expect that the mean changes in
forward speed and course would be zero and to assume that changes in speed
and course over an interval A occur independently.

Suppose (temporarily) that o in (4.7) is unity, so that (4.6) implies

Xpse1 = X wiV
Then all the change in x from time k& to & -+ | is associated with wi". Like-
wise, all the change in p is associated with wi>.

Using the relations x = scos @ and y = ssin 8, it is possible to show
that zero mean changes in s and € imply E[w}’] = E[w{¥'] = 0, as we would
expect, and that the expected mean square changes in s and § lead to

E[(wi")’] = aisin? 8, + ol(xi + i) cos® O,

E[(w{)?] = g cos? 0, + al(x} + yi) sin® B, (4.8)

EwiPw¥ = [0} — olsi]sin 8, cos 8,
provided 6? « x} + y% and o? is small. Note that ¢? and ¢? are the mean
square speed and course changes over the interval A. Accordingly, the
smaller A is, the smaller will these quantities be, and therefore the better the
above approximation. Now consider the effect of maneuvering on the posi-

tional coordinates. We have (at least approximately)
Xpoy = X + %A(Xk + deer) = X+ AQE, + 21'”'1((”) (4.9

[The approximation is perfect if the average velocity between the sampling
instants is $(%, + X,.,).] Proceeding likewise for y,., leads to equations

Txeer ] 10 0 0T xS owi T
Xi+1 A1 0 0} x, %Wi”
Jeor | 10 0 1 0l T @19
Views 0 0 A 1]y, %wﬁ?’

with (4.8) holding, and E[w{"”] = E[w(’’] = 0. This model, however, can still
be improved slightly. Qur assumptions on the target maneuvering implied
that the speed {s,} of the target obeyed an equation of the form

Seer = St Uy 4.11)

with E[u,] = 0, E[u] = o?. If {u,} is white and if one sets s, = 0, one can
derive E[s}] = ko?, which implies that the mean square speed is unbounded.
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Clearly this is an unrealistic assumption for any physical object. It would be
more reasonable to have E[s}] = S, where S is a constant independent of k
and depending on the speed capabilities of the target. It can be shown that
this would result if (4.11) were replaced by

2 2
Spes _JS O 50 + uy (4.12)
(See Prob. 4.3.) In turn, this implies

S — 02 .
Xprr1 = \/ X +wi

and
T 2
Vis —\/S % LY + wi?

So, finally, we are led to

— -

/§? — og?

— 0 0 0
) A 0.
Xe+1 = X+ wy (4.13)

$7 0’2
0 J
L 0 1]

with
Ew]=0 Wy = {:wi” Swit wi® %w,“”]

and (4.8) defining the covariance of w,. To design the filter, we take the
same conceptual jump for w, as we did for v,, i.e.,, we assume for design
purposes that w, is gaussian and that the state estimate can be used in defining
the covariance of w,.

One further matter which must be considered is a selection of the mean
E[x,]and covariance P, of theinitial state, whichis assumed gaussian for design
purposes. If there is doubt about what the value of P, should be, an arbitrarily
large value can be selected, since after a few iterations the estimation process
is usually reasonably independent of the value chosen for P,.

Having formulated the model in a form amenable to application of the
earlier theory, the remaining work in determining the filter is straightforward.

As a reading of a later chapter on computational aspects and modeling
techniques will show, there is absolutely no guarantee that the various
assumptions made will lead to a satisfactory filter in practice. The first step
after design of the filter is almost always to run a computer simulation.

Computer simulation results for an underwater tracking problem of
much the same form as that just discussed are studied in [21]. Since the noise
processes w and v have covariances which depend on the state x, the filtering
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error covariance also depends on the actual measurements. In [21], ten
different Monte Carlo runs were taken in order to achieve root-mean-square
error statistics. The results confirm what one would intuitively suspect, namely
that when the moving object is making sharp maneuvers, the error increases.

Several other points also arise in [21]. First, it may be possible to estimate
adaptively the covariance R,, which changes but slowly with k. Second, it is
possible to cope with the case when measurements of speed are also available
(typically from a Doppler shift measurement). With these additional mea-
surements, improved performance at lower average errors are obtained.
Third, it is possible to deal with the case where there is an average speed in
one direction. This is also dealt with in a problem. Finally, we comment that
we have described here a solution to an essentially nonlinear filtering prob-
lem that in precise terms is nonlinear, but in operational terms is essentially
linear. Nonlinear solutions, in some cases exact and in other cases approxi-
mate, are known for classes of nonlinear filtering problems (see, e.g., [22]),
and almost certainly a nonlinear solution could be found for the problem
considered here. It would undoubtedly involve a filter of greater complexity
than that suggested here.

Problem 4.1. Consider the tracking problem discussed in this section. Assume
now that in addition to the range r and bearing 6 measurement data available, a
noisy Doppler measurement of dr/dr data is available. What would be the change to
the model for this case?

Problem 4.2. Suppose that the tracking problem of the section is studied, with
the additional information that the target is maintaining an average speed in a cer-
tain direction. Show that two more components m* and m” of the state vector can
be introduced to model this effect, and that if the average speed and course are
known, one obtains

T2 _ g2 T2 _ g2
oy = x/“iT‘a—x (- ~/S—s—a>"’k + Wit

mi, . = mg
with similar equations for m}., and y..,. Extend the model to the case when the
average speed is initially not known exactly.

Problem 4.3. Suppose that sz, = ®sx + ux, With {«,} a white noise process
with E[us] = 0, E(u}] = o?. Show that if E[s#] = S2, for all &, it is necessary that
a2 = (St — 0?)/S2.
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CHAPTER 4

TIME-INVARIANT FILTERS

41 BACKGROUND TO TIME INVARIANCE
OF THE FILTER

We recall from the last chapter that the general form of the Kalman
filter is

2k+1/k = [Fk - KkHI’c]-ik/k—l + Kz, (1-1)

Here, {z,} is the measurement process and %,,_, is the conditional mean
Elx,| Z,_,]. For the definition of other quantities, see the last chapter.

In general, F,, H,, and K, depend on k; that is, (1.1) represents a time-
varying filter. From the point of view of their greater ease of construction and
use, time-invariant filters, or those with F,, H,, and K, independent of %,
are appealing. This is one reason for their study. The other reason lies in their
frequency of occurrence. Some special assumptions on the system upon which
the filter operates lead to the filter being time invariant; these assumptions,
detailed later in the chapter, are frequently fulfilled.

Evidently, for (1.1) to represent a time-invariant filter, K, must be con-
stant and, unless there is some unlikely cancellation between the time-varia-
tion in F, and K, H; to force F, — K, H, to be constant, both F, and H,
must be constant. This suggests that perhaps the underlying system must be

~
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time invariant, and a moment’s reflection then suggests strongly that the con-
ditions for time invariance of the filter might be:

1. Time invariance of the system being filtered.

2. Stationarity of the random processes associated with the underlying
system. (This is not necessarily implied by time invariance of the
system ; if, for example, the system is unstable, this condition will not
hold.)

As we shall show in the later sections, these two assumptions are in fact
sufficient to guarantee time invariance of the filter. Actually, they are a little
stronger than necessary.

A question of vital interest regarding the performance of a filter is
whether or not the filter is stable. We shall leave aside consideration of the
stability of time-varying filters and be concerned in this chapter with explain-
ing when the following time-invariant filter is stable:

Revie = [F — KH VB jimy + Kz, (1.2)

As described in Appendix C, an equivalent task is to explain when eigenvalues
of F — KH' lie inside | z| < 1. The techniques for studying this question are
studied in the next section, and they also allow us, in Sec. 4.3, to expand on
the notion of stationarity of the underlying random processes associated with
the system being filtered. It turns out that stability of the system is normally
required to guarantee stationarity of, for example, the random process {x,},
where x, is the system state vector.

In Sec. 4.4, we present precise conditions under which the filter is time
invariant and stable. Section 4.5 discusses some important frequency domain
formulas.

Problem 1.1. Assume (1.1) represents a time-invariant filter, and assume also
that the filter performance, as measured by the unconditioned error covariance
matrix, is independent of time. Show that the second assumption and an assumption
that the input (and output) noise is stationary suggests that G, in the signal model
is independent of time.

4.2 STABILITY PROPERTIES OF LINEAR,
DISCRETE-TIME SYSTEMS

In this section, we look at stability properties of the equations
Xesr = Fx, 2.1
and
Xe+1 = Fx 4+ Gu, 2.2)
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As we know (see Appendix C), (2.1) is asymptotically stable-—in fact, expo-
nentially asymptotically stable—if and only if |A,(F)] <1 for all i. Under
this condition, (2.2) is bounded-input, bounded-output (or bounded-state)
stable. Our main aim is to prove with the aid of the Lyapunov theorems of
Appendix D an important result characterizing matrices F associated with
systems with desirable stability properties. This result will also be of use in
considering the behaviour of (2.2) when the input sequence is white noise.

Characterization of Stability via a Linear Matrix Equation

Here we want to study an equation which arises in testing a matrix F
to see whether |A,(F)| < 1. The equation is as follows, where F and Q are
known n X n matrices and P is unknown:

P—FPF = Q (2.3)

In order to study the equation, we need a preliminary result, obvious for
scalars on account of the properties of geometric series. We omit the proof.

LeMMA 2.1. Suppose Fis ann X nmatrix with |4 (F)| < 1. Let 4 be an
arbitrary n X n matrix. Then

= ¥ F<AF'*
B=Z,
exists and is finite.

Now we return to (2.3). The reader should recall that the pair [F, G} is
completely reachable if [G, FG, . .., F*"'G] has rank n (see also Appendix C).

n—1
An equivalent statement is that 3, F'GG'F'’. is nonsingular.
(=0

THEOREM 2.1.* Suppose Q is nonnegative definite symmetric, and let
G be such that Q = GG', with [F, G] completely reachable. Then if
|A(F)| < 1, the solution P of (2.3) exists, is unique, and is positive defi-
nite. Conversely, if a positive definite solution exists, it is unique and
[A(F)] < L.

Before proving the theorem, we make several comments.

1. Because Q is nonnegative definite, there exists an infinity of matrices
G such that O = GG’ (see Appendix A). Triangular G are readily
found from Q (see [1]).

2. If G, and G, are such that Q = G,G; = G,G;, then complete reach-
ability of [F, G,] is equivalent to complete reachability of [F, G,].

*The result is a composite of results due to Lyapunov, Kalman, and Stein. It is
sometimes termed the discrete-time lemma of Lyapunov.
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(Observe that
n-1 n—1
> F'G.G.F"' =3 FQF"
i=o

=0
fork =1,2)

3. So far, we have not commented on how (2.3) might be solved. This
matter will be taken up further below; suffice it to say here that
solving (2.3) is equivalent to solving a linear equation of the form Ax
= b, where 4 and b are a known matrix and vector, respectively, and
x is an unknown vector.

4. Assuming solution of (2.3) is easy, the theorem contains an implicit
procedure for testing if | A,(F)| < 1 for a prescribed F. One selects an
arbitrary Q > 0 for which the reachability property holds—Q =TI -
is a universally possible choice. One solves (2.3) and then checks
whether P > 0. The only possible circumstance under which (2.3)
cannot be solved arises when the constraint|A,(F)| < 1 fails; however,
failure of |A,(F)| < 1 does not necessarily imply inability to solve
(2.3).

Proof. Suppose that | 1,(F)| < 1. Define the matrix P by
P=3 FrQ(F') 2.4
3, F*O(F) (2:4)
Then P exists by Lemma 2.1 and is easily seen to be positive definite.
For P> ";‘: F*GG'F’* > 0, the first inequality following from (2.4)
=0

and the second from the complete reachability assumption.
Next observe that

P— FPF' = ¥ FXQ(F'Y — 3. F*Q(F")"

k=0 k=1

=0
So P satisfies (2.3). Let P be any other solution. Then (2.3), with P
replaced by first P and then P, yields

(P—Py— F(P—P)F =0
from which for all &
F¥=Y(P — P)(F')*"' — F¥(P — PYF')* =0
Adding such relations, we find
(P — P) — F{P — P)(F') =0

Now let k — oo, and use the fact that F* — 0. It follows that P = P.
This establishes uniqueness.

We now prove the converse result. Accordingly, suppose that (2.3)
holds, with P positive definite. Associate with the homogeneous system

Xis1 = F'x; (2.5)
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(note the prime!) the positive definite function ¥(x,) = x:Px,. Then
AV(x,) = V(x,) — V(xi)
= xxFPF'x, — x3xPx,
= —x.0x,
where we have used (2.5) and (2.3) to obtain the second and third equali-
ties. Evidently, AV < 0 and so, by the Lyapunov theory, x;., = F'x, is
certainly stable. We can conclude asymptotic stability if AV is identi-

cally zero only on the zero trajectory. Let us prove this. Thus suppose
x,0x, =0fork=0,1,2,....Then x;F*QF*x, = 0 for all k, and so

n-1
x;,[kz::o F"QF”‘])(o =0
The complete reachability assumption implies x, = 0. Uniqueness fol-
lows as before.

Now that the proof of the theorem has been presented, the reader may
understand the following additional points.

1. The same results as proved above hold, mutatis mutandis, for the
equation P — F'PF = Q, for the eigenvalues of F' are the same as
those of F.

2. The formula of (2.4) defines a solution of (2.3). Despite the fact that
it represents an infinite sum, it may be an effective way to compute a
solution, especially if the F* decay quickly to zero. This will be the
case if the | 4,(F)| are bounded by a number significantly less than 1.
Further comments on the solution of (2.3) are given below.

4. Define a sequence of matrices {P,} by

P..,= FP.F' + Q P, =90 (2.6)
Then if | A,(F)| < 1, lkim P, exists and is P. To see this, observe by
direct calculation thatw
P, =0
P, =FQF + Q

k
Pevy = 3, FIQF"

The formula for P,,, yields the required limit. Also, as one would

expect, taking the limit in (2.6) recovers Eq. (2.3), which is satisfied by
P.
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5. If[F, G] is not completely reachable and if | A,(F)| < 1, then (2.4) still
defines a unique solution of (2.3), as examination of the earlier proof
will show. The solution, however, is not positive definite. (This point
is explored in the problems.) Derivation of a converse result when
[F, G] is not completely reachable is, however, more difficult, and
there is no simple statement of such a result.

To conclude this section, we comment on solution procedures for (2.3).

The first procedure is as follows: By equating each entry on each side of
(2.3), using literals p*“? for the entries of P, one obtains a set of linear equa-
tions in the p/’. These may be written in the form Ax = b, where the entries
of x are the p“/’, the entries of b are the g7, and the entries of 4 are derived
from the entries of F. In principle, this equation can be solved for x. In
practice, this may be difficult since A is of dimension n? x n? or, if advantage
is taken of the symmetry of P, of dimension {n(n + 1) X in(n + 1). Actually
one can cut down the dimension of A4 further, to tn(n — 1) x fn(n — 1)
(see [2]). Those familiar with the Kronecker product [3] will recognize A4 to
be the matrix 7 — F(X) F’, which has eigenvalues 1 — A,;4,, where 4, is an
eigenvalue of F. Accordingly, Ax = b is solvable if 1 — 1,4, is nonzero for
all i and j; a sufficient condition for this is | 4,| << I for all i.

A second procedure for solving (2.3) is to use (2.6) and find lim P,.

koo

A third procedure involves a simple speed-up of the second procedure.
By updating two n X n matrices, one can obtain a “doubling” algorithm:

Mk+1 = (Mk)z M, =F (2~7)

Nk+1:MkaMII(+Nk N,=¢Q (2.8)

One easily verifies that M,,, = F** and that N,,, = P,.. Then P = lim N,,
k—oo

with convergence occurring faster than when (2.6) is used in its raw form.

Main Points of the Section

Given that [F, G] is completely reachable, the condition |A(F)| < 1 is
necessary and sufficient for P — FPF' = GG’ to have a unique positive
definite solution. The solution is definable either via an infinite series or by
solving an equation of the form Ax = b, where 4 and b are a known matrix
and vector, respectively. Rapid procedures for summing the series are
available.

Problem 2.1. Suppose |A(F)| <1 and Q >0. Show that the equation
P — FPF’ = Q has a unique nonnegative definite solution and that all vectors ¢ in
the nullspace of the solution P of P — FPF’ = Q liein the nullspace of Q, QF’, . . .,
Q(F’y"~! and conversely.



68 T/IME-INVARIANT FILTERS Ch. 4

Problem 2.2. Suppose that

0 0 --- 0 —a, | 1 —a? ]
1 0 --- 0 —Qp-1 ay — a,a,_\
o1 .-+ 0 —a, a, — a,a,._
F— : 2| G—|% . 2
100 -+ 1 —a _| LGn_1 — a4y |
Show that one solution P of the equation P — FPF’ = GG’ has ij entry
min ({, /)
pin = ‘El (A1-pj—p — Apts pQn-14 p)

The matrix P is called the Schur-Cohn matrix. Show that positive definiteness of P
is necessary and sufficient for the zeros of z* 4+ a,z*"t + --- + a, to lie inside | z|
= 1.

Problem 2.3. Suppose that [F, G] is completely reachable and the equation
P — p*FPF’ = GG’ has a positive definite solution P for some known scalar p.
What can one infer concerning the eigenvalues of F?

Problem 2.4. Show that if the recursion Py, = FPF' + Q is used with
arbitrary initial Py and if | A(F)| < 1, then P, — P, where P — FPF’' = Q.

Problem 2.5. Suppose that [F, G] is completely stabilizable, but not neces-
sarily completely reachable. Show that P — FPF’ = GG’ has a unique nonnegative
definite symmetric solution if and only if | A(F)| < 1.[The “if” part is easy ; approach
the “only if” part as follows: Let w be an eigenvector of F for which | A(F)| < 1
fails. Study w*GG’w and show that wF'G = 0 for all i. Deduce a contradiction.
This technique may also be used to prove Theorem 2.1.]

Problem 2.6. Let X, be a sequence of nonnegative definite matrices such that
for some nonnegative symmetric X and for all X, X > X;,, = X;. Show that
lim X, exists, as follows: Let ¢’ be a vector comprising all zeros, save for 1 in the

k—o0

ith position. Consider ¢’ X,e® to conclude that X’ converges, and then consider
(e’ + eP) X (e® + e) to conclude that X §” converges.

4.3 STATIONARY BEHAVIOUR OF LINEAR SYSTEMS

In this section, we consider the time-invariant system
Xier = Fx, + Gw, 3.D
with associated measurement process !
z, = H'x; + v, 3.2)
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We shall assume that v, and w, are independent, zero mean, stationary,
white gaussian processes, with covariances given by

E[v,v]] = Rd,, E[w,wi] = Qdu (3.3)

We shall attempt to answer the question: when is the {x,} process, and
consequently the {z,} process, stationary? We remind the reader that a
gaussian process {a,} is stationary if and only if

Ela,)=m Elaia)] = Ciy (34

In other words, the mean of the process is constant, and the correlation
between the random variables defined by sampling the process at two time
instants depends only on the difference between the time instants. Normally,
it is understood that the process {a,} is defined on —oo < k < oo, If it is
defined on 0 < k < oo, an acceptable definition of stationarity might be
provided by (3.4) with k, / >> 0; although not a standard convention, we shall
adopt this usage of the word stationary.

As we shall see, in order to guarantee the stationarity of {x,}, it proves
convenient to introduce the stability condition we studied in the last section:
|A(F)| < 1. Intuitively, the reader can probably appreciate that with | 1,(F)|
> 1 for some i, the noise w, for one k could excite the system so that the
resulting x,,, initiated an instability, according to x,,, = F" " 'x,,,. There-
fore, it seems reasonable that for stationarity the inequality | ,(F)| < 1 should
be satisfied. That the equality sign may rule out stationarity is less obvious;
however, a simple example illustrates what can happen in case the equality
sign holds.

ExaMpLE 3.1. Consider the system
Xkt = Xg + Wi

where Elw,w;] = 0x; and xo, = O; here, x; is a scalar. Squaring the defining
equation and taking expectations leads to

Elxt. ] =ExF +1
or
Elxt] =k

Clearly, x; is not stationary. Rather, its variance is an unbounded function of k.

ExampLE 3.2. Consider now the autonomous system with scalar state x,:
X1 = Xk

with x, a gaussian random variable of mean m and covariance P,. Clearly,
Elx,] = m for all k>0 and E[(x; — m)(x; — m)] = P, for all k, [ > 0.
Therefore, stationarity is present.

Both Examples 3.1 and 3.2 deal with systems for which A,(F) = 1. The
difference between the two systems, however, is that in the case of the non-
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stationary Example 3.1, the system is completely reachable from the input,
while in the case of the stationary Example 3.2, this is not so.

The idea above can be generalized to the case of more general systems.
However, in the interests of simplicity, we shall relegate such a general-
ization to the problems and restrict ourselves here to the situation when
|A,(F)] < 1. The first result is the following.

THeOREM 3.1. Consider the arrangement of Egs. (3.1) and (3.3), and
suppose that at the initial time k,, x,, is @ gaussian random variable of
mean m and covariance P,. Suppose that | A(F)| < 1. Then when k, —
—oo, {x,} is a stationary process of mean zero and covariance

E[x,x;) = F*"'P k>1
= P(FY* I>k (3.9
where P is the unique solution of
P — FPF' = GQG’ (3.6)

Further, if m = 0, k, is finite and fixed, and P, = P, then {x,} for k > k,
is stationary and has covariance as above.

Before proving the theorem, we offer the following comments.

1. The technique used to define {x,} for —oo < k <C oo should be noted
-—start with & > k,, and then let k;, — —oo.

2. The mean m and covariance P, of x,, are forgotten when k, — —oo,
in the sense that m and P, do not affect the mean and covariance of
{x,}. This forgetting property is tied up with the fact that | A,(F)| < 1.

3. When m = 0, P, = P, and k, is finite, in essence a stochastic initial
state is being set which gives the initial state the same statistics it
would have had if the process had been running from —oo. This is a
rough explanation of the resulting stationarity of {x,}, k > k,.

4. The question of whether or not P is singular is not taken up in the
theorem statement. As we know from the previous section, P will be
nonsingular if and only if [F, GG,] is completely reachable for any G,
such that G,G}; = Q. Lack of complete reachability would imply that
the noise process w, failed to excite some modes of the system. In turn,
such nonexcitation would correspond to a zero variance of the modes,
or singularity in P.

Proof. For finite k,. one can show, as outlined earlier, that

E[x,] = FE[x,_,] = F*"*m

Since |A,(F)| < 1, then lim F** =0 and E[x,} =0 for all &, as
required. Koz
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Next, recall that
E[xxi] = FE[x,_xi,JF" + GQG’

k—ko—1
= FFhpy(FY¥ %+ 3, FrGOG'(F)"
m=0
Letting k, — — oo, there obtains

Elxxi] = 3 FTGOG'(F)"
=P
where P is the unique solution of
P — FPF' = GQG’

The formula for E[x,x]] is then immediate. _
Finally, suppose m = 0, k, is fixed, and P, = P. It is trivial to see
that E[x,] = O for all k. Second, observe that for k > k,,

- k—-ko—1
E[x,x}] = F¥*pP(F')~k + 3% F"GOG'(F')
m=0
- k—k -
= F*koP(F')e ke FrP(F'y"

o—1
[
k—ko~-1 -
— Y F"FPF'(F')"
m=0

=P

Immediately, E[x,x;] is as given by (3.5), and stationarity is established.

Theorem 3.1 gives a sufficient condition for stationarity, namely, | 1,(F)|
< 1. As argued with the aid of earlier examples, this condition is almost a
necessary one. The following theorem, in essence, claims that, if all modes of
(3.1) are excited by white noise, |4,(F)| < 1 is necessary for stationarity.
Proof is requested in the problems.

THEOREM 3.2. Consider the arrangement of Egs. (3.1) and (3.3). Suppose
that the {x,} process is stationary and that [F, GG,] is completely
reachable for any G, with G,G; = Q. Then |A(F)| < 1.

Further results are obtainable, in case complete reachability is not present.
These are explored in the problems.

Suppose now that | 1,(F)| < 1, that the initial time k, is finite, and that
m and P, are not necessarily zero and P, respectively. Does one then neces-
sarily have a nonstationary process? The answer is yes, but one does have
what is termed asymptotic stationarity, and one can regard {x,} as a process
consisting of a stationary part and a nonstationary part dying away as k -—
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oo. Thus, for example,
E[x.} = F**m
and as k — co, this tends to zero. Also,

k—ko—1
Elxxi] = F*%P(F'™* + 3. F"GQG'(F')"
m=0
— k—ko—1
— Fk—k,P(Fr)k—ko + 2 F"'GQG'(F’)M
m=0
+ Fro(Py — PYF)
= P 4 Fk~*(P, — P)(F") %
Thus E[x,x}] consists of a stationary part P and a nonstationary part which
decays to zero as kK — oo. The nonstationary part may not be nonnegative
definite. A common situa_tion would occur with x, =0, i.e., m =0 and
P, = 0. Then E[x,x;] < P for all k and increases monotonically towards P.

Evidently, after an interval k — k, large enough such that F*¥~* is very
small, to all intents and purposes the {x,} process has become stationary.

The Output Process

What now of the {z,} process, defined via (3.2)? The calculation of the
mean and covariance of the process is straightforward; using the ideas of the
last chapter, we have, for a stationary {x,} process,

E[z] =0  E[z,z]] = H'F*'PH k>1
=R+ H'PH k=1 3.7
= H'P(FY*H k<l

In essence, the only potentially difficult step in passing from (3.1), (3.2),
and (3.3) to the covariance of {z,} is the calculation of P via (3.6), so long at
least as|A,(F)| < 1. In the event that [F, GG,] is completely reachable for any
G, with G,G, = Q, existence and positive definiteness of P provide a check
on|A(F)| < L.

Now suppose that the input and output noise are correlated, with

Efwye)) = S6, (3.8)

for some constant matrix S of appropriate dimensions. Equations (3.7) need
to be modified, and we compute the modifications in the following way. Since

k-
X, = Frkox, + X": Fr-i-mGy,
it follows that
E[xv)) = F*17'GS k> 1
=0 k<l
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Then, in the stationary case,

Elz,z)) = H'E[x,x]JH + E[v,x]H + H'E[xv]]

+ E[vkv;]
= H'F*PH 4+ H'F* -GS k>1 (3.9
=R+ H'PH k=1

= H'P(F'Y*H + SG(FY*'H k<l

We sum up the result as a theorem.

THEOREM 3.3, Adopt the same hypotheses as for Theorem 3.1, except
for assuming now that (3.8) holds. Then when k, — —oo, {2,} is a sta-
tionary process of mean zero and covariance as given in (3.9). Here P
is the solution of (3.6).

Frequency Domain Calculations

Let {a,]} be a stationary gaussian process with mean zero and covariance
Ela,a;] = C,_;. Recall that one defines

oo

®,.(2) = kZ z7+Cy

=—o00

(assuming the sum is well defined in some annulus p <|z| < p7') as the
power spectrum associated with {a,} (see Appendix A).

ExaMpLE 3.3. The power spectrum of the white process {v;} is R, a constant
independent of z.

Let us calculate now the power spectra of the {x,} and {z,} processes
when these are stationary. Using (3.5), we have

— N ,kEkP S Lk P(E -k
(Dxx(z)—;oz FP+/§1ZP(F)
Now for |z| > max [A,(F)|, one has
{
(I— 2z 'F)"' =I+4 z'F 4 z"2F* 4 --.
and for |z| < [max |A(F)|]"!, one has
i

I —2(F) ") =T+ 2(F)* + 2(F) 2+ -
Therefore,
Ouy(x) = — z7'\F) 1P+ P(J — zF)y"t — P

A more illuminating expression for ®,,(z) can, however, be obtained via
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some rearrangement. Thus
=z 'F)y P+ P —zF)y ' —P=(I—z'F)" [P —zF)+ I —z7'F)P
— (I — z7'F)PU — zF)|I — zF']!
= (I — z'F)y" (P — FPF)(I — zF')"!
= (I — z7 'F)y '\GQG'(I — zF')™!
= (zI — F)"'GQG'(z"'1 — F')™!
Now the transfer function matrix linking {w,} to {x,} is M(z) = (zI — F)™'G,
while Q = @5 (2). Thus
®ral(z) = M()QM'(z") (3.10)
With W(z) = H'(zI — F)™'G, one gets
G, (2) = WEREW' () + WS+ SW'(z ')+ R (3.11)
A derivation is called for in the problems.

The formulas (3.10) and (3.11) are examples of a general theorem, noted
in Appendix A. We state it here without proof.

THEOREM 3.4. Suppose {u,} is a zero mean, stationary process with
power spectrum ®,,(z) and is the input to a time-invariant, asympto-
tically stable system with transfer function matrix W(z). Then the output
process {y,} is asymptotically stationary with spectrum @,,(z) =
W@y (W'(z7").

By and large, the result of Theorem 3.4 is the easier to use in calculating
power spectra. The approach via z-transform of the covariance should,
however, be kept in mind.

Wide-sense Stationarity

A gaussian process {a,} is stationary when (3.4) is satisfied, If {4,} is not
gaussian, however, (3.4) is necessary but not sufficient for stationarity; one
calls {a,} wide-sense stationary when (3.4) holds, but higher order moments
possibly fail to exhibit stationarity. If one drops gaussian assumptions on
{ve), {we}, and x,, then the theorems hold with stationarity replaced by wide-
sense stationarity.

Main Points of the Section

Time invariance of a signal model driven by stationary white noise is
necessary but not sufficient for stationarity of the state and output processes.
Normally, asymptotic stability is also required, as is either a commencement
at time k, = —oo with arbitrary initial state mean and covariance, or com-
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mencement at some finite k, with a special initial state mean and covariance.
With k, finite and arbitrary initial state mean and covariance, state and
output processes are asymptotically stationary. For gaussian processes, the
stationarity is strict, otherwise it is wide-sense.

With signal model defined by the sextuple {F, G, H, Q, R, S}, the crucial
equations are as follows in the stationary case:

Elx,x)] = F¥ 1P k> 1

where _ _
P — FPF' = GOG'
Elz,z) = H'F*"'PH + H'F*'"'\GS k>
= R + H'PH =
G, 4(2) = (zI — F) 'GQG'(z~'] — F')~!
and

®,,(z) = H'(zI — F) 'GQG'(z"'1 — F'Y"'H + H'(zI — F)"'GS
+ S'G(z-'1 — F')"'"H + R

Problem 3.1.. Consider the system

F(I) 0 F(13) G(l)
Xes1 =] 0 F2 F2|x, +| 0 |w,
0 ¢ F® 0
with E[w,w] = I. Suppose that E{x,] = 0 and E[x,x,] = P with
P(l) 0 0
P=] 0 P® 0
0 0 0

Show that if | A,(F V)| < 1 and | A(F®)} = 1, then there exist nonnegative definite
solutions P and P‘® of

13(1) — F(l)ﬁ(l)Fm' = GG
P2 - FopauE@ —
with P not necessarily unique, and able to be nonsingular if F@ has distinct
qu a
eigenvalues. Further if P’ = PV, P2 = P then {x,] is stationary for & > 0.

Problem 3.2. Prove Theorem 3.2 using V = X\ Px, as a Lyapunov function.

Problem 3.3. Suppose that ®(z) is a power spectrum. Show that ®(z) =
®’(z71) and that ®(e/*) is real and nonnegative definite hermitian for all real .
(The second half of this problem is standard, but hard to prove without assuming
the result of Theorem 3.4. See reference [2] of Appendix A.)

Problem 3.4. Suppose that x;,.y = Fx; + Gwy, zx = H'x, + vy, with

Wik | Wi VT g S
SRR M L
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and |A(F)| < 1 for all i. Show that {z,} is the output sequence of a linear system

driven by
)
Vi
and show by two methods that
O,(2) = H'(zI — FY"'GQG'(z"' I — F'Y'H
+ H'(zI — F)"'GS + 8’G'(z"'I1 — F')"'*H + R
Problem 3.5. Show that knowledge of W(z)W'(z~1) and the fact that W (z) is

exponentially stable is not sufficient to determine W(z) alone. [It is enough to con-
sider scalar, rational W(z).]

Problem 3.6. For the system x;,; = Fx; -+ Gwy, suppose that

o 1 0 . : . 0 707
0 0 1 . . . 0 0
F = s G =
1 0
-_a" . . . B -0, _al_ _1_

with w, a zero mean, white process of covariance E[w}] = 1. Show that if | 1(F)|
< 1, the solution P of P — FPF’ = GG’ is Toeplitz, i.e., p;; = pi_, for the entries
iy of P. Prove also that if P is a positive definite symmetric Toeplitz matrix, the
numbers B, defined by

B 1
Ji] 0
g Lo

are such that all roots of 27 + B,z7~! + f,2n72 + .- + f,liein|z| < 1. (For the
first part, give a covariance interpretation to p;;, and for the second part relate the
B, to the &)

4.4 TIME INVARIANCE AND ASYMPTOTIC STABILITY
OF THE FILTER

In this section, we are interested in pinning down conditions which
guarantee simultaneously that the optimal filter is time invariant, or asymp-
totically time invariant, and that it is also asymptotically stable. (Conditions
separately guaranteeing these propertizs are obtainable, but are not of great
interest). Time invariance, or asymptotic time invariance, arises when there



Sec. 4.4 TIME INVARIANCE AND ASYMPTOTIC STABILITY OF THE FILTER 77

is a constant, or asymptotically constant (i.e., limiting), solution of the var-
iance equation*

Zioim = FlZeeer — Zepo HIH'Zy o H + R)'H'Z, 1 )F + GOG'
4.1

with £ a constant or limiting solution to (4.1). The associated gain is
K= FEHH'ZH + R)™! (4.2)

and the question arises as to whether the eigenvalues of F — KH’ have
|A(F — KH')| < 1, guaranteeing asymptotic stability of the filter.

It is certainly intuitively reasonable that X, ., could approach a limit
when the signal process is stationary; however, it is not so clear that the
associated filter should be asymptotically stable, though in fact it is (see point
1 below). Indeed, much more is true [4] (see point 2 below). The main con-
clusions are:

1. If the signal process model is time invariant and asymptotically
stable, i.e., | A(F)| < 1, then
(a) For any nonnegative symmetric initial condition Z, ,,_, one has

hm zk+1/k = i (43)

k—oo

with £ independent of X, ,,., and satisfying a steady-state
version of (4.1):

L =F[E —LHH'EH + R 'H'IJF + GOG' (4.4)
Eq. (4.4) is sometimes termed a steady-state Riccati equation.
(b) If k is held fixed and the value of the initial condition matrix is
held fixed, but the initial time is allowed to vary, then
lim Zeoi0 =2 (4.5)

ko——oo

Again, the value of the initial condition matrix is immaterial, so
long as it is held fixed at a nonnegative symmetric value while
ko — —oo.

©) |A(F — KH")| <1 (4.6)

where k is as in (4.2)

2. If the signal process model is time invariant and not necessarily
asymptotically stable, but the pair [F, H] is completely detectablet
and the pair [F, GG,] is completely stabilizablet for any G, with G, G
= @, then points 1(a) and 1(c) hold.

*Though results are obtainable for the case when H'X; x 1 H + Rissingular, they are
a good deal more complicated. We shall not discuss them here.

1See Appendix C. Note that any asymptotically stable model is automatically com-
pletely detectable and stabilizable.
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Actually, under the conditions listed in point 2, (4.5) holds. But if the
system is not stable it does not make sense to let k, — —oo, since at any
finite time, the system state can be expected to have an infinite variance.
Actually, it hardly makes more sense to let k — oo, since on [k, o] the
variance of the signal state and the output will be unbounded, though finite
for all finite k. Whether or not the error variance tends to a constant is perhaps
an academic point. Thus the results described under point 2 are of limited
utility.

Qutline of Derivations

Our discussion will break up into four parts:

1. We shall show that for an arbitrary but fixed nonnegative symmetric
Troke—1> 2isk—1 is bounded for all k. The detectability property is
crucial, as is an appeal to optimality.

2. We shall show that with X, ., = 0, X, ., is monotone increasing
with k; in conjunction with the bound of 1, this establishes the exist-
ence of’l‘im Ze+1% = 2. Equation (4.4) and the limit (4.5) will also be

recovered.

3. The stability property (4.6) will be obtained.

4. We shall allow arbitrary nonnegative symmetric X, ,-; and shall
obtain (4.3) [and (4.5) where appropriate}.

Bound on the Error Covariance

The general strategy to exhibit a bound for X, ., with arbitrary fixed
ko1 18 to define a suboptimal filter whose associated error covariance
must overbound X,,,,; we also arrange for the suboptimal filter to have
bounded error covariance.

In view of the complete detectability of [F, H), there is a matrix K, such
that |A(F — K,H’)| < 1. (This result is noted in Appendix C and also
explored in the problems.) Define a suboptimal, asymptotically stable filter by

Xivie = Fxipoy + Kz — H'Xipieoi] “.7n
with
xio/ko_, = 0 (4.8)
The error performance of this suboptimal filter is simply the covariance of
Xp+1 — X&i1/k, Which satisfies the linear equation

w
Xpsy — Xiom = (F— K.HY(x, — xi/k—l) + [G *Ke][vkjl

k

Thus
Zioiw = (F— KH)Ziu (F — KH'Y + KRK, + GOG'  (4.9)
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If we are comparing (4.7) with an optimal filter initialized by X, .,-,, the
initial uncertainty in x,, must be X, .-, and, in view of (4.8), we must have
s ko—1 = Ziyko-1- However, by the suboptimality of (4.7), k-1 = Zes
> 01in general. Because of the stability of (4.7), Eq. (4.9) has a bounded solu-
tion for any initial condition (the bound depends on the initial condition, but
this is of no concern). Thus the bound on X, ,,_, is obtained.

Note that if |A,(F)| < 1, we can take K, = 0, and X%, then agrees
with the signal state covariance P,,,. As we know, P,., > ;. 4, and the
state covariance is bounded by virtue of the asymptotic stability of the signal
process model.

Use of Zero Initial Covariance

Suppose now that I, ., = 0. We shall show that X,.,, is increasing
with k. One of the key steps in the argument, as will be seen, is that if the same
Riccati equation is solved forward for two initial conditions, one greater
than the other, this “ordering property” is preserved at subsequent time
instants. (This simply says that if two filtering problems are considered which
are identical save that the initial state uncertainty is greater for one than the
other, then the associated errors in estimating the state at an arbitrary time
instant will be similarly ordered).

Consider the variance equation (4.1), with two initial conditions Z, ,_,
=0 and Z,,_,,_» = 0. We shall distinguish the two corresponding solu-
tions by Zis1/a,%,-1 @Nd Ty 1k x,—2. We shall show that

zk-é—l/k,kn—l S Zk+1/k,k¢7-2 (410)

for all k.
First observe that the result is trivial for £ = k, — 1. For then it reads
0= Eko/ko-l,ko—l < Eko/kg—l,kg—z (4-1 I)

The inequality follows because Z,,/z,-1,1,-2 15 @ covariance matrix, and is
accordingly nonnegative. What (4.10) implies is that the inequality (4.11)
propagates for all k forward in time. Figure 4.4-1 (see next page) depicts the
situation in a one-dimensional case, and may convince the reader of the
intuitive reasonableness of the result.

The proof of the result is straightforward on an inductive basis. We
have shown that (4.10) is true for k = k, — 1. Assume it is true for k ==
ko —1,...,i— 1. Then an “optimal version” of (4.9) yields

Tt ko2 = nlin [(F— KH)Z,_1)-2,4,-2(F — KH') + GQG' + KRK']

= (F — K*H')Zi_1jima,00-2(F — K*H') 4 GQG" + K*RK*’

(where K* is the minimizing K)
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A
Variance

Graph of

211, kg2 —> Graph of =

k+1/k, kg —1

¥ — - — r— Time

ko-1 ko-2 kg kgt! kg2 Kkgt3

Fig. 4.4-1 Propagation of “greater than” relation for error covariances.
(A smooth curve is drawn through the discrete points of the graph.)

> (F — K*H)Z,_ /i_2.%0-1(F — K*H') + GQG’ - K*RK*’
(by the inductive hypothesis)
= min [(F — KH')E s j-2,5-(F — KH') + GQG’ + KRK')

= E{/{—l,h—l
Now the underlying time-invariance of all quantities in the variance
matrix equation save the variance matrix itself implies that

zk+l/k.ko-—1 = zk/k—l,k.-—z
so that by (4.9), Ty 1/k k02 == Zsk-1.k0-2- SiCE k, is arbitrary, this means
that with zero initial condition, X, _; is monotone increasing. Because it is
. bounded above, as shown in the previous subsection, the limit (4.3) exists
when Z;,/x,-1 = 0. Moreover, the time-invariance shows that

zk+l/k,ko = zk—kﬁ-l/k—ko,o
so that

lim Zpii/mx, = BLIE Zi1p0 == z

Ko——oo

verifying (4.5) in case X;x,-1 = 0. Equation (4.4) follows by simply taking
limits in (4.1).

Asymptotic Stability of the Filter

Let us assume [F, GG,] is completely stabilizable. Asymptotic stability
can now be shown, with argument by contradiction. Suppose asymptotic
stability does not hold, and that (F — KH')'w = Aw for some A with |1| > 1
and some nonzero w. Then since, as may be checked,

$ = (F— KH"E(F - KH'Y + KRK' + GQG’ (4.12)
we have (with a superscript asterisk denoting complex conjugation)
(1 —[AP)o*to = 0*KRK'®w + 0'*GG,G G'w
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The right side is clearly nonnegative, while the left side is nonpositive. There-
fore both sides are zero, so that K'w =0 and G|G'w =0. But K'o =0
forces F'w = Aw, and this combined with G1G’w = 0 implies lack of complete
stabilizability.

Nonzero Initial Covariances

Our aim now is to demonstrate that the limits (4.3) and (4.5) hold for an
arbitrary nonnegative symmetric Z,,-,- The arguments are somewhat
technical and might be omitted at a first reading. The reader should, however,
recognize that the result is considered to be of major importance.

A transition matrix bound. Let us rewrite the variance equation (4.1) as
2k+1/k = [F - KkH,]Zk/k—l[F - KkH], + KkRKI'e + GQG’ (4-13)
Let ¥, , be the transition matrix associated with F — K, H’, i.e.,
‘Pk,l = [F — K, _H'][F — Kk-—ZH,] o [F— KH']
Then it easily follows that
Zeie-1 = i w.Zroko—1 Yk ks + Nonnegative definite terms
2 \Pk,kozkn/ko‘l ;:,ko
Recall that T, ,_, is bounded for all k for any fixed initial value Z; ;-
Take Zi,x,_1 = pI for some positive p. It follows that p¥; . ¥, . and
therefore ¥, ,, is bounded for all k.
Note that ¥, ;, depending on K, depends on X, ,-;- So we have not
proved for arbitrary T, k-1, but only for Z, -, of the form p7, that the

associated ¥, ,, is bounded. (It is however possible to extend the argument
above to the case of arbitrary nonsingular X;,/x,-1)-

Proof of a limited convergence result. Using the steady-state variance
equation (4.12) and the “transient” variance equation (4.1), one can establish

Tiiik — 2= (F— KH'XZep-1— INF — K H')
(calculations are requested in the problems).
Now suppose Z x,-1 = pI for some p, we have
Zik-1 — & =(F — KH' Y (o /e0-1 — )Y ke
with ¥, ,, bounded for all k. Letting k — oo shows that Z,;_, — Z, since

|A(F — KH')] < 1. Convergence will in fact occur essentially at a rate
determined by the magnitude of the maximum eigenvalue of F — KH.

1 Zie-1 — 2l = O(max | A(F — KH")[*™*)

Convergence for arbitrary &, 1, 1. Let I, .-, be an arbitrary nonnega-
tive definite symmetric matrix. Choose p such that pf > Z, ,-.. The solu-
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tion of the variance equation (4.1) initialized by pI overbounds the solution
of (4.1} initialized by X, .., for, as argued earlier, inequalities in the initial
condition propagate. The solution of (4.1) initialized by the zero matrix
likewise underbounds the solution initialized by Z,,;,-.. The underbounding
and overbounding solutions both tend to £, whence the solution initialized by
X, k,—1 Must have this property. Thus (4.3) holds. Equation (4.5) follows by
using the underlying time invariance, just as for the case when X ,,,_, = 0.

Necessity for Complete Detectability and Stabilizability

The question arises as to whether complete detectability is needed to
ensure the existence of £. We shall only argue heuristically. Suppose there is
a mode that is not observed and is not asymptotically stable, yet is excited by
the input or via a nonzero random initial condition. Since it is not observed,
the best estimate of it is simply zero, and the error variance will be the
variance of the mode. Since it is excited and not asymptotically stable, the
variance will be unbounded and a steady-state value, therefore, cannot exist.
In other words, complete detectability of all modes excited by the input or
with a nonzero random initial condition is necessary for the existence of .

A more complicated argument can be used to conclude that if £ exists
with F — KH’ asymptotically stable, one must have complete stabilizability
of [F, GG,].

Meiscellaneous Points

Time-invariant filters. Because, in general, X, ,,, is only asymptotically
constant, the associated filter will be asymptotically time invariant; however,
if £y, k01 = 2, then X,/ = Z for all k and the filter will be time invariant.
Also if the initial time tends to minus infinity then, again under the condi-
tions noted earlier, Z,.,, = Z for all k.

Filter stability. Formally, we have only argued that the steady-state filter
is asymptotically stable. Actualily, the time-varying (but asymptotically time-
invariant) filter is also asymptotically stable, as would be imagined.

Other solutions of the steady-state equation. The steady-state equation
(4.4) is a nonlinear equation. Viewed in isolation, it can in general be expected
to have more than one solution. Only one, however, can be nonnegative
definite symmetric. For suppose that £ 5= £ is such a solution. Then with
Skt = 2, (4.4) yields T, = £ for all k, while (4.3) yields lim Zy0

= ¥ == £, which is a contradiction.

Limiting behaviour of L, ;. Since
Zik = Zap-r — Zupe— 1 HH Zppe H - Ry 'H'E iy
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it is clear that if ,,,_, approaches a limit, so must X, . Also since .,

= FX,.F" + GQG’, we see that if £, approaches a limit, so does T4, -

Therefore, conditions for lim Z,,, to exist are identical with those for
k—o0

lim Z,.,,, to exist.

k—+00

Suboptimal filter design via time-invariant filters. A number of practical
situations arise where the signal model is time-invariant, input and output
noises are stationary, and the signal model is started at time k£, with a known
initial state. For ease of implementation, a time-invariant filter may be used
rather than the optimal time-varying filter (which is asymptotically time
invariant). Serious loss of performance can occur in some situations (see

[5, 6]).

Time-varying filter stability. Results on the stability of time-varying
filters tend to be complex [7, 8]. They usually involve generalizations of the
detectability and stabilizability notions.

ExaMPLE 4.1. Let us suppose that F, G, H, Q, Rareall scalars f, g, 4, q, r. Let
Tx denote Zk/k— 1. Then
h%c firox
— f2 . — 2
Ok fl:ak hzo + jl+gq hzo, +r+gq
Suppose A = 0. Then 0, = f26, + g2q,and if | f| > 1, convergence cannot

hold if either gg 7= 0 or g, 7= 0. Of course, h = Q0 and | /| > 1 corresponds to
lack of complete detectability. On the other hand, with & 5= 0,

firoy [ _

o, +r R+ (rlog) = k2
for all o, > 0. Thus &,y < (f2r/h?) + g2q for all o, > 0; ie., for an
arbitrary o, > 0, 0., will be bounded for all k. By choosing particular values
of f, g, etc., and taking g, = 0, we can verify the monotone nature of oy.
(Actually, clever algebra will verify it for arbitrary f, g, etc.) The limit G
satisfies

- f¥o 2
9 =hE +r T &'

If g % 0, this has two solutions, one only being nonnegative definite, as
follows:

(r—f"r)jL\/(r—fzr)2 g%q

o= 4 "2

The feedback gain k = fGh(h*G + r)~! and then
f—kh = fr(h*G + r)"!

The formula for  can be used to show | f — kh| < 1. If g =0and g, =0,
then o; = 0 for all j, whence & = & = 0. Thus f — kh is stable precisely
when (f, g) is stabilizable, ie., | f| < 1.



Main Points of the Section

Under assumptions of complete detectability and stabilizability, the
filter will be asymptotically time invariant and asymptotically stable for
arbitrary initial error covariance. In case the initial time is —oo, requiring
the signal model to be asymptotically stable, the filter is time invariant and
asymptotically stable.

Problem 4.1. Complete detectability is equivalent to any unobservable state
being asymptotically stable. Show that if [F, H]is completely detectable, there exists
K such that |A(F — KH")| < 1 for all i. (Use the following two properties as-
sociated with the observability notion. The pair [F, H] is completely observable if
and only if there exists a K such that an arbitrary characteristic polynomial of
F — KH'’ can be obtained. If [F, H] is not completely observable, there exists a
coordinate basis in which

F=|:F“ Oj H' =[H, 0]
F21 F22

with [Fy,, H,] completely observable.)

Problem 4.2. Consider the case of scalar F, G, H, O, R, and X,/ in (4.1).
Take G = H = Q = R = 1 and F = a and verify that X,.,x approaches a limit
that is the positive solutionof 62 + (1 — a?)o — 1 = 0. Verify that | F — KH'| < 1.

Problem 4.3. Consider xx,; = @Xx, Zr = Xx + Uk, E[gv)] = 0y, with x;
scalar. Show that if |a] < 1, arbitrary positive Xy, causes Xy, to approach s,
but that this is not so if |a| > 1.

Problem 4.4. (Null space of ¥). For the system x,,; = Fx; + Gwy with w;
zero mean, gaussian and with E[w,wj] = Qd,;, we have noted the evolution of
P, = E[xyx,] when E[x,] = 0 according to the equation Py,; = FPF' + GQG'.
Observe that the evolution of the quantity E(a’xy)? for an arbitrary row vector g can
then be obtained readily from the P,. Now suppose P, = 0 and that there are un-
reachable states. Therefore there are costates a = 0 such that a’FiIGGy = 0 for all i.
Show that (1) Z;.,/,a = 0 for all k, through use of the variance equation; (2) Pxa
= 0; (3) Pra = 0 for all k implies on physical grounds that X, ,za = 0 for all k;
and (4) £a = 0if and only if @’ F'GG, for all i, so that the set of costates orthogonal
to the reachable states coincides with the nullspace of £.

Problem 4.5. Establish Eq. (4.14). The steady-state variance equation may be
written as & = (F — KH)EF’ 4 GQG’, and the transient equation as Zy.1x =
FX,_(F— KH’) + GQG’. By subtraction, show that

Tk — 2 = (F— KH)Ewe-1 — INF — K H'Y
+ KH'Zyu-1(F — K H'Y — (F— KH')ZHKj,
Substitute expressions involving the error variance, H and R for K and K in the
last two terms, and show that together they come to zero.

Problem 4.6. Suppose that conditions are fulfilled guaranteeing the existence
of £, that R is nonsingular, and that F — KH’ is known to be asymptotically stable.

84
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Show that [F, GG,] must be completely stabilizable. [Assume there exists a scalar
A with nonnegative real part and a nonzero vector g such that ¢’F = Ag” and ¢'GG,
= 0. With the aid of the result of Problem 4.4, show that ¢’K = 0 and deduce a
contradiction].

Problem 4.7. (Stability Improvement Property of the Filter). Since the closer
to the origin the eigenvalues of a system matrix are, the greater is the degree of
stability of a system, |[ITA,(F)| = |det F| is a rough measure of the degree of sta-
bility of xx,; = Fx,. Show that when the optimal F — KH’ is guaranteed to be

asymptotically stable, [det (F — KH")| < |det F|. (It may be helpful to use the facts
that

det {1 + BA] = det{I + AB] and det[l + CD] = det[/ + D'/2CD!/?]
if D=D">0).

4.5 FREQUENCY DOMAIN FORMULAS

In this section, our aim is to relate the time-invariant optimal filter to
the signal process model via a frequency domain formula.

Relation of the Filter and Signal Process Model

We recall that the signal process model is

Xeer = Fxi 4 Gw, Elww)] = Q4 (5.1
Vi =H'x, + v, E[v,v]] = RS, (5.2)

while the optimal filter is
v = (F— KH)R 01 + Kz (5.3)

+ where
K =FLH(H'EH + R)™! (5.4)
and

£=F[E—~ZHHZIH+ R 'HEIF' + GQG’ (5.5)

Of course, we are implicitly assuming existence of the time-invariant filter
and of the inverse of H'ZH + R. Sufficient conditions for inverse existence
are nonsingularity of R, or nonsingularity of £ with H possessing full rank.

We shall derive the following formula and then comment on its
significance.

[+ H'(zI — F)'K][R + H'EH][I + K'(z"'I — F')"'H]
=R+ H'(zI — F)'\GQG'(z'1 — F')"'H (5.6)
To prove the formula, observe first that for all z one has
L —FEF = (zI — F)£(z"' 1 — F') + FE(z 1 — F') + (2 — F)LF'
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Using this identity, one has from (5.5)
(z1 — F)£(z"'1 — F') + F¥(z ' — F') + (21 — F)XF’
+ FEH(H'EH + R)"'H'EF' = GQG'
Next, premultiply by H'(zI — F)~' and postmultiply by (z"'/ — F')"'H.
There results
H'IH + H'(zI — F) 'FEH + H'EF'(z'1 — F')'H
+ H'(zI — F)'FEHH'EH + R)'H'EF'(z7'I — F)"'H
= H'(zI — F)''GQG'(z"'] — F')y'H
Now use the formula for K [see (5.4)] to obtain
H'SH + H'(zl — F) 'K(H'EH + R) + (H'EH + RK'(z"\I — F'y 'H
4+ H'(zI — F) 'K(H'EH + R)K'(z'1 — F')"'H
= H'(zI — F)"'GQG'(z-'1 — F')"'H
Equation (5.6) is then immediate.
Now let us comment on the significance of (5.6).

1. H'(zf — F)"'G = W ,(z) is the transfer function matrix of the signal
process model; the quantity R + H'(zI — F)"'GQG'(z"'I — F')"'H,
which can be written as R + W ,(z2)QW . (z™!), was earlier shown to be
the power spectrum of the output process {z,}, at least when this pro-
cess is stationary, or when |A,(F)| < 1 for all i. Defining the transfer
function W(z) to be H'(zI — F) 'K, (5.6) becomes

U+ Wi@IR +~ HEZHW + Wiz )] = R+ W,(z)QW,(z7")
5.7

2. Equations (5.6) and (5.7) in essence define a spectral factorization of
the power spectral density of {z,}. A spectral factorization of a power
spectrum matrix ®(z) is a factorizing of ®(z) into the form

O(z) = W()W'(z ) (5.8)
The matrix [I + H'(zI — F)"'K](H'ETH + R)"* serves the role of W(z)
in (5.6).
3. If the Kalman filter is asymptotically stable, the quantity
I+ H'(zI— F) 'K
is minimum phase, in the sense that det [/ -+ H'(zI — F)™'K}is never
zero for | z| > 1.* To see this, observe that
[+ H(— F)'K)"' =1— H'(zI — F — KH')" 'K
Zeros of det [I + H'(zI — F) 'K] therefore correspond to eigenvalues

*Most definitions of minimum phase also require det [/ + H'(zI — F)~1K]to beanaly-
ticin |z| = 1. With [1,(F)[ < 1, this is assured.
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of F — KH’, which all lie inside | z] = 1 on account of the asymptotic
stability of the filter.

. In case the signal process model is also asymptotically stable, the

zeros and poles of det [/ + H'(zI — F) 'K] lie inside | z| < 1. Now
there are procedures known for factoring a prescribed power spectrum
matrix ®(z) as depicted in the form of (5.8), with det W(z) possessing
all its zeros and polesin|z| < | and with W(eo) finite and nonsingular
[9-11]. Further, the resulting W(z) is known to be uniquely determined
to within right multiplication by an arbitrary orthogonal matrix.
Consequently, essentially classical procedures allow the determination
of the transfer function matrix

(I + H'(zI — F)"'K][R + H'ZH]*
to within right multiplication by an arbitrary orthogonal matrix, in
case |, (F)| < 1. Now, knowing
W(z)=[I+ H'(zI — F)"'K|[R+ H'LH]'"?
to within an arbitrary orthogonal matrix, it is easy, by setting z
= oo, to identify [R + H'ZH]'/? as [W(oo)W'(c0)]'/? and, thence,
I+ H'(zI — F) 'K. Finally, knowing this transfer function matrix

together with F and H, and assuming [F, H] is completely observ-
able, K can be found uniquely.

. Think of the filter as a signal estimator, rather than a state estimator.

The filter output thus becomes
j)k/k—l = Hlxk/k—l (5-9)

and the transfer function matrix of the optimal filter, regarded as
having input {z,}, is

Wiz)=H'(zI - F— KH')"'K (5.10)
It can be shown algebraically that
Wi z) = WU + W(2)]™! (5.11)

This can also be seen by block diagram manipulation (see Fig. 4.5-1
on next page).

Main Points of the Section

The filter transfer function is related to the signal power spectrum. In
particular,

[+ We@IR + HEHNI + Wi(z™")]

where

=R+ H'(zI — F)"'GQG'(z"'] — F')"'H
Wi(z) = I+ H'(zI — F)"'K.

Problem 5.1. Show that
R+HEH={I—H'[zl — (F— KH'KIR{I - K'[z7'] — (F— KH")Y 1H}

+ H'lzl — (F — KHN"'GQG [z — (F — KH)YT'H
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+
——»—@——-» Wy (2) >
(a) ‘t

+ + )
%—@—A K -—»@—bj Delay > H -

- +T
|
F
(b}
+ ’
— K P>( 2 Delay — H |}
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(c) F—KH

Fig. 4.6-1 Three equivalent block diagram representations of Wr(z).
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CHAPTER 5

KALMAN FILTER PROPERTIES

5.1 INTRODUCTION

In this chapter, we shall explore some properties of the Kalman filter.
We shall begin our discussion in Sec. 5.2 by noting two different types of
estimators, the minimum variance or conditional mean estimator encountered
earlier and the linear minimum variance estimator. Although the latter
estimator has not been formally encountered hitherto, linear minimum
variance estimators have arisen in an indirect way since, in the gaussian case,
they happen to agree with conditional mean estimators. The reason for the
introduction of the linear minimum variance estimator is that it opens the
way to apply simple Euclidean geometry concepts such as orthogonality and
projection to estimation problems.

In Sec. 5.3, we introduce the concept of an innovations process. In rough
terms, given a measurement process {z,} the innovations process {Z,]} is such
that Z, consists of that part of z, containing new information not carried in
Zi_1s Zi—s, - . . . It turns out that the innovations process is white, and it is
this property which opens the way in Sec. 5.4 for a new demonstration of the
optimality of the Kalman filter as a conditional mean estimator in the gaus-
sian case, and a linear minimum variance estimator otherwise. Of course, in
the nongaussian case, there may well be nonlinear estimators which would
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outperform the Kalman filter. In the derivation, we also use a more general
signal model than that encountered hitherto, permitting correlation between
input and output noise, and the insertion of known inputs as well as the input
noise to the signal model.

In Sec. 5.5, we turn to the development of equations for the evolution
of the time-filtered estimate £,,, and the associated error covariance matrix.
Also in this section, we demonstrate a property of the Kalman filter with
classical communication systems overtones: it improves signal-to-noise
ratio!

Section 5.6 considers the question of testing an operating filter to check
its optimality. By and large, a filter is optimal if that quantity which should
be the innovations sequence is zero mean and white. It turns out that there
are simplifications in checking these conditions.

Many of the background ideas developed in this chapter, particularly
those developed in early sections, are relevant to problems other than Kalman
filtering, and their assimilation may well be of general benefit to the reader.

History

A historical survey of the development of Kalman filtering can be found
in [1]. As the title of [1] implies, the origins of Kalman filtering lie in the late
eighteenth century usage of least squares ideas by Gauss in the study of
planetary orbits [2). More recent major ideas bearing on the Kalman filter
are those of maximum likelihood estimation due to Fisher [3]; the stationary
filtering theory of Wiener [4] and Kolmogorov [5], with an emphasis on
linear minimum variance estimation; and in the case of [5], the innovations
idea. The use of a recursive approach in estimating constant parameters to
cope with new measurements essentially goes back to Gauss; however, the
idea of recursion when there is dynamic evolution of the quantity being
estimated, at the same time as more measurements become available, is much
more recent. (Reference [1] suggests that the recursive approach is due to
Follin [6].) The notion of using state-variable rather than impulse response
or transfer function descriptions of linear systems is very much associated
with the name of Kalman, although Swerling published in 1958 an internal
report and in 1959 a journal paper [7] which many consider contain in essence
the same method as that of Kalman’s famous 1960 paper [8]. However, there
is no doubt that subsequent work by Kalman, e.g., [9], through pursuing
such matters as stationary filters and stability, went substantially beyond
that of [7].

Kalman’s method in [8] for deriving the filter is based on the orthogo-
nality properties associated with linear minimum variance estimation, as
discussed later in this chapter. Kalman of course recognized that in the
guassian situation, the quantities computed by his recursive equations are a
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mean and covariance of a conditioned gaussian random variable, and thus
define recursively a conditional probability density.

Various other approaches to the derivation of the filter can be used,
e.g., one based on least squares theory with recursion included, as in {8], or
one based on conversion to a dual optimal control problem, as in [10]}.

One further approach is also worth mentioning, that of [11]. All con-
ventional formulations of the Kalman filter require full knowledge of the
signal model. In [11] it is shown that the Kalman filter gain, but not the
performance, can be determined using quantities appearing in the covariance
of the {z,} process. Knowledge of the signal model allows computation of
these quantities, but not vice versa, since there are actually an infinity of
signal models having the same covariance for the {z,} process. Thus, less
information is used to obtain the filter gain than normal. This will be explored
in a later chapter.

5.2 MINIMUM VARIANCE AND LINEAR MINIMUM
VARIANCE ESTIMATION; ORTHOGONALITY
AND PROJECTION

Let X and Y be jointly distributed random vectors. We have noted ear-
lier the significance of the quantity E[X| ¥ = y] as an estimate of the value
taken by X given that Y = y: this estimate has the property that

E(| X — E[X|Y=)lIM Y=y} < E{l X — Z|P| Y = y}
for any other estimate Z, and indeed also
E{| X — E[X| Y]I?} < E(| X — Z(1)|I*}
where now the expectation is over X and Y, and E[X| Y] and 2( Y) are both
functions of the random variable Y.

The functional dependence on Y of E[X] Y] will naturally depend on
the form of the joint probability density of X and Y and will not necessarily
be linear. From the computing point of view, however, a linear estimator,
possibly less accurate than the minimum variance estimator, may be helpful.
Therefore, one defines a linear estimator* of X given Y as an estimator of
the form AY + b, where A is a fixed matrix and b a fixed vector, and one
defines a linear minimum variance estimator as one in which A and b are
chosen to minimize the expected mean square error, i.e.,

EXX|Y]=AY 4+ b° 2.1
with
E[| X — A°Y — b} < E{]| X — AY — b||*} forall 4, b

*Strictly an affine estimator, as discussed later in the section. However, usage of the
phrase “linear estimator” is entrenched.
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Here, E*[X| Y], the linear minimum variance estimator, is not an expecta-
tion; the notation is, however, meant to suggest a parallel with the (possibly
nonlinear) minimum variance estimator E[X| Y].

Let us now explore some properties of the linear minimum variance
estimator. The more important properties are highlighted in theorem state-
ments.

The matrices A° and b° defining E*¥[ X | Y] can be found in terms of the first
and second order statistics (mean and covariance matrix) of the random
variable [X' Y’]. (Note the contrast with E[X| Y], the calculation of which
normally requires the whole joint probability density; obviously E*[X| Y]
may be much more convenient to obtain.) In fact, we have the following
results:

THEOREM 2.1. Let the random variable [X’ Y']’ have mean and covari-

ance
.. I,
) e 15 5]
m.Y Z}‘X Z.V)’
EXX|Y)=m, + Z 3 (Y —m,) (2.2)

If X, is singular, £,,%;.' is replaced by X}, + A, for any A with
Az,, = 0.

Proof: We make two preliminary observations. First for an arbitrary
vector random variable Z, one has

E[l| Z||*] = E[trace ZZ'] = trace cov (Z, Z) + trace {E[Z]E[Z']}
Second, the mean and covariance of X — AY — b are
m, — Am, — b T — AZ,, — X A 4 AZ A’
Tying these observations together yields
E{j| X — AY — b||*} = trace [Z,, — AL,, — Z,,4" + AL, A']
+lIm, — Am, — b
= trace ({4 — £,5;']L,[4" — £3'%,.])
+ trace (£, — £,%;'5,.)
+[Im, — Am, — b|*

All three terms are nonnegative. The second is independent of 4 and b,
while the first and third are made zero by taking A° =X _ %!, b° =
m, — Am,. This proves the claim of the theorem in case X' exists. We
shall omit proof of the case of £, singular.

Then

Other minimization properties of the linear minimum variance estimator.
The above argument (with removal of the trace operators) also shows that
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A® and b° serve to minimize the error covariance matrix

E{[X — AY — b[X — AY — B]'}.
(This is a nontrivial fact for the reason that a set of symmetric nonnegative
definite matrices need not necessarily have a minimum element.) Further, A°
and b° minimize E{[X — AY — b]' M[X — AY — b]} for any positive definite
M; this also may be shown by minor variation of the above argument.

Jointly gaussian X and Y. The linear minimum variance estimate is
familiar in the situation of jointly gaussian X and Y-

THEOREM 2.2 If X and Y are jointly gaussian, the minimum variance
and linear minimum variance estimators coincide.

The proof is a direct consequence of (2.2) and formulas of Chap. 2.

The linear minimum variance estimator is linear* in the following additional
sense: if E*[X | Y]isalinear minimum variance estimate of X, then FE*[X'| Y]
+ e is a linear minimum variance estimator of FX -+ e, where Fand e are a
fixed matrix and vector of appropriate dimensions, respectively. (This is
easily seen by direct calculation.) This form of linearity is also possessed
incidentally by the minimum variance estimator E[X | Y]; in the latter instance,
it is clearly a consequence of the well-known property of linearity of the
expectation operator.

Property of being unbiased. An important property often sought in
estimators is lack of bias:

THEOREM 2.3. The linear minimum variance estimator is unbiased, i.e.,
E{X - E*¥X|Y]}=0 2.3)

The proof is immediate form (2.2). Being another property held in com-
mon with the estimator E[X| Y], this property provides further heuristic
justification for use of the notation E*[X| Y].

Uncorrelated conditioning quantities. The next property shows how a
linear minimum variance estimator can be split up when the conditioning
quantities are uncorrelated.

THEOREM 2.4. Suppose that X, Y, ..., Y, are jointly distributed, with
Y,,..., Y, mutually uncorrelated, i.e., £,, = 0 for i 5« j. Then
EXX|Y,Y,,...,Y.]=EXX|Y,]+ .-+ + E¥XX|Y:] — (k — I)m,
2.4)

Proof: Think of W=][Y;, Y, --- Y.’ as a random vector and
apply the main formula (2.2). Thus

*More correctly, we could say that taking linear minimum variance estimates and
applying an affine transformation are commutative operations.
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-
Y, —m,

E*[X‘ W] =m, + [nyn Exy: U xyx] dlag[ yly-]

Y

while
E*[Xl Yi] = mx + Exynz;l)lﬂ(yl - my;)
Equation (2.4) is immediate.

Dispensing with the means. If X and Y are jointly distributed with non-
zero means, X = X — m, and ¥ = Y — m, are also jointly distributed, with
the same covariance, but with zero mean. One has

EXX|¥]=1%,%,'¥
Compare this formula with that for E*[X | Y]. It is evident that thereisno loss
of generality in working with zero mean quantities in the following sense.
One can subtract off the a priori mean value of all measured variables from
the measurement, estimate the unknown variable less its mean with the sim-

pler formula, and then recover an estimate of the unknown variable by addi-
tion of its a priori mean.

Change of conditioning variable. Let X and Y be jointly distributed, and
let Z = MY + n for some specified nonsingular matrix M and vector a.
Then E*[X|Y]= E*[X|Z]; put another way, invertible linear (or better,
affine) transformations of the conditioning variable leave the estimate un-
altered. One can verify this by direct calculation, but the reader should be
able to see intuitively that this is so in essence because any linear estimator
of the form AY + b is also of the form CZ 4- 4, and conversely.

Orthogonality principle. With X and Y jointly distributed, X and Y are
termed orthogonal if E[XY'] = 0. We then have the following most impor-
tant result.

THEOREM 2.5 (Projection Theorem). Let X, Y be jointly distributed.
Then the error X — E*[X| Y] associated with a linear minimum variance
estimate of X by Y is orthogonal to Y:

E{[X — EXMX|Y]]Y'} =0 2.5)

Conversely, if for some 4 and b one has E{[X — AY — b]Y'} = 0 and
E[X — AY — b] = 0, then EX[X|Y]= AY + b.

Proof: Using the basic formula (2.2), we have
E{[X — EXMX|YNY'} = E{[X — m, — 2,5 (Y — m,)]Y'}
= E[XY']— mE[Y'] — L2, E[YY']
+ I, mE[Y’]
=0
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Suppose that AY + b # A°Y -+ b° = E*[X| Y]is such that E{[X — AY
— b]Y'} = 0. Then subtraction of this equation from (2.5) yields
E{[A — ADY + (b —b%]Y'}=0o0r

(A — AT, + (4 — AYmm, + (b — B, = 0

With E[X — AY —b]=0 and E[X — A°Y — b°] =0, one has
(A — A%m, + (b — b°) = 0. Therefore (4 — A%)X, = 0. The result
follows by Theorem 2.1.

Theorem 2.5 is often known as the projection theorem. Why is this so?
Consider first the simpler case where X, Y, are scalar, zero mean, random
variables. The unbiased property of the linear minimum variance estimate
implies that EX[X|Y,,Y,,..., Y.} is of the form Za}Y,. In analogy with
geometrical reasoning, let us say that the linear subspace spanned by a set of
zero mean random variables Y, is the set of random variables Ta,Y, where o,
ranges over the set of real numbers. Let us also say that the projection of a
random variable X on the subspace generated by the Y, is the linear combination
TaXY, such that the error, X — Zal}Y,, is orthogonal to the subspace, i.e.,

E{[X — Za}Y Z,Y ]} = O Ya,

In view of our statement of the orthogonality principle, the projection of X
on the subspace generated by the Y, is precisely EX[X|Y,,Y,, ..., Y,].

More generally, consider the situation postulated in the theorem state-
ment. The space one projects onto is spanned by a vector Y and all constant
vectors, i.e., the space is the collection {4 Y + b} for all A4, b. The projection
of X onto this subspace is the particular element of the subspace A°Y + b°
such that X — (4°Y + b°) is orthogonal to the subspace, i.e.,

E{fX — A°Y — bYY'4A" + b} =0 VA, b
Equivalently,
E{[X — A°Y - b°]Y'} =0 E[X — A°Y —b°1=0

According to the theorem, A°Y 4 b° = E*[X| Y]. See Fig. 5.2-1 for an
illustration.

There is great practical and theoretical utility in this idea. The practical
utility rests in the fact that the equations expressing orthogonality can often
be taken as a starting point for obtaining a linear minimum variance estimate.
The theoretical utility lies in the fact that there is some direction offered as
to how to proceed with estimation involving infinite-dimensional quantities,
e.g., continuous-time random processes. By and large, as the advanced
reader will know, projections coupled with minimum norm ideas are natu-
rally viewed as taking place in a Hilbert space; it turns out that estimation
problems that may involve continuous-time random processes can be struc-
tured as projection-in-Hilbert-space problems.
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X-€* XY}
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by Y and all
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Fig. 5.2-1 Illustration of projection theorem. The error is orthogonal to
the measurements.

For the purposes of this book, the reader need not, however, be con-
cerned with the Hilbert space overtones of the projection theorem. All that
is important are the notions of orthogonality, spanning of a subspace by
random variables, and projection onto a subspace.

Conditional minimum variance or not? Recall that the estimator E{X| Y]
evaluated at Y = y is a conditional minimum variance estimate, in the sense
that

E{|| X — E[X|Y = y] |P|Y = y}

is minimized. Also, since E[|| X — E[X| Y]{|*] is minimized (with the expec-
tation over X and Y), E[X]| Y] is a minimum variance estimator. Now
E*(X| Y] has a property which parallels the second property of E[X] Y],
since it is a minimum variance estimator within a certain class. One might
ask whether there is a parallel for E¥[X| Y] evaluated at ¥ = y of the condi-
tional minimum variance property. The answer is, in general, no. One would
be seeking the property that 4° and b° should minimize

[ Tiix = A0y — B IPpx]

irrespective of y. It is immediately evident that the existence of such 4° and
b° (working for all y) cannot be guaranteed. In fact, it is necessary and suffi-
cient for the existence of 4° and b° that E[X|Y] = CY + d for some C, d,
or equivalently E*[X| Y] = E[X| Y]. (See Prob. 2.5.)

ExaMPLE 2.1. Let Y = X + N, where X and N are independent, zero mean,
scalar random variables. We evaluate E*[X| Y]. To apply the formula,

EXX|Y]=ZX,Z,'Y
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observe that E[XY] = E{X? + XN)= E[X?*and E[Y?] = E[X?] + E[N2].
Therefore,
E[Xx7?]

E*UXIY]= prar 1 BTV

Y

1
ExaMPLE 2.2, Let x(¢) be a zero mean, random process, let X = J x(8)dt, and
0

let Y =[x(0) x(}) x(1)]. We seek E*[X| Y], or an approximation to the
integral in terms of the value of the integrand at particular points. Obviously,
some second order statistics will be required.

From the orthogonality principle, for the optimal aq, a,,2, and a; such
that E*[X| Y] = aox(0) + a1,2x(3) + a;x(1), we have

1
E[ { L x(1)dt — [aox(0) + ar/2x(3) + alx(l)]} (O x(}) x(l)}] =0

This yields three separate equations:

E { J‘OI x(t)dt x(O)} = aoE[x*(0)] + a,,2E[x(0)x($)] + a, E[x(0)x(1)]
E {J.OI x()dt x({)} = aoE[x($)x(0)] + ay,2E[x*(3)] + a, E[x($)x(1)}

E { j x()dt x(l)} = aoE(1)x(O)] + a12Elx(Dx() + ayEx(1))

The a; follow by solving these equations. Knowledge of E[x(1)x(s)} for all ¢
and s would be sufficient, but not actually necessary, to obtain the constants.

ExAaMPLE 2.3. Let Y = H'X + V, where X,V are independent random
variables with means m,, m, and covariances Z,,, X,,. We compute E*[X| Y].
Observe that Z,, = E[XY'] — m.m, = X, H, while £,, = H'Z, H + %,,.
Accordingly,
EXX|Yl=m, + ZH(HZ,,H + Z,,)" (Y — m,)
with m, = H’m, + m,. The associated mean square error is
trace (Z.x — Z,,5,'%,,) = trace [Z,, — L. H(H'E,.,H + R)™'H'Z,,]

A common classical problem has no information available about X at all.
This is taken up in Prob. 2.7.

Ruling out affine estimators. Throughout this section, the estimators con-
sidered have really been affine, i.e., of the form ¥ — AY + b for some 4, b
rather than linear, i.e., of the form Y — A4Y. We might ask what happens
when strictly linear estimators are considered. In case all quantities have
zero mean, there is no alteration to the results. If this is not the case, there is
a difference. Problem 2.6 explores this issue. Crucial points are that the
_ estimator is generally biased, but a projection theorem still holds.

Orthogonality and nonlinear estimates. If X and Y are jointly distributed,
it turns out that one can characterize E[X| Y] as that function of ¥ such that
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the estimation error is orthogonal to all functions of Y. We shall not use this
fact, however.

Main Points of the Section

The linear minimum variance estimator is given in terms of first and
second order statistics as

E*[XI Y]=m, + Exyz;yl(Y— m.v)

with replacement of the inverse by a pseudo-inverse if necessary. For jointly
gaussian X and Y, E*¥[X| Y] = E{X| Y]. The linear minimum variance esti-
mator of FX + e is FE¥[X| Y]+ e, and if Y = MZ 4 n for M invertible,
then EX[X| Y] = E*[X|Z].

The linear minimum variance estimator is unbiased, and the error
X — E*[X| Y] is orthogonal to the subspace spanned by Y and all constant
vectors (projection theorem or orthogonality principle).

Incase Y,,Y,,..., Y, are uncorrelated, one has the important formula

EMX|Y,...,Y,] = ,2, EX(X|Y)) — (k — 1)m,

Strictly linear, nonaffine, minimum variance estimators can be defined and
they agree with the usual linear estimator when all quantities have zero mean.
In general, they yield a biased estimate. A form of the projection theorem
still holds.

Problem 2.1. Let X and Y be jointly distributed random variables with known
mean and covariance. Suppose Y is used to estimate X via E[X]| Y] For what
probability density on X and Y will the mean square error be grearest, and why?

Problem 2.2. Suppose {x,} is a zero mean, scalar random sequence with known
stationary covariance E{x.x;] = R,_;,. What is the best one-step predictor
E*[x;|x,-41? Explain how an n-step predictor E*[x.,_; | xx_;] could be found.

Problem 2.3. Suppose that x; + X, a;x;., = wy defines a random sequence
=1

{xi} in terms of a white, zero mean sequence {w,}. Evaluate E*[x; | xi_,, . .., Xx_1]
and E*[xi | Xkon - -0 Xeoa)

Problem 2.4. Suppose {x;} is a zero mean, scalar random sequence with
known stationary covariance E[x.x;} = R,_;. Find the best interpolator
E*oe | xx_1y Xee1]

Problem 2.5. Show that E*[X| Y] evaluated at ¥ = yis a conditional mini-
mum variance estimate for all y if and only if E[X]| Y] = CY + d for some C, d,
and show that this implies E*[X| Y] = E[X] Y]. (Evaluate the conditional error
variance as a function of 49 b° and first and second moments of pyy(x|y). Show
that it is minimized when A% 4 % = E[X| Y = y])
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Problem 2.6. Let X, Y be jointly distributed, and let E**[X]| Y] = A°Y be
such that Ex Il X — A°Y|12] < Evy[j| X — AY||?] for all fixed 4 and some fixed
A°.

1. Show that second order moments E{xy'] = R,,, E[yy'] = R,, determine A°
as R, R;,': compute the associated mean square error.

. Show that the estimator may be biased.

. Showthat E{[X ~ E**[X]| Y]]V} =Oandthatif E{{X — AY]Y']} = Othen
E**[X|Y] - AY.

w

Problem 2.7. (Classical Least Squares). Consider the situation of Example
2.3 in which, for convenience, m, =0, m, = 0, and X,, = lim pl. (This corres-

oo
ponds to having no a priori information about X.) Suppose that HH" is nonsingular
(Y has dimension at least as great as X). Show that

EXYX|YI=(HZ 'H)Y 'HL;'Y
with mean square errortr (HX;,'H'y 1. [The formula A(BA + I)™! = (AB + I)"'4
may be found useful in studying the behaviour of pH(pH'H + X,)"!' =
PHEI WPpH HL.' -~ I)!as p-— cc.] Show that if H is square and invertible, this

reduces to the intuitively obvious formula E*[X| Y] = (H’)"'Y. What happens if
HH’ is singular?

5.3 THE INNOVATIONS SEQUENCE

We have already made mention of the innovations sequence, in the
following terms: Suppose {z,} is a sequence of gaussian random variables,
possibly vectors. Then the innovations process {Z,} is such that Z, consists of
that part of z, containing new information not carried in z,_,, Z;_5, . . . . What
exactly does this mean?

To fix ideas, suppose {z,} is defined for k >> 0 and the mean and covari-
ance of the process are known. Knowing z, but not z;, we would estimate
the value of z, by £{z,|z,]. The new information contained in z, is therefore

I, =12, — Elz,]z]
Likewise, knowing z, and z,, we could estimate z, by E[z,]z,, z,], and the
new information contained in z, becomes
2, =2, — Elz,]2,, 2]
More generally,
Zy =2 — Elzglzoo 2000y 2]l = 2 — Elzi 2420 (ERY)

(Here, Z,_, denotes the set z4, z,, . . ., Z,_,. Notethat Z, _,isnotthatrandom
variable taking particular value z,_,.) We shall also make the reasonable
definition

Zo=zp — Elz,] (3.2)



Sec. 5.3 THE INNOVATIONS SEQUENCE 101

These definitions ensure that E[Z,} = 0 for all k. (Why?) What of the covari-
ance of the process {Z,}? The definition of Z, as the new information
contained in z, given the values of z,, ..., z,_, suggests that Z, must be
independent of z,,...,z,_, and therefore of Z for I <k, since 2, is
determined by z, . .., z,_,. In other words, this suggests that E[Z,Z]] = 0,
or that the Z, process is white. Let us verify this claim, by means of the
following two observations.

1. 2, is a linear function of z4,z,,...,z, This follows because the
gaussian property of the sequence {z,} implies that E[z,|zo, 1 - - . »
Z,_,] is a linear combination of z,, z,, . . ., Zx_;.

2. By the orthogonality principle, Z, is orthogonal to z,, z,, . . . , z,_, and
all linear combinations of these random variables. This is immediate
from the definition of Z, and the orthogonality principle. (Recall that
for jointly gaussian X and Y, E[X| Y] = E*[X]| Y].)

~ af

These two observations show that E[Z,Z]] = O for k > [ and then also
k<l

Let us now study a number of other properties of the innovations
process.

1. Observation 1 illustrates the fact that the sequence {Z,} can be obtained
from {z,} by a causal linear operation; i.e., one can conceive of a black
box with input the sequence {z,} and output the sequence {Z,}, operat-
ing in real time and processing the {z;} linearly. Strictly, the linearity,
as opposed to affine, aspect of the processing is only valid in case
{z,} is a zero mean sequence. This linearity property also implies that
{Z,} inherits the gaussian property of {z,}.

2. Our next point is that the causal linear operation producing {Z,} from
{24} has a causal linear inverse, i.e., for each k, z, is constructible from
z; for | << k by affine transformations which are linear in case all
variables have zero mean. One can argue by induction; observe first
that z, = Z, + E[z,], and suppose that for i=1,2,...,k— 1, z
is expressible as an affine combination of %, Z,,...,Z,. Now
z, = 2, + E[z,|Z,_,] and E[z,| Z,_,] is expressible as an affine com-
bination of z,, z;, ..., 2,., and, by the inductive hypothesis, as an
affine combination of Z,,Z,, ..., Z,_,. Hence z, is expressible as an
affine combination of Z,, Z,, . .., Z,.

3. Points 1 and 2 together establish that conditioning on the variables
Zgy Zys -+« 5 Zx—y 1S equivalent to conditioning on Z, Z,,...,Z,_,.In
particular, we have E[z, | Z,_,] = E[z.|Z,_,]and an alternative defini-
tion for the innovations:

2y =2z, — E[zklzk—l] (3.3)

More generally, for any vector w jointly distributed with {z,},
E[w|Z,_,) = Elw|Z,.,]. Because the Z, are independent random
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variables, conditioning on Z,_, can be more helpful than conditioning
onZ,_,.

. Following on from point 3, suppose {x,} and {z,} are two jointly

gaussian, zero mean, random processes and that the variables
Zos Zy, - - - 5 Zx-; are used to estimate x, via E[x, |Z,_,]. Then one has

E[x | Z¢ ] = E[Xklzk—al
= El[x,|Z)) + E[x: |2} + -+ + E[x, |2 1]
Here, we have used the important result of Theorem 2.4 of the previ-
ous section. (In case the processes are not zero mean, minor adjust-

ment is of course needed.) The device just noted will be used in the
next section to obtain a derivation of the Kalman filter.

. There is an interesting sidelight shed on a prediction problem by the

innovations idea. One can think of the one-step predictor as being
a system ¢ with input the sequence {z,} and output the sequence
{Zk/k-1}, Where z,,_, = E[z,|Z,_,]. Then, drawing the predictor as
a unity feedback system, with the forward part &, it follows from the
innovation sequence definition that F is driven by the innovations as
illustrated in Fig. 5.3-1. The block § can in fact serve to define both
the linear system generating the {Z,} sequence from the {z,} sequence
and the {z,} sequence from the {Z,} sequence. For {Z,} is the output of
a system with unity forward gain and negative feedback ¥, driven
by {z,}, while {z,} is the output of a system with forward part ¥ paral-
leled with unity gain forward part and driven by {Z,}. (Check this!)

Let us now sum up the major points.

THEOREM 3.1 Let {z,] defined for kK >> 0 be a gaussian random sequence.
Define Z, = z, — E[z,] and 2, = z;, — E[z,|Z,-,]. Then

1.
2.

3.

{Z.} is zero mean and white.
Z, is an affine combination of z; for / < k and z, an affine combina-
tion of Z, for / < k. The combinations are linear if E[z,] = 0 for all k.
With w and {z,} jointly distributed,
- k .
Elw|Z,] = Elw|Z,) = ,;, Elw|z]

provided E{w] = 0.

. With a one-step predictor arranged as a unity feedback system as in

Fig. 5.3-1, the forward part is driven by the innovations.

e (A

\ <'Z": L7

jL-!-/—\ .,._—’:
e U e
-
-\

Fig. 5.3-1  One step predictor ® drawn as unity feedback system.
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Further properties of the innovations sequence will be taken up in later
sections.

Pseudo-innovations

Hitherto, we have assumed that {z,} is a gaussian process. What can be
said if this is not the case? One route we can take is to retain the definition
of the innovations process and determine the properties [now normally
excluding the linear relationship between {Z,} and {z,}] which are retained.
Martingale theory has proved a most helpful tool for this purpose [12-18].
Another route, aimed at preserving the linear relationship, is to define a
pseudo-innovations process by

5=z, — E¥Mzi | Z, 1] (3.49)

Assuming arbitrary mean for {z.}, it still follows that {Z,} is zero mean and
that E[Z,Z]] = O for k = [/; obviously Z, depends linearly (or in an affine
way) on zy, Z,, . . . , Z,-;- Moreover it is still true that:

I. Z, can be obtained from z, for / < k by a causal affine (linear in the
Zero mean case) operation.

2. z, can be obtained from Z, for I <{ k by a causal affine or linear opera-
tion.

3.5, =2, — E*z, | Z,. ) N

4. Conditioning on Z,_, is equivalent to conditioning on Z,_, in any
linear minimum variance estimator.

5. The one-step predictor idea (point 4 of Theorem 3.1) is valid.

Initial Time in the Infinitely Remote Past

Change of the initial time instant from k = 0 to k& = k, for arbitrary
finite k, is trivial to implement. What happens, though, if k; — —oo ?_The
situation is a lot more delicate. We require that § in Fig. 5.3-1 can be
defined, and in order to eliminate the dependence on initial conditions, we
require that the closed loop be asymptotically stable. We also require E{z%} to
be finite. In case, for example, {z,} is the output of an asymptotically stable,
linear, finite-dimensional system with independent input and output noise,
all these requirements are fulfilled as noted in the last chapter.

The causal dependence of {z,} on {Z,} can be expressed as

2y =4 + 122‘ iy (3.5)
and that of {Z,} on {z,} by

Zp szt g b ki (3.6)
where zero mean provesses are assumed. In the stationary case, the o, and
b, , are independent of <.
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To discuss (3.5) and (3.6) in depth here would take us too far afield. Let
us however make several remarks. For simplicity, we confine attention to the
stationary case.

1. In order that finite E[Z}] should produce finite E[z}], one needs

> a? < oo. This condition ensures that values of Z,_, well before
i>1

time k are given little weighting in (3.5); i.e., there is a forgetting of
initial conditions.

2. Likewise, the condition ] b? < oo causes forgetting of old values

i21
of z in obtaining Z.
3. The quantities a, and b, are, naturally, related. In fact, it is easily seen

that
1 a, a, a, 1 b, b, b, 1 00 “
0 1 a a - -{|O 1 b, b, - - 010 .
0 0 1 aq 0 0 1 b ={0 0 1
(Multiply both sides by the column vector [z, 2z,_, zx_., ---]")

4. If the quantities a, are known, it is very easy to obtain a formula for
E[z,1Z,_4) for all N > 1. Because of the orthogonality of the Z,, one
has

S @i, = Elz4| Ze-n) = El2,1Z N

2N

Main Points of the Section

For a gaussian random sequence {z,}, the innovations sequence {Z,} isa
zero mean, white sequence obtainable by linear or affine causal transforma-
tion of the original process, and the transformation is also causally invertible.
The fact that the Z, are uncorrelated with each other may aid the evaluation
of a quantity E[w]|Z,] = E[w|Z,]. The one-step predictor generating Z x_,
may be represented as a unity feedback system with forward part driven by
the innovations.

In case z, is not gaussian, one can work with linear minimum variance
estimates; the main difference is that the Z, are no longer independent, though
E[z,Z] = O for k # I. Alternatively, one can still work with minimum vari-
ance estimates, but thereby lose the linearity properties relating {z,} and {z,}.

An initial time in the infinitely remote past can be assumed, provided
that the system generating Z,,, ., is well defined and is asymptotically stable.

Problem 3.1. Suppose that a process z, is generated by

Zr + 12y o GnZhon = Wi
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where w, is a sequence of independent, zero mean, unit variance, gaussian random
variables and the g, are known constants. Show thatfork > n, 2, = z; — Elz)|zx_p,

Zk ety o> Zko1)

Problem 3.2. Suppose zg, z,, . .. 18 a sequence of scalar, zero mean random
variables with E[z,z;] = r,, known for all £ and /. One can form the infinite matrix
R with k!l entry ry;, and it will be nonnegative definite symmetric. Show that the
coefficients used in expressing z, in terms of Z,, Z;, Z,, . . ., Z; can be used to define
a factorization of Ras R = T’'ST, where T is upper triangular and § is diagonal. Can
you find recursive formulas for the entries of 7and S in terms of the entries of R?

Problem 3.3. Let {g,] and {z,] be jointly gaussian, zero mean sequences with
{Z,} available. Show that #;,x., = E[gx|Z,_,] can be derived as the output at time
k of a linear system of impulse response {,,;} driven by {2}, with k;; = E[g.Z/] to
within a scaling factor depending on / but not k.

5.4 THE KALMAN FILTER

In this section, our aim is to derive the Kalman filter equations, for the
one-step prediction state estimate and associated error covariance. We shall
do this for the system, defined for k >> 0,

Xpar = Fexp + Gow, - Ty 4.1)
Iy = Hix, + v, 4.2)

Here, {1} is a known input sequence, x, has mean %, and covariance P, {v,}
and {w,} are zero mean sequences with

Wy ! ’ . Qk Sk
o o (4 5w

[One can obtain S, = 0 if, for example, the input noise to the signal process
feeds through directly to the output as well as through the inherent delaying
mechanism associated with (4.1). This idea is developed in the problems.]
The random variable x, is assumed independent of [w; 2.}

Now we can either assume x,, {v,}, and {w,} are jointly gaussian and
seek Xy i_y = E[x,.|Z,_,] and the associated error covariance £, _; which
is both conditional and unconditional or we can drop the gaussian assump-
tion and seek X, _; = E*[x,]Z,_,] and the associated unconditional error
covariance X,,_,. The same equations arise (why?); it is merely the inter-
pretation of the quantities that is different. To maintain consistency of style,
we shall make the gaussian assumption, and leave to the reader the restate-
ment of results appropriate to linear minimum variance estimation. The key
equations are (4.9) through (4.12).
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Note that the signal model here is a development of that used earlier in
two directions, since both S, and u, can be nonzero. As it turns out, the in-
creased difficulty in using an innovation-based approach to filter derivation
is small; a derivation along the lines given in Chap. 3 is, however, a good deal
more complicated.

Evolution of the Conditional Mean

We shall find the recursive equation for
Rim-1 = E[x, | Z,_ )} = E[xklzk—ll

For convenience, we define X, = x, — £,,,,; notice that ¥, is not an inno-
vations sequence, because £/, is not E[x, | xo, X1, -+ + , Xe—q]-

Our strategy will be to make use of the independence of the innovations,
which as we know (see, especially, Theorem 2.4) allows us to write

Elxiii|20, 2,005 2] = E[xps1 1 2] + Elxyer|20, 24,00y Z40y] — Elxpsy]
“4.49)

Then we shall evaluate the first and second terms in this expression separately.
We begin by evaluating E[x,.,|Z,]. In view of the jointly gaussian nature
of x,., and Z,, we know from the material of Sec. 5.2 (see Theorem 2.1) that

Elxxs1 ]2} = Elxp44] + 0OV (x44, Z)cOV (24, 2)]712, (4.5)
To evaluate the two covariances, define the error covariance matrix
Ty = E[X.X: (4.6)
Then we have (reasoning follows the equalities)
COV (Xper 15 Z) = COV(Fux, + Gow, + Thuy, Hi%y + vy)
= E[{Fix, + Gow, — FLE[x, X H, + viJ]
= E[Fx, % H) + G.S,
= Fi[EQRex-1%k) + E(XXOIH, + GiSy
= FiZip-1Hi + GieSie

To get the first equality, observe first that from (4.2), 2., = H'%p/k—;-
Subtracting this from (4.2), we have Z, = H;X, + v,. We also use (4.1) to
obtain the first equality. To get the second equality, we use the fact that u,
is known, that w, and v, have zero mean by assumption, and that ¥, has zero
mean, being the error in a conditional mean estimate. The third equality
follows on using again the zero mean nature of H.X, + v,, from the indepen-
dence of x, and v,, the independence of w, and X,, or equivalently w, and
Z,_;, and the assumed dependence of w, and v,. The last equality uses
E[R,/x-1X:] = O; this follows from the fact that ¥, is the error in projecting
X, onto the subspace generated by z,_,, z,._,, - . . and is, therefore, orthogonal
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to that subspace, while £,,,_, is a member of it. The last equality also uses
(4.6).
Also, straightforward calculations yield

cov (2., Z,) = cov (H.X, + v, H X, + v,)
= HZy1He + R,

(Here, we use the fact that %, and v, are independent.) Consequently, (4.5)
becomes

Elxeei |24 = Elxear] + (FiZsn- 1 Hy + GSHHZwno H + R)'E,

4.7)
We also have

Ex;.y |Zk—1] = E[Fyx, + G,w, + rkuk'zk—l]
= FkE[kuZk—l] + T,
= F R + T (4.8)

Here, we have used the independence of w, and Z,_,, and the fact that {u,}
is known. The recursive equation for £,,,_, is now immediate, using (4.7) and
(4.8) in (4.4):

Revie = FiZepoy + T + Ki(2 — HiRipieor) 4.9
with

K, = (szk/k—lHk + GkSk)(Hl’czk/k—lHk + Rk)_‘ (4.10)

[In (4.10), if the inverse does not exist, one can, at least formally, have a
pseudo-inverse.]

Evolution of the Covariance Matrix

We have defined the error covariance in (4.6) and have used it in (4.10),
but have not yet verified that it satisfies the recursive equation given in earlier
chapters. This we now do. Equations (4.1), (4.2), and (4.9) yield

Xpor = (F, — KHDX, 4+ Gow, — Ko,

The two vectors X, and [w;, v;]) are independent and have zero mean, and
$0

EXes1Xirs] = (Fi — KHOE(X X F — K H)'
S G,
Sk Rk __Kk

Ek+1/k = (Fk - KkHllt)Zk/k—-l(Fk - KkHI’:), +- GkaG;c + KkRkK;c
— GS. K. — K.S.G’ 4.11)

or
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Using the formula (4.10) for K, we can also write this equation in the form
Zevie = FiZope s Fio — (FZyp 1 Hy + GoS O (HiZvu-H, + R)!
X (FiZepn-1Hy + GS) + GuQiGr (4.12)

Also, we clearly must take Z,,_, = P,.

The Kalman Filter Equations and Rapprochement
with Earlier Results

The equations defining the filter associated with (4.1) through (4.3) are
given in (4.9) through (4.12) and are repeated below. They are applicable
(1) in the nongaussian case, to give a linear minimum variance estimate and
unconditional error covariance; (2) in the gaussian case, to give a minimum
variance estimate and an unconditional and conditional error covariance.

Revin = Filuper + Doy + K2y — HiZepieoy) (4.9)
Xos-1 = %o
Ky = (FuZii-1Hy + G S)(HZw i1 Hye + R ™! (4.10)
Tivip = (Fi — KkHllc)Zk/k-l(Fk — K Hy) + GkaG;( =+ KkRkKllt
— G, S, K;, — K. S.Gy “4.11)
= Filii-1Fe — (F i1 He + G S HiZipn-1Hi + R}
X(FiZipe-Hy + GieSi) + GG (4.12)
Zo-1 = Py

One obtains the equations encountered earlier by setting u, = 0 and S, = 0.
The interpretation in the gaussian case is as earlier. However, in the non-
gaussian case, we now have a wider interpretation. Earlier, we noted that
the Kalman filter was the optimum among a restricted set of linear filters.
Now, we have shown it optimum among al/l linear processors. In case the
reader feels these distinctions are trivial and therefore labored unduly, we
invite him or her to consider whether or not the derivation of this chapter
allows F,, H,, etc. to depend on Z,_,, as in Sec. 3.3.

ExXAMPLE 4.1. This example can be more easily analyzed without the methods
of Kalman filtering. But precisely because this is the case, we are able to verify
easily that the result of applying Kalman filtering ideas to at least one
problem is correct.

The AR system

Zp + Ayziy + o0+ Az, = Wi

(where {w,} is a white, zero mean gaussian sequence with E[w,w;] = Q) has
state-variable representation
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(_Al __AZ An-l ...A" "’- I_]
I 0 0 0 ‘\ 0|
Xiay = 0 1 0 0 X + | 0 \Wk
0 o - . 1 0 0
e = —[4, Ay -+ Al + we

From the AR equation itself it is immediately evident that

Elzp|Zx1]l = —Ajzgoy— +++ — AnZiken
Let us check that the Kalman filter equations give the same result. Suppose
that X,,_, = 0. Note O, = S, = R,. From (4.10), we obtain Ky = G = I,

and from(4.11), £,,_o, = 0. Continuing leadsto Ky =G = [I 0], Zs+1 4+ =0.
From (4.9), we have

00 0 0 I
I 0 0 0 0
Xevie = 0 00 Xee-1 +| 7 1z
o0 - - 10 0
that is,
Zx
Zx_1
2k+1/k =
Zk—n+1
The signal model also implies that
ek = —[Ay Ay oo ARk = —Avzie — AyZiey — 00— AnZk_nen

as predicted.

A little reflection will show why it is that £, ,,, = 0 for all k<. Examina-
tion of the signal model equations shows that the first entry of x., ¢, xt'1,, is
precisely z,. Thus this quantity is always known with zero error. The signal
model equations also show that x&); = x§’ = z;_y, xl2 = zx_,, etc, so that
all entries of x;,; are known, given past measurements. Of course, if /- #~
0, we would expect that Z,,,,x would be zero for & > n but not for & < n.
(Why?)

Alternative Covariance Equations

The question of whether (4.11) or (4.12) should be preferred in practice
is largely a computational one. Because

, ) , Vo O S G;
GkaGk + KkRkKk - GkSkKk - KkSka = [Gk “‘Kk]|: ,k “ ’,‘
S ReJL—Kx
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O« Sk}
s

is a covariance and therefore nonnegative, the right side of (4.11) is of the
form

and

AZuu 1A' + BCB'

with C = C’ > 0. This means that with Z,/._, > 0, T, will tend to be
nonnegative definite, even in the face of round-off errors. The same is not
so true of (4.12). Therefore, (4.11) may be preferable. On the other hand, the
number of operations for one update may make (4.12) preferable. (Another
possibility again is explored in the problems.) The whole question of compu-
tation will be taken up in the next chapter.

Relaxation of Assumptions on {u,}

To this point, we have assumed that {«,} is a known sequence. Now K,
and X,., do not depend on {u,}. The quantity u, is needed to compute
Xi.1/% but no earlier estimates. This means that if u, is not known in advance,
and is perhaps not known until time k, one can still obtain a filter. In this
way, {u,} could become a random sequence, so long as u, is known at time
k. In particular, the {u,} sequence could be derived by feedback from the
measurement sequence {z,} with u, permitted to depend on z, for / < k.
Problem 4.5 considers a situation of this type.

Filter as a Feedback System

Equation (4.9) provides the easiest way to visualize the filter as a feed-
back system, with the forward part driven by the innovations (see Fig. 5.4-1).
That such a formulation is possible in the first place is a consequence of the
fact that 2, ,,_, is derivable from X ._,.

From the philosophical point of view, the discerning reader may sense
a small paradox in the arrangement; %,,,-, is the output of a linear system

z ¢
+ k
2 - o - -
k*@_’ Mok~ P *Tuc+ Kz X /-1

'

k

H

~

Zk/k-1

Fig. 5.4-1 Filter depicted in feedback form.
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driven by the innovations, which are white noise. Since white noise is about
the most chaotic of all random processes, it would seem that the filter is
producing order, in the form of the estimate %,,,_,, out of chaos, in the form
of the sequence {Z,}. We leave it to the reader to explain away the difficulty.

The Innovations Covariance

As we know, the innovations are a white gaussian sequence. For future
> =/

reference, we can evaluate £[Z,Z.]. Evidently,
2, =2, — Hifinoy = HiF% + v,
Since X, and v, are independent, we have
E[2,2,} = HLE[X X JH, + E[v,vi]
=HZinH, + R, (4.13)

Prediction

The estimate X, ,,, is a one-step prediction estimate rather than a true
filtered estimate. (Determination of £, is discussed later in this chapter.)
Let us now note how one may determine %, ~,,, where N is a fixed integer
greater than 1. (The measurements z, are, therefore, being used to predict
the state variable N time units ahead of the present time.) Recall that

k+N-1

XpeN = q)k+N,k+1xk+1 + ,; D, in, (Gw, + Ty

=k+1

where @, ; is the usual transition matrix. Noww, fori=k + 1,k +2,...,
k + N — 1 is independent of z, z,, .. ., z,, and so, taking the conditional
expectation, we obtain

k+N~1

2k+N/k = ®k+N,k+12k+I/k + l; . q)k+N,iriu1 (4.14)
To obtain the associated error, observe that

kK+N-1
Xeenw = Zpanme = Poaw e 1Xuwy — Zawr) + i; . Dpin, GwW;
=k+

Taking cognizance of the independence of x,,, — £,/ and the w, for i =
k + 1 through kK + N — 1, we obtain

k+N—1
Zk+N/k = ¢k+N,k+12k+l/k(D;(+N,k+1 + ‘;E_,:‘ (Dk+N,iGlQlGl, (I);HN', (4~15)

Observe what happens in the time-invariant situation. Then @, , = F*~/,
and if |A(F)| < 1, Z4inwn — 0 as N — oo, irrespective of £, . In other
words, the further one gets away from the time at which measurements are
made, the less relevant those measurements become. (But Z,, ., - 0.)



112 KALMAN FILTER PROPERTIES Ch. 5

Prediction of y,,y and z,, is easily done. Since y, .,y = Hj, yXz:n, then
Yeenne = HyonZp niandevidently also 7, , e = HyonXionsi- Whenz, isa zero
mean Process, z, .y — Zr.ns Can be expressed as a moving average, irrespec-
tive of the fact that z, is the output of a finite-dimensional system. The point
is explored in the problems.

Time-invariant Problems

Suppose that F,, G,, H,, Q,, S,, and R, are all independent of k. What
can be said about the time invariance and stability of the associated filter?
As before, we suppose that R, is nonsingular.

The first question to consider is whether, with Z,,_, = 0, we might have
Tii1x — Z as k — oo. The fact that u, may be nonzero is irrelevant, since
u, does not enter the variance equation. On the other hand, it is not clear
whether or not the nonzero nature of S, is important. Actually, it is not. The
same argument as given earlier can be used to conclude that X, , . is mono-
tone increasing with k and, provided that [F, H] is detectable, is bounded
above. Accordingly, with [F, H] detectable, T exists.

To obtain a stability result, we shall observe, using a little hindsight, that
the stationary version of (4.10) through (4.12) can also arise for a problem
with no correlation between input and output noise. Since stability conditions
are available for this kind of problem, having been derived in the last chapter,
we can apply them here. Either one can proceed via the result of Prob. 4.5
or as follows. Define

K=K — GSR™!
Then
= (F— GSR'HLH(H'EH + R)™!

[For K — GSR™' = (FEH + GSYH'EH + R)' — GSR"_(H'EH + R)
X (H'EH + R)' = (FLH — GSR'H'EH)(H'EH + R)"' = K.] Also define
F=F— GSR'H'

so that _
K= FiH(H'SH + R)™! (4.16)
and o
F— KH' =F — KH’ 4.17)
Then one can check that the steady-state version of (4.11) yields
— (F — KH"3(F — KH') + KRK' + G(Q — SR™'S")G’ (4.18)
We recognize from (4.16) and (4.18) that £ is the limit_ing €rror covariance
associated with a filtering problem defined by {F, G, H, Q = Q — SR~ 'S’, R}
and with zero correlation between input and output noise. It follows that

|A(F — KH'")| < 1 for all i if [F, GG 1] is completely stabilizable for any G,
with G,G, = Q. Since F — KH' = F — KH’, we conclude that the time-
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invariant filter for the original problem is asymptotically stable provided that
[F— GSR'H’, GG,] is completely stabilizable for any G, with G,G’, =
O — SR™'S’. Given satisfaction of this constraint, the time-varying but
asymptotically time-invariant filter will be asymptotically stable, and for
arbitrary nonnegative X,, ,, we shall have X, — Z. If all unstable modes
are observed (which will be the case if [F, H] is completely detectable), the
complete stabilizability is also necessary for filter stability.

ExaMpPLE 4.2. The MA equation z, = wy + ¢;Wik_y + +++ + c,wi_, (Where
{wy} is a zero mean, white gaussian process with E{w}] = 1) gives rise to a
signal model of the form

0 1 0 --- 0 0
oo01 ---0 0
X1 = . . . . . xk+ Wi
1
000 .- 0| |1_
zx=1[cn Cpy - bt + wi

(Thus Q = § = R = 1.) Since F has all eigenvalues at zero, [F, H] is certainly
completely detectable. We also see that F — GSR™!H’ becomes

0 1 o --- 0"
0 0 1 - 0
F =
1
_—Cn —Cpa Tt —Cy_|

while Q — SR-1S’ = 0. Consequently, while ¥ always exists, the time-
invariant filter is asymptotically stable only if z# + ¢;z"~! + -+ + ¢, has all
its zeros inside | z| < 1. It is easy in fact to compute ¥ and F — KH"’ to check
these conclusions. Using (4.12), and setting Z,,; = 0, we have

Zi0 = —GSR'S'G' + GQG" =0

More generally, ;16 = 0 gnd so £ = 0. The steady-state value of the ﬁlEer
gain matrix is, from (4.10), K = 0, K = G, and accordingly F — KH' = F.

Main Points of the Section

Not only is the Kalman filter the best filter among a subset of all linear
filters, but it is the best filter among the set of all filters when the noise pro-
cesses are gaussian and the best linear filter among the set of all linear filters
otherwise. The filter can be visualized as a feedback system, with the forward
part driven by the innovations, which are a white noise sequence.
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The signal model equations are
Xer1 = Fpxp + Gowy + Doty ze = Hyx, + v,

o[ o135
Ve S R,

with the usual other assumptions, while the Kalman filter equations are
Xivie = Fifipe-1 + Dt + (FiZrpp—1Hye + GeSi)(HiZesi— 1 Hy + R
X (2 — HiXisie-1)
Zivie = FZgpe-1Fr — (FiZji-1Hie + GoSO)(HiZese-1Hy + Ry)™!
X (szk/k—lHk + GkSk)' + GkaG;C

Problem 4.1. Show that
Zeoie = (Fe — KeH)Zg/e-1Fi + (Gr Qi — KiS1)Gl

Problem 4.2. Derive the equations obtained in this section via the technique
used in Chap. 3 in studying filtering in the gaussian situation; do not make use of
the independence property of the innovations sequence.

Problem 4.3. Consider the following signal model with direct feedthrough:
‘ Xis1 = Frxp + Gewe
zx = Hixy 4+ vg + Jiwge
where v; and w, are independent, zero mean, white gaussian processes of covari-
ances R, 0;,and Q) 0y, respectively. Show that this arrangement is equivalent to one

in which z; = H{x, + ¥, and 9, is a zero mean, white gaussian process of covari-
ance (Rk + JkaJ,")5k, with E[Wk’l-)'[,] = Q;J,’ﬁkl.

Problem 4.4. Consider the arrangement in Prob. 4.3, save that R, = 0 for all
k, and x, is known to be zero. Show that if J, is nonsingular also, Z;,,_; = 0 for all
k. Explain in direct terms why this should be so.

Problem 4.5. Consider the signal model described in this section and suppose
for convenience that R, is nonsingular.
(a) Show that w, = w;, — SRy vy is independent of v,.
(b) Show that x,,; = Fix; + Gywi + Grup becomes, with the choice u, =
—SiRy 'z,

Xgo1 = (Fx ~ GeSiRe'Hi)x, + Giwy

precisely.
(c) Find the filter for this arrangement, and recover from it the filter for (4.1) and
4.2).

Problem 4.6. In[19], it is pointed out that models of the form of (4.1) and (4.2)
arise when discretizing a continuous-time system; in this case one has
Elvev]] = Rk5k1 Elwiwi] = Qkakl and E[wgf} =0

for k = 1 — 1, E[wyvj] = Sy for k = [ — 1. Find a recursive algorithm for %, ,_;.
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Problem 4.7. Is {%,} a white sequence?

Problem 4.8. Let {z,} be any gaussian process. Show that
Zian — Zkanike = Zran — Elzien] + Elzein| Zisrs - -y Zeenaal

Conclude that if E[z,] = O for all &, the error z,, 5 — Z¢+n/ IS @ moving average
process. (The formula

E[Zk+N|Zk+N—1] = E[Zk+N|Zk] + ElzeanZiets ooy Zeen-1] — Elzian])
may be helpful).

5.5 TRUE FILTERED ESTIMATES AND
THE SIGNAL-TO-NOISE RATIO IMPROVEMENT
PROPERTY

In this section, we set up equations for calculating the true filtered quan-
tities, and we make an interesting connection with classical ideas by demon-
strating a signal-to-noise ratio (SNR) improvement achieved with the true
filter. As in the last section, we work with the model

Xpay = Fox + Gow, + T, (5.1)
Ze =y + v = Hixy + v, (5.2)
with {1}, {v.], {w,}, and x, as before. In particular, we suppose that
w S
e[l o )= & o 53
'Uk Sk Rk

with S, not necessarily zero.

Evolution of ﬁ‘/k

It is easy to check that with w, = w, — S, Ri'v,, one has
W — S R:'S., O
I T i
’Uk 0 Rk

Xpe1 = Fexp + Gow, + G.S Rz ‘v, + T,
= (Fi — G.SiR'Hi)x, + Gowy + Touy + G SiRi 'z, (5.4)

At time k, z, is known just as u, is known. So (5.4) and (5.2) describe a
system equivalent in a sense to (5.1) and (5.2), and such that the input noise
sequence {w,} is uncorrelated with the measurement noise sequence {v,}.
From (5.4) we have immediately the time-update equation

Rprie = (Fe — G SeRH) Rk + Tty + G.S R 2, (5.5)

and
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It is also straightforward to obtain an equation expressing X, ,/x+; in terms
of %41« and z,. Let us proceed formally, in the same manner as was used
in deriving an equation for the evolution of £, ,/, from £,,,_,. Evidently,
Xprrmer = Elxpii | Zysy]
= E[xpr1]Zxei] + E[xps1]1 Ze] — Elxps]
= Elxye1] + €0V (X, Zea)[COV (Zirys Zs )] ' 20y

+ X in — Elxpai]
Now

€OV (Xiv1s Ziv1) = E{[Zist + Zuvie — EQGs DXk 1 Hirr + Veiil}
= E[ik+li;+1]Hk+l
= Ek+1/l¢Hk+l
on using arguments like those of the previous section in evaluating
cov (xy, Z,_,). We also know that
COV (Zyiys Zyi1) = Hiw i ZhvuHier + Risy
from the previous section. Consequently, we have the measurement-update
equation
Ziermer = Znwre + DeeviHieo i(Hieor Zes viHiess + Ried)™!
X (Zgas — HierRiw111) (5.6)
Together, (5.5) and (5.6) provide a recursive procedure for updating £, .
Let us pause to make several observations.
1. In case S, = 0, (5.5) simplifies to the equation:
Zevim = FiZepe + Tty (5.7
With u, = 0, this equation was encountered in Chap. 3. When
S, # 0, z, contains information about w, (via v,), and this informa-
tion has to be used in estimating x,.,; this is the reason for the addi-
tional complication in (5.5).
2. One can combine measurement- and time-update equations to get a
single recursion for £,,,_,, as in the last section. One can also obtain
a single recursion for £,,,. Combination of (5.5) and (5.6) leads to
Zprrkrr = U — ZewieHio i (Hieo ZgvineHis s + Riw)) ' Hiad]
X [Fy — G SiRi ' Hil%u sk

+ Agui + Bizp + Crzpsy (5.8
for appropriate A,, B,, C,. The important special case of S, =0
yields

Zevimer = Fifie + Lior(Zisr — Hiar FiZapne — Heo D) (5.9)
with

Lk+1 = Ek+1/ka+I(Hllt+lzk+l/ka+1 + Rk+1)—1 (5-10)
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Figure 5.5-1 illustrates this arrangement in case u, = 0, and also
illustrates how X, _, and the innovations Z, can be obtained.

3. Recursive equations for X, as in (5.9) require initialization. This is
straightforward. With %,,_, = X,, one takes, on the basis of (5.6),

Koo = Xy -+ PoH(HoPoH,y + Ry) ' (zo — Hyxo)

+ % +

z, L > DELAY

x>

k -1/k =1

Fk—1

>

Xk/k—1

’

HF

k' k-1 %

Fig. 5.5-1 Recursive filter for £, illustrating innovations. Zero uy is
assumed.

Evolution of the Error Covariance

We now seek an expression for the error covariance

E{[x, — Zinllxe — Ziad} = Zan
From (5.6), we have
(Xieer — Zerimer) + ZiwrneHeo (Heor Ziw 1 ieliess + Rew) ™ Zia
= Xpa1 — Xgwrie
By the orthogonality principle, Xx,.; — Zi41/x+1 1S orthogonal to Z,,,. The

covariance matrix of the whole left side is therefore the sum of the covariance
matrices of the two summands, thus

Zk+1/k+1 + Zk+1/ka+l(HI:'+lzk+1/ka+1 + Rk+1)_l(Hl’c+1zk+1/ka+1 '1L Rk+1)
X (HeerZew1nHier + Rest) " HeorZoovie = Zix ik
that is,
Zk+1/k+1 = Ek+1/k - zk+I/ka+l(Hl/<+lzk+l/ka+l + Rk+1)—1Hllc+12k+1/k
(5.11)

This equation is a measurement-update equation. To complete the picture,
let us obtain a time-update equation. Subtracting (5.5) from (5.1) and using
the definition of w, yields

Xewr — Zpwre = (Fe — GuSi R Hi)(xie — Ziee) + GiWy
Using the easily checked orthogonality of w, and x, — %, we obtain
Zirime = (Fy — G SiR H)Zy j(Fre — G SR Hy)'
+ G (Qx — SkR:'SK)G (5.12)
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This equation is the time-update equation. Combination of (5.11) and (5.12)
provides a recursion for ., as obtained earlier, or a recursion for I, .
When S, = 0, (5.11) is unchanged while (5.12) simplifies:

Lo = szk/kFlI( + GkaG;( (5.13)
We remark that two rewritings of the measurement-update equation are
possible:

2k+l/k+l = Ek+l/k[1 - Hk+1L;c+l] = [I - Lk+lHl’r+1]Ek+l/k
and

Zk+l/k+l = [1 - Lk+1HI:+l]2k+1/k[1 - Hk+1L;¢+1] + Lk+1Rk+1L;c+l

with L., as in (5.10). The number of operations required to compute
Ze+1x+1 and the computational accuracy differ among the three equations.

Stability

In the last section, we obtained the one-step predictor recursive equation

v = FiXyp-y + Dt + K(2h — Hifep-1)
with
K, = (szk/k—IHk + GkSk)(HILZk/k—lHk + Rk)_l
Suppose the filter is time invariant and R is nonsingular. The system
matrix associated with the homogeneous equation is

Fi=F —KH =F — FEH(H'SH + Ry 'H' — GS(H'SH + R)"'H’

From Eq. (5.8), the system matrix associated with the homogeneous version
of the %,,, equation is

F,=[I—SHHSH + R) 'H'|(F — GSR™'H’)

The matrices F; and F, can be shown to have the same eigenvalues, as
developed in the problems. Accordingly the stability properties for the true
filter are the same as those for the one-step predictor. Actually, this idea can
be extended to the time-varying case.

A Signal-to-Noise Ratio Improvement Property

We can make an interesting connection with more classical approaches
to signal processing by demonstrating a property of the true filter. Suppose
that the signal process {y,} is scalar and stationary. (Both these assumptions
may be relaxed if desired.) Suppose also that u, = 0 for all k. The measure-
ments z, comprise signal y, and noise n,, with signal power E[y}] = H'PH
and noise power E[ni] = R. Here, P is the unique nonnegative definite solu-
tion of P — FPF’ = GQG’. We define

H'PH (5.14)

Filter input signal-to-noise ratio = =
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The output of the true filter is £, ,, from which we derive §,., = H'%,/.
Now suppose
E{lx; — Zinllxe — Zanl'} = b
so that E{(y, — Jixux)?) = H'ZH. By the orthogonality principle, y, — Ve 18
orthogonal to ;.. Therefore
E[yi] = El(yi — Jun)*l + ElJin] or E[jiul = H'(P— £)H
which is the total filter output power.

There are various possible definitions for the filter output signal-to-
noise ratio. We shall take this ratio to be the total filter output power, viz.,
H'(P — £)H, divided by the mean square error E[(y, — Vi/x)?] between the
filter output and true signal. This error is in part due to the noise v, and in
part to the distortion in y, produced by the filter. Thus

. . . . H(P-—3H
Filter output signal-to-noise ratio = THRH (5.15)
We claim there is a signal-to-noise ratio improvement property:
H'(P—%)H _ HPH
>
HZH ~— R (5.16)

and that strict inequality normally holds.

An alternative definition of output signal-to-noise ratio which could be
used is as follows. Regard the output of the filter §, . as the sum of a signal
Vi and error (J,,% — y,). Notice that in this case the signal and error are
correlated, which is unconventional. The signal power is H'PH and noise
power is H'ZH, so that the output signal-to-noise-ratio is H'PH/H'SH. Com-
paring this with (5.15), we see that if (5.16) holds, we shall also have signal-
to-noise ratio improvement with this alternative definition.

Yet another possibility would be to define output noise as the result of
passing {v,} through the filter. The output noise power is then less than H'E H,
and so again (5.16) would imply signal-to-noise ratio improvement.

To establish (5.16), we proceed as follows. Suppose that y, is estimated
using the value of z, but no other z; for I % k. Since

Ve H'PH  H'PH
E e zlp=) ,
2, H'PH H'PH + R

this means that 5, = H'PH(H'PH + R) 'z,. The associated estimation
error is
(H'PH)*
H'PH + R
This error is underbounded by H'ZH in view of the optimality of §,:
(H'PH)*  (H'PH)R
H'PH+ R H'PH-+R

El(yr — J2)?l = H'PH —

H'EiH < H'PH —
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Strict inequality will normally hold. Equation (5.16) follows by simple
manipulation.

Main Points of the Section

One can find a recursive equation for £,, and a filter producing %,
which, when drawn in a feedback arrangement, has the forward part driven
by the innovations. One can also find recursive equations for obtaining
X followed by %, 4, followed by £,., 4, etc. The error covariance matrix
Xk can be expressed in terms of X4, and I, 4 can be expressed in terms
of X,,. Stability properties of the %, filter are the same as those for the
X~ filter.

There is a signal-to-noise ratio improvement obtained in using the §,
filter.

The most important of the particular equations are as follows:

MEASUREMENT UPDATE:
Xevtmer = Xpp1m + oo i (Hieo B uH o + Riy)™!
X (Zrr — HiviRevim)

. ’ -1y’
Ek+l/k+l - zk+1/k - zk+l/ka+1(Hk+IEk+l/ka+l + Rk+1) Hk+lzk+1/k

TIME UPDATE:
Kevre = (Fp — G SR H) X + I, + G SRz,
Zkﬂ/k = (Fk - GkSkR;lHl/t)Zk/k(Fk - GkSkRI:‘HI’c)' + Gk(Qk - S,‘R;’S,/,)G;,

TIME UPDATE WITH S, = 0:
X = Filep + Tty
Zire = FnFie + GL0,Gi

COMBINED UPDATE WITH S; = 0 FOR FILTERED STATE:
Xertmer = Fk)?k/k + Ly i(Zisr — HI:+1Fk-£k/k - Hllc+lrkuk)
Lk+1 = Zk+I/ka+I(Hllr+1Ek+l/ka+l + Rk+l)-‘

Problem 5.1. Consider the one-dimensional problem in which F, = a,|a| <1,
G = H, = Ry = Qx =1, S = 0. Find the limiting value of T .

Problem 5.2. Carry out an alternative derivation of the material of this section
using known results for the evolution of £;,,_, and ;_, along the following lines.
Change the time scale by halving the time interval, and with superscript hat denoting
quantities measured after changing the time scale, arrange that
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Xy = Xyppy = Xx
Wap = Wy Waksr = 0
2k = 2Zx

Zae1 =0

This means that £,, = Fy, G, = Gr, Farr =1, sz+1 =0, Hy, = Hy, Hyyy =0,
Osk = Qx Ryu = Riy Sy = Sk» Ozt =0, Saksr =0 and Ry = 0. Also,
one has

E[%2i 2, . . ., Zak-1] = Elxe |20, 24, . . ., 2y]
and

E(%yisy 2o, - oo 250 = Elxi | 20, 24, . . ., 4]

with relations also being available for the covariances. The procedure converts the
task of finding £/, and X, to one of finding one-step prediction quantities.

Problem 5.3. With notation as in the section, the system matrices associated
with the one-step predictor and true filter are
F,=F—~FESHH'SH + R)"'H' — GS(H'SH + Ry 'H’
and
F,=({—XH(H'SH + R 'H'(F — GSR™H").
Using the fact that {4,(4B)} = {4,(BA)} for square A4, B show that [A(F)} =
[A(F)}.

Problem 5.4. (Signal-to-Noise Ratio Improvement in the Vector Case). Take
R = I Show that
H'PH < (H'PH)Y'/*(H'EH) {(H'PH)!? — [
Generalize to the case of arbitrary positive definite R. Interpret the inequalities

obtained. (Note that scalar inequalities can be obtained by taking the trace; it can
then be helpful to use the fact that trace AB = trace BA.)

Problem 5.5. (Smoothing Formula). The true filtered estimate is related to
the one-step prediction estimate by

Serrsiet = Zivre + ZevtneHeot(Hiii Z i eHieny + Rywy) 15,
Establish the smoothing generalization:

k+N
Brormon = Beore + Zuern] 3 Bk + DHHE - H, + R)12,]

where @ is the transition matrix such that O+ 1,i) = F, — K,H!. Do this by
first establishing that
k+N

Xe+1/k4n = 2 €OV (Xgu1, Z)[cov (Z;, Z)171 2, + Riurix
=k+

Observe then that cov (xi,y, 2;) = E[%,.X}H,, and that E(%,, %) can be obtained
from
Zrwy = (Fx — KkH)% e + Gowie — Ko



5.6 INVERSE PROBLEMS; WHEN IS A FILTER OPTIMAL?

Suppose a discrete time process z, is being filtered by some linear sys-
tem. We consider in this section what tests can be executed on the input and
output of the filter to check whether or not the filter is optimal. Such tests are
valuable in checking whether a filter design lives up to expectations when it is
actually implemented.

A general feature of all the tests is that they involve obtaining certain
first and second order statistics. To do this in practice generally requires that
the various processes be stationary and ergodic; since time averages then
equal ensemble averages, the statistics can readily be obtained, at least
approximately. Throughout this section, therefore, we shall assume for the
most part that processes are stationary and ergodic and the various linear
systems are time invariant. We shall also assume that all processes are zero
mean.

As a general rule, we shall present results as if all processes are gaussian.
Should this not be the case, the results hold if the estimates are interpreted
as being constrained to be linear.

The results fall into three categories. The first group contains those
involving signal estimation and makes no use of finite dimensionality. The
second group still involves signal estimation, but imposes a finite-dimension-
ality constraint, while the third group relates to state estimation.

Ergodicity is usually easily checked in the case of gaussian processes
associated with finite-dimensional signal models (see Prob. 6.3).

Signal Estimation

We suppose that
Zy = Yi T 0 6.1)

with {y,} and {v,} jointly gaussian signal and noise processes. We suppose
that E[y,v;] = 0 for I > k. (This will be the case if a model of the form con-
sidered in the last two sections is applicable. Often of course, one has
Ely,vi} = 0 for all k, ) Also, v, is assumed white.

It is then clear that ., = Z,/,_, and, as we know, {Z, = z, — Z,4_}
is a white process. The converse question then arises: Suppose we have a
process {g,} such that g, is Z,_,-measurable, i.c., g, is some function of z, for

{ < k — 1. Suppose also that {z, — g,} is zero mean and white. Must

e = Zi—1?
Figure 5.6-1 represents the situation in mind. One can conceive of a
finite initial time k,, with § containing a unit delay, and g, = 0. Then

1 = F(z0), 9. = F(zo, g1 — 2:) = F(z,, F(2,) — z,), etc., and evidently g, is

122
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+ 2, -Q, 9
Zk——>@—> F >

Fig. 5.6-1  An arbitrary arrangement, with § injecting a unit delay.

Z,_,-measurable. Alternatively, one can conceive of an initial time in the
infinitely remote past provided the closed-loop arrangement has the right
stability properties. Now an important aspect of this arrangement is that not
only is g, a Z,_,-measurable quantity, but also {z,} is causally recoverable
from the sequence {z, — ¢,}. This is because ¢, is recoverable from z, — ¢,
for I < k, and z, = (z, — q.) + q, provided that § has the right stability
properties in case the initial time is in the infinitely remote past. Put another
away, the arrangement of Fig. 5.6.2 recovers {z,} causally from {z, — g,}.
All this leads to:

THEOREM 6.1. Consider the situation depicted in Fig. 5.6-1, where {z,}
is a zero mean, gaussian sequence, {g,} is Z,.,-measurable, and z, is
recoverable from {z; — q,/ << k}. Then g, = Z,4., if and only if
{z; — qi} is zero mean and white.

Proof: The “only if” part was established earlier. To prove the “if” part,
proceed as follows. Because g, is Z,_,-measurable, the sequence {z, — ¢,}
is causally dependent on {z,}. Conversely, the sequence {z,] is causally
dependent on {z, — ¢,]. Hence for an arbitrary random variable w,

Elw|Zs) = Elwlz — gl < ]
Now take w = z, — ¢,. Then
0= Elz, —qilz; — g1 <k] = Elz, — qi|Zi_1]
the first equality stemming from the assumptions on the {z, — ¢,}. Thus
EzilZy-1] = Elgu| Z,-1] = qs
in view of the fact that ¢, is Z,_,-measurable.
Note that the linearity of F has not been used above, though of course

one cannot have ¢, = Z,,_, for gaussian {z,} without linear ¥. As remarked
in the introduction, for nongaussian {z,}, one can constrain § to be linear

+l
Q, L
—— F ——-—.»@-»
4, =9, +

Fig. 5.6-2 The sequence {zx} is causally obtainable from {zx — q«].
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and work with linear minimum variance estimates. One can also obtain
result with nonlinear § (see Prob. 6.1).

Checking the whiteness of a stationary ergodic sequence {p,} in theor
requires the evaluation of E[p,,,p.] for all /; the situation is even worse fc
nonstationary sequences on two counts: ensemble rather than time averagin
is needed, and one must evaluate E[p, p;] for all k and /.

By assuming a finite dimensionality property, we can get a major sim-
plification.

Signal Estimation Using Finite-dimensional Signal Model
and Filter

Let us suppose that in (6.1), {y.} is the output of a linear finite-dimen
sional signal model, and that ¥ in Fig. 5.6-1 is linear and finite dimensional
We shall also assume that the signal model and closed-loop system in Fig
5.6-1 are time invariant and asymptotically stable, and that {z,} and {q,} ar
zero mean and stationary. Some relaxation of these conditions is possible (see
Prob. 6.2). The first main result is as follows:

THEOREM 6.2. Let the signal model and filter be of state dimension »
and n, respectively, and other assumptions be as above. Then {z, — g,
is white if
E{lziss — quesllze — @13 =0

forO0<!<m++n.
Proof.* Let us first establish that {z, — g} can be regarded as the output
of an (m + n)-dimensional linear system excited by white noise. This is
intuitively obvious. The details are as follows. Suppose the signal model
is

Xpe1 = Fx, + Gw, Ze =Y+ v, =H'x, + v, 6.2)

Wi A [@ S
E{[vk]bw vd}——[s, R}am 63)

Suppose the filter is
D1 = Fipe + Giz, g = Hip, (6.4)

for some F,, G,, H, and state vector p,.
Together, we then have

IR LI I

DPi+1 Dk 0 IJLv

h—%ZWrﬂ+W”Fﬂ
Dy Uk

*The proof may be omitted at a first reading.

with
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where
G 0
F= ,  W=I[H -—H]
G\ H' F,
Now via the procedures of Chap. 4, one can compute E{[z,.; — gx.)]
[z — gq.)'} for all k and /. The general form of this quantity, and this is
all we need, is
HF 'K = E{[z;4; — qeedlze — q4]'} [>0
with the particular form of K irrelevant. By assumption
0=HF 1K 0<lI<m-+n

Now F has dimension m -+ n, so by the Cayley-Hamilton theorem F'
for arbitrary /> m + n is a linear combination of I, F, ... 6 Fm+"-1,
Accordingly, 0 = H'F-'K for all / > 0, i.e.,

E{lzisr — quadlze — @]} = 0
for all / > 0. Equivalently, {z, — ¢,]} is white.

When z, is a vector, certain minor improvements to the above result are
possible. This is because rank [HY H'F ... H'F"*""!] can sometimes
equalrank[H' H'F ... H'F/"'|forj < m + n. Onesignificant improve-
ment, corresponding to having j = n, arises if we demand that the filter have
the form

Prsr = (F— G H')p, + Gz, g = H'p, 6.5)

Thus the input gain of the filter may be incorrect, but nothing else. In this
case we have the following result:

THEOREM 6.3. Under the same assumptions as Theorem 6.2, and with
the signal model and filter as given in (6.2) and (6.5), {z, — g.} is white i

E{lzeos — qeillze — g} =0
forO<I!<n.
Proof.* One can work with the quantities H and F used above, or
proceed possibly more quickly as follows. The signal model and filter
equations give

Xeer — Prer = (F — G H')(x, — pi) + [G —GI][W}‘]

Uk

, w
zy — g = H'(xp — pi) + [0 I]L)li
k
so that for some K,

H'(F— G H'Y 'K = E{[z44: — Qrsillze — 941} >0

*The proof may be omitted at a first reading.
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The argument now proceeds as for Theorem 6.2, noting that F — G, H’
has dimension n.

State Estimation

Let us retain the assumption that {z,} is the measurement process asso-
ciated with a finite-dimensional system like (6.2). Suppose also that we have
a linear filter G with input {z,} and output a sequence {p,]} purporting to be
the sequence {%,/,_,}. We consider now how one might check this property.

First, we must pin down a coordinate basis—otherwise the state estima-
tion problem is ill defined. One way to do this is to assume that Fand H are
known. A second assumption, which it is almost essential to make, is that
[F, H] is completely observable. (Roughly, this is because this condition is
required for {Z,} and {Z,,_,} to determine uniquely the state trajectory
{Xe/n- .} of the filter; the point will be explored below.)

Now since H is assumed known, we can form {g,} = {H’p,} and check
whether {z, — ¢,} is white. This is clearly necessary for {p,} to be identical
with {%,,_,}. Is it sufficient? With the complete observability assumption,
the answer is yes. The transfer function matrix of the system which when
driven by {Z,} produces {3, ,_,} at its output is H'[z] — F] 'K, with K the
usual Kalman gain. If there were two matrices K, such that

H'[z] — F]"'K, = H'[z] — F]"'K,
we would not know whether the state estimate would evolve as
Revie = Fiypoy + KiZp o0 Rppve = FRypoy + KoZ,

On the other hand, if K is uniquely specified by H'[z] — F] 'K, then the state
estimate equation is uniquely determined. That K is in fact uniquely specified
follows by the complete observability assumption; H'F/K, = H'F/K, for all i
implies H'F/(K; — K,) = Ofor all jand, thus, K, = K,. Wehave thusshown
the following:

THEOREM 6.4. Suppose the signal model is of the form (6.2) and a filter is
of the form (6.5). If [F, H] is completely observable and {g,} = {Z; x_1}
then {p,} = {Zi/n-1}-

Of course, one can check that {g,} = {£,,,_,} by using the test implicit
in Theorem 6.3.

Main Points of the Section

A sufficient, as well as necessary, condition for g, in Fig. 5.6-1 to be
Z,x-1 15 that the sequence z, — ¢, be zero mean and white. In case {z,}and
{9.} are stationary and the closed-loop arrangement in Fig. 5.6-1 is asymptot-
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ically stable, this can be checked via time averaging. If {z,} is the output of a
finite-dimensional system and § is finite dimensional, the testing is greatly
eased: only a limited number of cross correlations have to be checked to be
zero. In case [F, H] is fixed and completely observable and § has a standard
structure, g, = Z,,,_, implies the state of F is %,,,_,.

Problem 6.1. Show that the “if” part of Theorem 6.1 holds for nongaussian
{z:} provided one assumes that Elz, — gz, —q,, { < k} = 0.

Problem 6.2. The innovations sequence {Z,] and one-step prediction estimate
Zisx~1 satisfy E{S,x_12;] = O for / > k. Establish this. This property suggests the
following conjecture. Let {g, ] be such that g, is Z,_-measurable, with z, recoverable
from{z; — gq,, I < k}. Suppose that E{g,(z; — q;)’} = 0for/> k. Thengy, = Z,%_;.
Show that this conjecture is false.

Problem 6.3. Let {a,] be a stationary scalar gaussian process with covariance

=—0o0

Ryi. Then {a,} is ergodic if +2°° | Re| << oo (see Appendix A). Show that in case {a,}
k

is the output of a time-invariant, finite-dimensional system that is asymptotically
stable and is excited by white noise from time k, = — oo, then {a,} is ergodic.
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CHAPTER 6

COMPUTATIONAL ASPECTS

6.1 SIGNAL MODEL ERRORS, FILTER DIVERGENCE,
AND DATA SATURATION

In designing Kalman filters, two important types of computational
questions arise. First, what is the nature of the errors which can be encoun-
tered, and what is their effect on the performance of the filter ? Secondly, how
may one minimize the computational burden of design? Of course, the two
questions are not entirely independent, since, for example, procedures
involving a small number of computations may be procedures which offer
poor error performance. In this chapter, we sketch some of the ideas that are
useful for dealing with these questions—a complete study would probably
run to hundreds of pages, and is therefore out of the question.

The most obvious types of eiror are those in which incorrect values are
assumed for the system matrices or noise covariance matrices. However,
many others can be envisaged. Linearization, neglect of certain system modes,
neglect of a colored component in the noise, and neglect of biases, whether
deliberate or unwitting, will all give rise to errors. Modeling errors aside,
round-off errors in computation can also create problems.

In the remainder of this section, we discuss how one may analyze the
effect of certain errors, and discuss one consequence, that of divergence, of
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some types of error. Brief mention is made of some techniques for eliminating
these problems. Then in the next section, one of these techniques, exponential
data weighting, is discussed in a little greater detail.

In later sections, methods for streamlining computations and also for
avoiding the effects of computational errors are considered. In particular,
a derivation is given of the information filter, and the concept of sequential
data processing is developed. Square root filtering algorithms are presented,
and simplified suboptimal filters for the high measurement noise case are
studied. Finally, alternative algorithms for the time-invariant signal model
case are derived.

Error Analysis

In this subsection, we illustrate how one can analyze, in a particular
instance, the effects of a particular class of modeling errors.

We shall assume that the only errors which occur are in the values of
the system and covariance matrices {F,, G,, H;, @, Ry, Py}, in the mean of
the initial state %,, and in the system input. In some cases, it can be useful
to regard the system input as a time-varying bias term, inserted as a device
to take account of linearization, neglect of modes, and the like; in this case,
almost certainly the actual value and design value will be different.

Let us adopt the notation F4, G, etc., to denote actual quantities and

%, G4, etc., to denote quantities used for design. The indices attaching to
the error covariance, Z,,,_, need, however, to be three in number; X2, _,
denotes the error covariance which would be obtained were the actual quan-
tities to be used in the design equations; £¢,_, denotes the error covariance
predicted by the design equations. Finally, £, _, denotes the performance
obtained by using the filter computed by the design equations on the actual
signal model, defined by F%, G4, etc, so that

o = E{[xi — X Jxt — 2411}

Notice that £/, _, is not the same as ¢ ,_,.

The first matter of interest is to show how to compute X£Z,,_,. The
calculation is valid for all types of errors. First, the design quantities are used
to evaluate %%,,_, according to the usual equations. (We assume for con-
venience that input and measurement noise are independent.)

Z)‘(«H/k = Fizi/kl";’,' + GiQZGZ’ (1.1)
i =Zinoy — Ziuo HIHYZL o HE + ROTVHUZ ., (12)

Then the filter equations are
Revine = Fix%u-1 + KiGe — HY %% 02y) + ui (1.3)

Here, z, is the measurement sequence, ug is the design value of the system
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input at time k (multiplied by the coupling matrix), and K4 is the gain matrix
Ki = FiZin- Hu(HYE w  HYL + RO (1.4)

The associated error when the signal model is defined by the actual quantities
is (x — X{x-,). The evaluation of the mean-square-error performance
Zf/k-1 Is best achieved by considering the signal model augmented with the
filter (1.3) as

= Lkmy - xam et Lo xelal = Lit]
ol LKIHY Fi— KiHY [ x4, L0 Killv, | lug!

This equation has the form
Lpsy = T2+ Gew, -+ U, (1.5)

where w, is a white, zero mean, gaussian sequence of known covariance,
£, is a time-varying input, and x, has known statistics.

From (1.5), the evolution of the mean and covariance of x, can be
obtained, and thence the mean and covariance of

x§ — X%y = —Ilx,

In general, x3 — %%,,_, will not have zero mean, so the correlation matrix
22~ will not be the same as the covariance matrix!
At this stage, several points should be made.

1. The important thing here is the procedure for obtaining a result.
The notion of tying together an actual signal model and a designed
filter in a single equation set may apply to many situations other than
that considered.

2. One major use of the above type of analysis is in sensitivity studies.
For example, it may be known that a given system parameter fluctu-
ates slowly 109 around its nominal value. One can then compute the
effect on filter performance of this variation, when the filter is designed
using the nominal value.

3. A second major use lies in drawing useful qualitative conclusions,
applicable to situations in which errors are described qualitatively
but not quantitatively. Examples are given below.

The analysis presented in outline form above is given more fully in [1).
Among other work on errors arising from incorrect modeling, we note
[2-6], some of which contain results of simulations; reference [6] also includes
equations for sensitivity coefficients.

Qualitative Conclusions from Error Analysis

The most obvious conclusion is that XZ,,,. > X3,,., the inequality
holding for all classes of errors. (Why is this obvious?)
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Next are results generally associated with the names of Heffes and
Nishimura. Suppose that the only errors are in Q,, R,, and P,, with the
following inequalities holding for all &.

0i>0% Ri=R,, PI{=P; (1.6)

Equation (1.6) implies that we are assuming more input noise, more measure-
ment noise, and more initial state uncertainty than is actually there. One
might then imagine that this would lead to a conservative filter design in
some sense. This is indeed what we find: the design error covariance X%,
and the error covariance X}, _, resulting from using the filter designed with
04, etc., on the actual signal model, stand in the relation

Zi-1 =Ty (1.7)

(Why is £Z,,.; a covariance matrix here?) The usefulness of this result (a
proof of which is called for in the problems) is as follows. Suppose one simply
does not know accurately the noise covariance of the input or output, but
one does know an upper bound. Then one can design assuming the noise
covariance is at its upper bouiid, with the result that the performance of the
resulting filter as measured by X, ., will be upper-bounded by the design
performance X, _,. In some sense a worst case design results. If the various
side conditions are fulfilled which ensure that X ,_, is bounded for all &,
then X2, will also be bounded for all k.

A third qualitative result (see [1]) follows from assuming that errors are
possible in P,, O, R,, and the bias term u,, but in no other terms. The con-
clusion is that if the side conditions are fulfilled which ensure exponential
asymptotic stability of the filter and if the error u¢ — u¢ is bounded, then

21 is bounded. Note that if 4% is known to be bounded, taking v = 0
ensures the difference is bounded. However, a difficulty arises if u? is
unbounded.

A fourth qualitative result extends the above [1]; if errors in any
parameter are possible, then to guarantee a bound on X££,,_,, one almost
always needs exponential asymptotic stability of the actual system, i.e.,
@k 4 L k)|| < p* for some p < 1 and all k, /. (See also Prob. 1.3.) This
is a severe constraint (ruling out as it does systems with stable, but not
asymptotically stable, modes), and at the same time it is one that is most
important to bear in mind in view of its wide applicability.

Divergence

Divergence is the name given to a class of error phenomena. Filter
divergence is said to exist when the design error covariance X%, _, remains
bounded while the error performance matrix £Z,_, becomes very large
relative to X4,,_, or in fact is unbounded.
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Evidently, divergence is a qualitative concept, and for this reason, it is
hard to pin down precise conditions which will cause it, although a number
“have been found (see, e.g., [7]). Divergence is typically, but not always,’
associated with one or more of : low or zero input noise, signal models which
are not asymptotically stable, and bias errors. High input noise, signal models,
with a high degree of stability, and absence of bias errors will tend to elimi-
nate divergence. Again, divergence seems to arise more from modeling error-
than computational errors. We illustrate some of these points in the example
below. )

ExampLE 1.1. Suppose that the design equations used are

x‘li<+1 = xz

2 = X3 + o}

with E[v§ +f] = (k — 1), E{[x¥0)]?} = 1, E[x4(0)] = 0, and x4(0) and »% are
independent. One obtains L%, ,, = (k -~ 1)~!. Suppose that the actual system
state equation is

Xiar = X¢ + wi
with E[wi wi] = €0(k — 1), E[w}] = 0, and the usual independence assump-
tions holding. The measurement equation agrees with the design equation. One

can verify that the actual error variance diverges as fast as k. Similarly, in case
Xev1 = x% + uf, with uy = € for all &, divergence occurs.

Two questions at once present themselves. How, in an operating filter,
can one check whether divergence is occurring, and how may it be eliminated?

The prime indicator of the presence of divergence is the inconsistency
of the design statistics of the innovations sequence [zero mean, whiteness,
and a certain covariance, (R} + HY'Z¢.. H{)] and the actual statistics
encountered in operation. (In the event that all processes are stationary,
this inconsistency will be easier to see.) A second pointer to divergence—not
always encountered, and not a guaranteed indicator—is a situation in which
the filter gain matrix (or, what is more or less equivalent, the design error
covariance X% ,_,) tends to zero as k approaches infinity. Less and less
weighting is given to new measurements as time evolves (the old data is said
to “saturate” the filter), and the filter state may tend asymptotically to some
value. This value may be quite different from the state of the signal model;
in this case the filter is said to have learned the wrong state.

Advance warning of the likelihood of divergence occurs under the con-
ditions stated prior to Example 1.1. The reader should ponder why divergence
is likely under the conditions stated.

A number of approaches to cope with the divergence problem have
been suggested. In fact, they tend to be useful on any occasion when there is
a significant discrepancy between design calculations and performance.
Among the approaches, we note the following.
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1. The input noise used in design is increased. The general thinking is
that the increased noise may somehow make up for all the modeling
errors and tend to promote exponential stability of the filter. A
discussion of attempts at defining the amount of increase systemat-
ically can be found in [1]; the success of these attempts is viewed by
[1] pessimistically.

2. Asasignificant refinement on an a priori adjustment of the input noise
variance, one can adjust it on line, using measured innovations as the
tool for the adaption of the noise variance. This is discussed in [1].

3. One can overweight the most recent data relative to the old data. One
common approach involves using a finite memory, basing estimation
atany instant of time on measurement data extending over an interval
of fixed finite length into the past [1]. A second approach involves
exponential weighting [4, 8, 9] of the measurement data. Exponential
weighting is discussed in greater detail in the next section. The general
thinking is that this will prevent old data from saturating the filter;
the filter gain will not tend to zero. Further insight will be provided
in the next section.

4. A somewhat crude technique is simply to put an ad hoc lower bound
on the size of the gain matrix. Any design value smaller than the
bound is not used, the bounding value being used in its place.

The easiest techniques would seem to be increase of the noise variance
and use of exponential data weighting.

Main Points of the Section

Various types of modeling and computational errors can cause the
performance of a Kalman filter to differ from the design value. Given suf-
ficient data, the performance degradation can be computed. Qualitative
conclusions can also be derived from an error analysis. Asymptotic stability
of the signal model is almost always needed to guarantee satisfactory perfor-
mance in the presence of modeling errors. A particular error phenomenon is
that of divergence, for which there are available various indicators of its
existence and techniques for its removal.

Problem 1.1. Suppose the conditions of (1.6) are in force, and that the only
difference between actual and design parameters lies in Q., R, and P,. Show that
L2k = (Fe — KSHOE i 1(Fe — KSHYY + Gy Q3Gh + KiRAKY

With the aid of a similar equation for L%, ,/, deduce that for all k, £,
S EL 1/k-

Problem 1.2. Given a signal model with state vector [x| x5], where it is
required to estimate only x;, what assumptions are involved in obtaining an ap-
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proximate reduced order signal model in the standard form of dimension equal to
that of x, ? How would one check whether or not a Kalman filter designed for the
reduced order approximate model would perform satisfactorily when applied to the
actual signal model ? Illustrate by setting up the various equations that one would
need to solve.

Problem 1.3. Suppose that i, F§, G%,...and %, F3, G4, . . . are all bounded,
that F§ is exponentially stable, and that the closed-loop filter matrix F§ — K4H¢’
is exponentially stable. Show that ££. ,, is bounded.

Problem 1.4. Compute the quantities ££. . in Example 1.1. Check that the
filter gain K§ — 0 as k — co. Show that if input noise is added in the design equa-
tions, divergence will not occur.

Problem 1.5. Extend the error analysis calculations to compute the value of
E0i], where v, = z; — H$%;x_,. Specialize first to H¢ = H%, and then to
Wy = uy, E[x3) = x§.

Problem 1.6. Situations in which divergence is likely to occur are noted prior
to Example 1.1. Justify the claims made.

6.2 EXPONENTIAL DATA WEIGHTING—A FILTER
WITH PRESCRIBED DEGREE OF STABILITY

Background Thinking

With usual notation, it is evident that a classical least squares approach

to the estimation of an entire system trajectory xg, Xy, . . . , Xy given measure-
ments z,, z;, . . ., Zy_ Would involve the minimization of a function of the
type

Jy = %(Xo - io)'iial(xo — Xq)
N-1 - ,
+ JZ 2;0 (zi — Hix ) R (2, — Hiexy)

N~

P wiQi'w, @n

subject to the constraints x,,, = F,x, + G,w,. In (2.1), the matrices Pj',
R;', and §;"' are simply positive definite weighting matrices. Many authors
have observed (see [1]) that if Py, R,, and 0, are identified with the quantities
P,, R,, and Q, of the usual signal model, and if the inverses in (2.1) are
replaced by pseudo-inverses, then minimization of (2.1) is equivalent to
finding the trajectory x,, x,, . . . , Xy maximizing the a posteriori probability
density

DXy Xys ooy XnlZoy 2y o vy Znoy)
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In view of the gaussian nature of this density, it happens to be true that if
x¥, x¥, ..., x} is the maximizing trajectory, then x§ = E[x,|zq, ..., z2n 4]
and, in particular, x} = Xy n_:-

These observations can be used to develop the Kalman filter equations,
but this is of little interest to us here. Rather, we use the observations to pin
down how one might give greater emphasis to recent data. Since giving
greater emphasis to recent data is equivalent to penalizing recent estimation
errors more than old ones, classical least squares ideas suggest the way to do
this is to increase the weighting matrices in (2.1) for large values of k.

This leads us to our replacing of (2.1) by

Iy = %(xo — %) P5t(xy — Xo)
N-

1
+ ’i’ (zp — Hix, ) 0* R (2, — Hixy)

2z =
- o

T 2 WO Wy (2.2)

where & is some constant greater than 1. (Naturally, other methods of increas-

ing the weighting matrices could be used. However, the resulting filters may

not be so convenient, for example, being time varying rather than time

invariant, nor may their properties be as easily understood.) In view of the

remarks connecting the loss function (2.1) with maximum a posteriori esti-

mation, we see that this idea is equivalent to replacing actual noise variances
%, R% by design values

Qf =a 2720t Ri = a R} (2.3)
for the purposes of obtaining a filter, and leaving other signal model quanti-
ties unaltered for design purposes, i.e., F§ = F%, etc.

Filter Design Equations

It is of course a simple matter to write down filter design equations,
giving in particular the values of ¢, _,, Z{,, and K%. However, it is more
convenient to work with quantities

E;/k—l == aZkzz/k-1 2;/]‘ == tx”‘}:i/k (24)

to which physical significance will be given below. From the equations for
¢ k-1, €tc., the following readily follow.

i = WAFZEAFY 4+ GLOMGY (2.5)
z/k = Zz/k~l - Ez/k—lH‘)’c(H'lIclzz/k—lHi + R'l’c)_lH'l’cl z/kfx (2'6)
jiwl/k = F‘)’c’£’l‘c/k~l + Kz, — H?«’fi/k—l) 2.7

K¢ = FiLi o (HY(H{EZE o HY + RY)™ (2.8)



Observations

Let us now draw some conclusions. The most important ones relate to
the fact that the design procedure is equivalent to one in which input noise
is increased, and to the fact that the procedure promotes exponential stability
of the filter.

1. It is not difficult to see that the quantities X%, _,, X% and the filter
(2.7) are the error covariances and the Kalman filter, respectively,
for the signal model with F§ = F%, etc., but with Rf and G{QiGY
defined as follows:

R = Ry and GiO:GY' = GLQiGL' + (a2 — DFZLF

Of course G Q:Gy can only be calculated along with the calculations
for X3,.. There are two consequences. The first is that the filter can
be viewed as flowing, not from a technique of weighting more heavily
the more recent data, but simply from assuming an increased input
noise variance. The amount of the increase is not computable in
advance. The second consequence is that, in view of the remarks in
the last section flowing from Eq. (1.6), we shall evidently have

Ty S Efuor <Xy (2.9)

For the case of time-invariant quantities R%, Q°, F° etc., itis interest-
ing that time-varying quantities R} and Q% [which do not satisfy
(1.6)] produce the same effect as time-invariant R* and G*Q*G*
which do satisfy an appropriate modification of (1.6).

2. Again the quantities £%,_, and X%, could be derived directly from
the alternative design relationships R* = R°, Q* = Q°, H* = H°,
G* = G°% and F* = aF°. However, for this case, the filter equations
are different from (2.7). The homogeneous filter equations are

Rpwr = [F§ — aKiH 18, = alF§ — KiHY' 1R,

where K% is given by (2.8). The point of interest to us here is that
asymptotic stability of %,., = a[Fi — K¢{H¢']%, guarantees asymp-
totic stability of %,,, = [F¢ — K$H¢'|%, with a degree of stability a,
or equivalently guarantees the asymptotic stability of our filter (2.7)
with a degree of stability «. An alternative derivation of this result can
be achieved by noting that the sufficient conditions which are usually
listed to ensure asymptotic stability of the optimal filter for the actual
signal model (see an earlier chapter), upon a small amount of manipu-
lation not displayed here, also ensure the symptotic stability of
Xpoy = [F2 — K3 H%'|%,, and this in turn also ensures that the filter
(2.7) achieves a prescribed degree of stability a.

3. The quantity X¢.,._, will, in general, be unbounded, whereas the
quantity X5, ., will usually be bounded. The equations for X% ,_,

137
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are thus clearly better for calculation purposes than the equations
for 4, _,.

4. With time-invariant F2, G°, H%, Q° and R° and constant a, (2.5) and
(2.6) under a detectability constraint will yield an asymptotically
time-invariant filter.

An examination of [1] suggests that exponential data weighting should
be a more straightforward tool to use than limited memory filtering. Both
techniques can cure many error problems, though possibly the latter tech-
nique is more powerful, imposing as it does a hard rather than soft limit on
memory.

Main Points of the Section

Exponential data weighting has the same effect as increasing the input
noise, and normally causes the filter to have a prescribed degree of stability.
A performance bound is provided in the course of filter design.

Problem 2.1. Establish the claim made in the introductory subsection linking
a quadratic minimization problem possessing linear constraints with a maximum a
posteriori estimation problem.

Problem 2.2. Suppose that the system model is time invariant and that Q%,

% are constant; suppose that the associated optimal filter is asymptotically time

invariant. Show that the only form of increased weighting of more recent data still
yielding an asymptotically time-invariant filter is exponential.

6.3 THE MATRIX INVERSION LEMMA
AND THE INFORMATION FILTER

The matrix inversion lemma is actually the name given to a number of
closely related but different matrix equalities which are quite useful in obtain-
ing various forms for estimation algorithms. In this section, the various matrix
equalities are stated and derived. They are applied to the usual Kalman filter
equations (which are expressed in terms of covariances X, ., and Z,,,) to yield
new filter equations which are expressed in terms of the inverses of these quan-
tities, viz., Iz %_, and Z; /. These inverses are termed information matrices.

The Matrix Inversion Lemma

In terms of an #n X n matrix X, a p X p matrix R, and an n X p matrix
H, the following equalities hold on the assumption that the various
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inverses exist:
U+ ZHRV'HY'Z2=( '+ HR'H')' =X — LH(H'SH + R 'H'Y

3.1

Multiplication on the right by HR™' and application of the identity

H'XHR ' =[(H'XH + RR™ ' — I]

yields a variation of (3.1) as

(I+ZHR'HY'ZHR ' = (£' + HR'H')"'HR ' = LH(H'XH + R)!
(3.2)

(Alternative formulations are frequently written using the quantity C

= HR™1)

That the first equality of (3.1) holds is immediate. That
(I+ZHR'H)I - ZHH'ZH + R)'H =1
holds can be verified in one line by direct verification. These two results
together yield the remaining equality in (3.1).

The Information Filter

Application of the above matrix inversion lemma to the Kalman filter
equations of earlier chapters yields an alternative filter algorithm known as
the information filter {10]. This filter is now derived for the case when the
input noise and output noise are independent (i.e., S = 0). Problem 3.4
suggests a procedure for coping with dependent noises.

Application of the matrix inversion lemma to the identity

Zene = a1 — Tt HlHoZ oo 1 Hy + RO TH L Z iy

yields immediately an expression for the information matrix £} as

Z;/ik = El:/lk—l + HkRI:IH; (3-3)
A further application to the identity

Zevie = Fk}:k/kF;c + GkaG;c
with
A = [FO'VEDLF! (3.4

identified with Z of (3.1) and G, Q,G} identified with HR™ ' H' of (3.1), yields
an expression for the information matrix ¢!, as

it = [4i + G.0GL?

= [1 — Aka[G;Aka + QI:I]—IG;‘]A;:
or equivalently
Zetiw = I — BG4, (3.9)
where
Bk = Aka[G;Aka + Q;l]_‘ (3~6)
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Equations (3.3) through (3.6) provide recurrence relationships for X;}%_,
and X; /.

Next, we observe that the filter gain matrix can be expressed in terms of
2% /e-1- In fact, it is immediate from the expression

Ki = FZun- Hy(H i Zipoo 1 Hy + R)!
and from (3.2) that
K, =F.Cii-y + HRy'HY) 'H R = F X A H R 3.7

Now we turn to the filter equations themselves. It proves awkward to
find appropriate recursions for X,/ or %,,_,, and instead recursions are
found for the following quantities

Gype1 = Zife-1Zusn-
k/f 1 l:/lk"l k/k—1 (38)
G = Zi/nirse
from which the state estimates may be recovered by the solution of algebraic
equations without the need for actually taking inverses of X}, and Zgk_,
to obtain X,/ and X,,,_, explicitly. Application of (3.4) and (3.5) to (3.8)
yields
ék+l/k =[I— BkG;e]Akaxk/k
= [I - BkG;t](F;l)IZI:/ijk/k
or equivalently
Giesre = [I — ByGillFx ' Vdipe (3.9)
The measurement-update equation,
Zere = Zum-1 + Tt H  Z e Hy + R ™2 — HiXyy— 1)
leads to
Gr/e = Qrpe—1 + H R 2y (3.10)

(A derivation is called for in the problems.)

Equations (3.3) through (3.10) constitute the information filter equa-
tions. They are, of course, algebraically equivalent to the usual Kalman filter
equations, so that it is computational simplicity and error propagation
properties that govern a choice between the two sets of equations. Some com-
parisons can be found in [11, 12].

Some of the points which should be borne in mind are the following:

1. In some situations, no information concerning the initial state is
available, i.e., the situation is as if P, = X,,_, were infinite. In this
case, though X,,_, does not exist, it is perfectly legitimate to take
X34, = 0; and this, together with d,,_, = 0, is easily coped with in
the information filter equations. (In contrast, an infinite initial con-
dition in the covariance equations is, quite obviously, difficult to cope
with.) The matrices X;%-; and X;} are still evaluated recursively;
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while singular, they lack the interpretation of being inverses of finite
error covariance matrices, though they can be regarded as inverses of
error covariance matrices associated with some infinite errors. The case
of poor a priori information (i.e., 54 | is very small, but possibly non-
zero) can also be easily dealt with using the information filter.

2. The inverses of HiX,._.H.+ R, and G;4,G, + Q7' must be
computed in the covariance and information filter recursions, respec-
tively. If the output dimension is significantly different from the input
dimension, one inverse will be easier to compute, and this will con-
stitute an argument favouring one set of equations over the other.

3. Notwithstanding the above point, the fact that F;! and Q! have to
be computed to implement the information filter could make it less
attractive.

4. The information filter formulation seems a more efficient vehicle
for handling measurement updates than the covariance filter, but not
so efficient at handling time updates.

5. In a later section, we discuss “square root” filtering. It is probably
true that the square root information filter equations are much more
valuable than the equations of this section.

6. A duality exists between the update equations for Z,.,, and Z,,
and the update equations for the inverses of these quantities, or,
more precisely, for ;1,4 and A, = [Fi'IE;4Fx'. (See Prob. 3.3)
The duality shows that the latter two quantities also can arise in the
covariance equations associated with a certain filtering problem;
the signal model for the dual problem is exponentially unstable when
that for the initially given problem is exponentially stable. This
suggests that there could on occasions be numerical difficulties with
the use of information filter equations, in the light of the conclusions
of Sec. 6.1.

7. Use of (3.5) and (3.6) can, through computational error, lead to lack
of symmetry or even nonnegative definiteness in Xi!,,.. [Equation
(3.3), on the other hand, is much less likely to cause problems.] The
prime method for avoiding these difficulties is to use a square root
filter, but Prob. 3.5 considers other avenues.

8. It is a straightforward matter to combine the measurement-and time-
update equations and give update equations taking Xz!,,_, into
Xy and 4,/ _, into d,,, and similarly for the one-step prediction
quantities.

Main Points of the Section

Information filter equations are an alternative to covariance filter equa-
tions, and on occasions may be more efficient,
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Problem 3.1. (Matrix Inversion Lemma). Assuming all inverses exist, show
that [4 — BC™'D]"! = A~! 4+ A47'B[C — DA~ 'B]"'DA~'. Verify that (3.1) con-
stitutes a special case.

Problem 3.2. Derive Eq. (3.10).

Problem 3.3. Consider one filtering problem defined by quantities F;,, Gi, Hy,
Qr, and R, (wnh the usual sxgmﬁcance) and a second ﬁltermg problem defined by
Fk = Fily, Gk = FiiiHyyy, Hk = G, Qk = Rily, Rk = Qx', zissummg of course

that all inverses exist. Relate the covariance filter equations for X, ,,, and Ek/k to
the information filter equations for 4; = [Fz'YZi/tFx' and T}, 4.

Problem 3.4. Can you derive information filter equations when there is cor-
relation between input and output noise? What happens to the duality ideas of
Prob. 3.3? [Hint: Consider writing the state transition equation as

Xeer = (Fe — GuSiRe'Hidxy + Gy + GiS(Ri 'z,

with ﬁ)’k = Wy — Sle:lvk.]

Problem 3.5. A potential difficulty with using equations like (3.5) and (3.6) is
that, because of computational errors, loss of symmetry or even nonnegative definite-
ness of Xz !, can occur. In the covariance filter, one device used to partly eliminate
this problem is to update Z,, ,,, by computing

(Fie — KeHW)Z e (Fie — K HY 4+ K ReKie + G Q1 G
rather than by
FelZrm-1 — Zumor Hl(H i Zypoo He + ROH E o1 IF i + G QG
or even
(Fi — Kb H)Zysk-1 Fie + G QG
Similar alternatives exist in passing from X, _; to X,:. Discuss the corresponding
alternatives for the information filter.

6.4 SEQUENTIAL PROCESSING

Sequential processing is the name given to the procedure in which the
measurement vector is processed one component at a time. There are at
least two reasons why there is sometimes an advantage to be gained from
sequential processing. The first is that when the output noise covariance
R, is block diagonal, there is a reduction in processing time which can
range up to fifty percent depending on the signal model and selection of
data vector components. The second reason is that should there not be
adequate time available to complete the processing of the data vector (as
when a priority interrupt occurs, for example), then there is an effective loss



Sec. 6.4 SEQUENTIAL PROCESSING 143

of only some components of the data in sequential processing rather than a
loss of the entire data vector as in simultaneous processing.

Sequential processing results can also be helpful for generalizing certain
theoretical results for scalar measurement processes to vector measurement
processes. In addition, sequential processing proves useful in the implementa-
tion of adaptive estimators discussed in a later chapter.

Sequential processing can be used with either the normal (covariance)
Kaiman filter equations or the information filter equations, or with the square
root formulations of these equations discussed later in the chapter. It is very
hard to pin down precisely when it should be used: the choice is governed
by tradeoffs in computer time and computer storage requirements, by the
relative dimensions of input, state and output vectors, by the diagonal or
nondiagonal nature of the noise covariances, and so on. The most complete
comparative results can be found in [12, 13]. With qualifications described
in these references, it does seem that sequential processing is preferable for
covariance equations, including square root formulations, but not for infor-
mation filter equations, again including square root formulations. However,
a modification of the sequential processing idea applied to the time-update
equations does prove advantegeous for the information filter.

We shall begin by supposing that the output noise covariance matrix is
block diagonal encompassing thereby the case of a strictly diagonal matrix.
Of course, block diagonal or strictly diagonal covariance matrices occur
commonly. Thus with signal model

Xper1 = Fx, + Gw, 4.1)
z, = H'x, + v, “4.2)
we have E[v,v;] = R = diag (R', R?, ..., R"). (For clarity, we are omitting

the time subscripting on matrices where possible.) The R’ have dimension
p' X p'with 3 p' = p, where p is the dimension of v, and the measurement
=1

vector z,. It now makes sense to partition v, into components v}, v, ..., v
and z, into components zj, z%, ..., z;, where v} and z§ are of dimension p'.
A partitioning of the measurement matrix as H = [H' H?* ... H’], where
H'isn x p', allows us to rewrite the measurement equation (4.2) as

2l = (H')x, + vi (4.3)

with E[vivi] = R'6,, for i,j=1,2,...,r Clearly, for each i the sequence
{4} is a white noise sequence.

We are now in a position to define more precisely the notion of sequential
processing of vector data. Instead of processing z, as a single data vector as in
the simultaneous processing of earlier sections and chapters, the components
2}, 2%, . .., z}, are processed one at a time, or sequentially. Thus instead of
calculating X, ,, = E[x,|Z,_,, z;]) in terms of %, , = E[x,|Z,_,] and z,,
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first the quantity X, = E{x,|Z,_,, zi] is calculated in terms of %, _, and z{,
then X2 = E[x,|Z,_,, z}, z#] is calculated in terms of £} and z%; and so on
until finally

Xene = X = E[x | 2oty 20y Zhy -+ -5 22]

is obtained. How then do we achieve the intermediate estimates x4 for
i=1,2,...,r?

The estimates xi are achieved by a direct application of the Kalman
filter equations to the measurement process (4.3), regarding i as the running
variable. (Of course, the filter equations are specialized to the case where the
state is a constant vector and thus the one-step prediction estimates are iden-
tical to the true filtered estimates.) Consequently, we have (assuming inde-
pendent measurement and input noise):

Measurement-update Equations (r updates, i = 1,2, ..., r)
L' =X H{(H)YZH + R (4.4)
Fe =27+ Lizi — (H)Y' 0] 4.5)
=1 — L(H)]Z ! (4.6)

Here the measurement-update equations are initialized by X} = %,,,_, and
¥° =%, ,_,and terminated by the identifications X, = X and X,
= Z;. More symmetric forms of (4.6) can naturally be used.

Of course, %, and Z,,,, are obtained from %,, and X, via the
usual time-update equations.

One evident advantage of sequential processing, as opposed to simul-
taneous processing, is that instead of requiring the inversion of a p X p
matrix [H'XH -+ R] as in simultaneous processing, the inversion of p‘ X p’
matrices [(H)’ZH' 4 R]is required fori =1, 2, ..., r. Since the latter task
requires less computational effort, sequential processing may lead to con-
siderable computational savings. Actually, it is argued in [14] that a further
saving is possible when p; > 1. To compute TH[{H'ZH + R]™!, one first
computes (XH) and then [H'(XH)+ R]. But then one computes X
= ZH[H'XH + R]™! by solving the equation X[H'LH + R] = XH using
Gaussian elimination, rather than by explicitly evaluating the matrix inverse.

We now make some miscellaneous observations.

1. Suppose that R is diagonal. There are then a number of partitions of
R into block diagonal form other than the obvious one. More
generally, if R is block diagonal with r > 2, there is more than one
block diagonal decomposition of R. Reference [13] discusses the
optimal choice of decomposition. Interestingly, if p << n/2, n being
the state-vector dimension, it seems that simultaneous processing is
often optimal.
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In case R is not block diagonal, suppose a Cholesky decomposition
[15] of R, is given as

Rk o SkSL 4.7)
where §, is lower block triangular. Note that §, is easily found from
R, (see Prob. 4.1). Then one works with measurements 7, = $;'z, and
output noise covariance matrix R, = /. The components of Z, are
processed one at a time; the ith component of %, is, incidentally a
linear combination of the first i components of z,.

. One can use Egs. (4.4) and (4.6) to pass from X, .., to X, ., benefit-

ing from the computational simplicity, but at the same time one can
dispense with the calculation of £}, £2, ... and simply use the fact that

"Ack’k = Zk kaREI[Zk - H;('Qk'k—ll + '?k'k—x (4-8)
to pass from %, ,_, to £, .. This gets away from the notion of sequen-
tial processing of the measurements. Much of the development above
is then seen to be descriptive of a clever way of passing from I, ,_,

to Z,. and nothing else. Of course, as a tool for minimizing the
consequences of priority interrupts, sequential processing is justified.

. The measurement-update equations for the information filter are

given in the last section; we repeat them as

Lok = Eihoy 4+ HOROH (4.9)

Geg = ey - H Rz, (4.10)
A brief examination of these equations shows that there is little or
no advantage to be gained from sequential processing.
Despite the above point, some of the ideas of this section are relevant
to the information filter. In the last section, a certain duality was
established between the covariance filter and information filter; an
examination of this duality shows that the measurement-update
equations of one filter are related to the time-update equations for
the other. Consequently, we can construct alternative schemes for the
time-update equation of the information filter, when Q, is block dia-
gonal, which may be computationally attractive. This is done below.

Suppose that Q@ = diag [Q!, 02, ..., Q°] with 0/ of dimensionm; X m;,
i m; = m, with m the dimension of w,. Partition the input matrix G as
k=1

[G* G* ... G°]. We replace the following equations (omitting most time
subscripts):

= (F ) ELWF 4.1

Zili =[A"" + GQG')! (4.12a)

= A — AG[G'AG + Q7 ']"'G' A4 {4.12b)

= [l - BG']4 (4.12¢)
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where
B = AG(G'AG + @~ Y)! 4.13)
by the following, forj= 1,2, ..., s:
AV =FYCEu) 'Ft A=E) j>1 4.19)

Gt = [(4)" + (@)Y QGT! (4.152)
= A’ — AG(GY AG’ + (@) '] (G)Y A’ (4.15b)
= [I — BXG')]4! (4.15¢c)

with
B/ = A'G[(G))' A'G' + (@)~ '] (4.16)

where £¢ = X, . Note that (4.15¢) is normally used in preference to (4.15a)
or (4.15b). The easiest way of deriving these equations is to observe that with

' = FX°F + G'Q'(G'Y (4.17a)

=X+ GIQGYY  j=2,...,8 (4.17b)
and with 2° = X, there results

It = FXF + 2 G'QNGY = Zprrpi

Equations (4.15a) constitute restatements of (4.17).
We can also replace the equation

Grevrye = [I — BG'|(F~') dipe (4.18)

by setting
@' = [I — BYG')I(F ) drs (4.192)
4’ =[I—B(G')la’™t j>1 (4.19b)

There results @* = d,.,,- Reference [12], incidentally, suggests that when
m > n/2, it is preferable not to use (4.19), even though (4.14) through (4.16)
are still used. In lieu of (4.19) one uses

X I o
Geire = Zii 1P Zgp

which is readily derived from (4.11), (4.12a), and (4.18).

Block Processing

The reverse process to sequential processing is block processing. For
systems with large state dimension (say = 30), there may be computational
advantages in block processing the measurements and applying Fast Fourier
Transform (FFT) techniques, [34]. Such techniques are outside the scope of
this text.



Main Points of the Section

With a diagonal R matrix (which may always be secured by a Cholesky
decomposition) covariance filter formulas for the measurement-update
equations exist which amount to using a sequence of scalar updates. With
a diagonal Q matrix, analagous information filter formulas can be found
for the time-update step.

Problem 4.1. (Cholesky Decomposition). Suppose that R = §§’ with R an
n X n nonnegative definite symmetric matrix and § lower triangular. Show that
entries of § can be calculated recursively; fori =1,2,.. .,

—1

Su =Ry — ZI SH*
i=

Sp=0 j<i

i-1
’—‘8171[}3/“—)‘2] SiSixl J=i+Li+2,...,n

Problem 4.2. With Lk = Zk/k_lH(H'Ek/k_‘H -+ R)_I, show that
[—LH =[] U~ LIHY]
i=1
where the notation is as used in this section.

Problem 4.3. Verify the claims associated with Egs. (4.14) through (4.18).

6.5 SQUARE ROOT FILTERING

Use of the normal Kalman filter equations for calculation of the error
covariance can result in a matrix which fails to be nonnegative definite.
This can happen particularly if at least some of the measurements are very
accurate, since then numerical computation using ill-conditioned quantities
is involved. As a technique for coping with this difficulty, Potter [3, pp.
338-340] suggested that the error covariance matrix be propagated in square
root form; his ideas were restricted to the case of zero input noise and scalar
measurements. Potter’s ideas were later extended to cope with the presence
of input noise and vector measurements {11, 12, 16-24}. Update equations
for the square root of an inverse covariance matrix were also demonstrated.

Let M be a nonnegative definite symmetric matrix. A square root of M
is a matrix N, normally square, but not necessarily nonnegative definite
symmetric, such that M = NN’. Sometimes, the notation M''? is used to
denote an arbitrary square root of M. Let §,,, and $,,,, denote square
roots of X, and Z,.,,. We shall shortly present update equations for the
square roots in lieu of those for the covariances.
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There are two crucial advantages to these equations, the first having been
alluded to above:

1. Since the product §§’ is always nonnegative definite, the calculation
of X as §§' cannot lead to a matrix which fails to be nonnegative
definite as a result of computational errors in the update equations.

2. The numerical conditioning of § is generally much better than that
of X, since the condition number of § is the square root of the condi-
tion number of X. This means that only half as many significant digits
are required for square root filter computation as compared with
covariance filter computation, if numerical difficulties are to be
avoided.

For certain applications with restrictions on processing devices, square
root filtering may be essential to retain accuracy.

Square root algorithms are not always without disadvantage, for the
algorithms usually, but not always, require larger computer programs for
implementation; the computational burden can vary from } to 1} times that
for the standard algorithms, depending on the state, input, and output vector
dimensions n, m, and r. For small #, the square root covariance filter is more
efficient than the square root information filter, but for moderate or large r,
the reverse is true.

The reader may recall one other technique for partially accommodating
the first difficulty remedied by square root equations. When using the usual
covariance filter equation, it is possible to write the update equation as

Ek+1/k = (Fk - KkH;c)Ek/k—-l(Fk - KkH;c), + KkRk ; + GkaG;c

where K, is given in terms of X, , _,, etc. This form of update equation tends
to promote nonnegativity of X,.,,. Note, however, that if £, ,_, fails to be
nonnegative for some reason, X,,,, may not be. Thus nonnegativity is not
as automatic as with the square root approach.

Covariance Square Root Filter

The Potter algorithm [3] was first extended by Bellantoni and Dodge
[16] to handle vector measurements, and subsequently by Andrews [17] to
handle process noise as well. Schmidt [18] gave another procedure for han-
dling process noise. Vector measurements can be treated either simulta-
neously or sequentially; in the latter case a diagonal R matrix simplifies the
calculations. Until the work of Morf and Kailath [24], time and measurement
updates had been regarded as separate exercises; their work combined
the two steps. In this subsection, we shall indicate several of the possible
equations covering these ideas for the case of models with uncorrelated input
and output noise.
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Time update.

Rprin - Fo%e, (5.1)
P[8kn] ]Sl 5
mil 0 | 'l0oi¥Gi]

ey

In (5.2), the matrix T is orthogonal. but otherwise is any matrix making
Sk+1 11 (5.2) upper triangular. It is readily checked that (5.2) implies that
Zivin = B 2o Fr + G,0,.G,. The construction of 7 is a task to which
much attention has been given: the main methods suggested are use of the
Householder and modified Gram-Schmidt methods, while [29] suggests that
a Givens transformation could be used. These are standard algorithms of
numerical analysis [15]; an outline of their use in this connection can be found
in, e.g., [I'1]. We remark that the algorithms frequently find triangular square
roots—this may be advantageous if an inverse of the square root is needed.

Measurement update via simultaneous processing. Here
S = e D KRy HIZ, o (HY) Ve HGS ) (5.3)
[(Rk G HE L HY Y IC;“‘ 7 «}” R 0 7
0 Siel SiiiHe Sia
where 7 is orthogonal. Finding T is of course the same task as finding T in
(5.2). Verification of these equations is requested in the problems. Notice that,

in view of the inverse in (5.3), it is helpful to have (R, +~ H}X,.,_ H)'?
triangular.

(5.4)

Measurement update via sequential processing. We assume that the R
matrix is diagonal (not just block diagonal), viz., R = diag[R', R?, ..., R'].
(If this is not the case, the Cholesky algorithm is used to determine a trans-
formation producing a problem in which R is diagonal, as outlined in the
last section.) Let H} denote the ith column of H, and z} the ith entry of =,.
With X0 =%, ,.,, =% 8 =8:4.1» & =8, one obtains for

i=1,2,...,r:
D' (87 H (3:58)
a = (YD F RY (3-50)
po= (1 4 Ja R (5.5¢)
§ = §1 — g DD (5.6)
=% 4 W8 DYz — (H)&1] (5.7)

Of course, these equations define a sequence of updates corresponding to
a sequence of scalar measurements. The equations agree with the original
algorithm (a derivation of which is requested in the problems), and also
follow by specializing (5.4) to the scalar case. in which it is always possible
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to specify a T explicitly, as

T=1- Lo (5.8)
where & is the vector
@ = [(Rk + HiZep-H)'? — R}‘/z] (5.9)
—Sl/k—IHk :

Morf-Kailath combined update equations. With T, T as defined earlier,
one can readily verify the effect of following one transformation by another;
using (5.2) and (5.4), one has

- RYY 0
1 oyT o F ) )
0 T 0 1 Sk,/k——!Hk gk/k-le
0 0¥ G
o (R + HiZinH)'? KiF
= 0 v o
0 T] Sk/k k
- 0 0.V'G
[(Ri + HiZuu-H)"Y  KiF,
= 0 Sev 17k (5.10)
L 0 0
This suggests that any orthogonal matrix T such that
RV 0
T Sin-1Hi  Sere-1Fx
0 Y6y

is lower triangular or simply block lower triangular generates the matrix
K. with the relevance defined in (5.3) and square roots of R, + HZ - Hy
and X, ,,. This is easily verified. In this way one obtains update equations,
which are as follows:

2k+1/k = Fk)'ek/k—l + Fkkk(Rk + H;czk/k—ka)_l/z(zk - H;cf‘k/k—l) (5~l 1)

Ry 0 (R + H;:Ek,"k—lHk)”Z, K;F;
7 Skik-1He Sku-1Fi| = 0 Skr1/k (5.12
0 QLY G, 0 0

Evidently, there is no need to compute K by itself; from (5.12) K, F, is seer
to be computed directly and used as a single entity in (5.11).

Information Square Root Filters

Information square root filters can be developed by using the duality
between information and covariance filters, mentioned in earlier sections
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or by direct calculation. Both approaches can be found in the literature;
references [11, 12, 19-24] are relevant. It is interesting to note that while no
one set of filtering equations is always superior to all other sets, [12] argues
that the square root information filter equations are most commonly the best
to use.

As one might expect from examination of the covariance square root
equations: there is a straightforward measurement-update equation; there
are two possible time-update equations, one using a series of scalar updates
and the other a single vector update; and there is an update equation covering
both measurement and time update. These equations are set out below. In
the various equations, §;% is such that ($z)'Sx% = Zzk and §;%-, hasa
similar property. Just as update equations for ;% and X; ) _, can be used
when these matrices are singular (for example, when no information concern-
ing the initial state is available) so it turns out that update equations for
Sik and 8¢k -, can be found even if these quantities are singular.

Measurement update.

-1 -1
ligk’k} _ Ti: Sk,’k—l ) (513)
0 R;VIH
by br-
[ “] — T[ ket J (5.14)
* RiViz,
Here T is orthogonal, Bk/k = SiXXy and Bk,,k_l = S’k 1%cx-1- The general

idea is to find T such that the right side of (5.13) is upper triangular. Then
the various quantities can be defined.

Scalar time-update equations. We assume that Q = diag{Q', 0%, ...,
Qm™}, performing a preliminary Cholesky decomposition if necessary.

E' = (§°)'F'G'  E'=(§° )G i>1  (515)

of = [(EYVE = (@) '] i>1 (5.15b)

P g o1 [~
y=(1+ ¢Q‘,) P> (5.15¢)
(81 = (8 'F ! — y''EV(E)(§°) ' F! (5.15d)
8H ' = (8§ ) —yLE(EYE ! i>1 (5.15e)

One has (8°) 7! = (Se) ' and (8™) ' = (8i+ 1) '. The reader will perceive
an obvious parallel between these equations and those of (5.5) and (5.6);
he should also consider why the F matrix appears only at the first step of the
iteration. (A similar phenomenon was observed in the normal information
filter cguations.) The update equations for b,., are given, with b° = b, , and
™ = byiiiws BY

b= b1 — dy E(EYH ! (5.16)
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Vector time-update equations.

[(QZ‘ + G AG )Y B :]_ T[ (@)
0 Sktim SiiFi'Gy  SihFi!

where T is orthogonal and produces the upper triangular form in (5.17). Also,

* =T 0 5.18
|:Bk+1/kj|_ [Ek/k] ( )

The combined update equations can be found easily by combining the
measurement- and time-update equations, as in the covariance square root
filter. A derivation is called for in the problems. Again, as with the square
root filter, specialization of (5.17) to the scalar input case and selection of a
suitable T will generate (5.15).

} (5.17)

Review Remarks

The last three sections have illustrated choices which can be made in
the implementation of filter algorithms: covariance or information filter;
square root or not square root; sequential or simultaneous processing of
state and covariance data, or covariance data only; symmetry promoting or
standard form of covariance and information matrix update. Yet another
choice is available for stationary problems, to be outlined in Sec. 6.7. There
are also further choices available within the square root framework. Recent
references [25, 26] suggest that factorizations of the form ¥ = M DM’ should
be used (rather than £ = §§’), where D is diagonal and M is triangular with
I's on the diagonal; update equations are found for M and D in covariance
and information filter frameworks.

Main Points of the Section

Square root filtering ensures nonnegativity of covariance and infor-
mation matrices and lowers requirements for computational accuracy, gen-
erally at the expense of requiring further calculations. Information and
covariance forms are available, with and without sequential processing, and
with and without combination of time and measurement update. Sometimes,
it is essential to use square root filtering.

Problem 5.1. The condition number of a square matrix A is [Ama<(A"A4)/
Amin(A4’A)]1/2. Show that the condition number of § is the square root of the condi-
tion number of (§§").

Problem 5.2. Verify the measurement-update equation (5.4).
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Problem 5.3. (Potter Algorithm). In the scalar measurement situation, as we
know,

Zire = Zisiem1 — Zupk—1 Hu(Ry + HiZiw  H) P Hi X iy
Show that this yields

Zeke = Sl — aDDShs—,
where

D = §ik-1Hy, Skik-18kk-1t = Lip—y and a~! = D'D + Ry
Then show that by proper choice of the constant y one has
I—oDD = —ayDDYI — ayDD")
Deduce the square root update equation, and relate these calculations to Egs. (5.5)
through (5.7).

Problem 5.4. Verify the claims concerning the matrix 7 of Egs. (5.8) and (5.9).

Problem 5.5. The matrices other than T on both sides of (5.12) define trans-
poses of square roots of the matrix

M— [Rk + HiZi-1Hy H Xy Fh }
Show that if E{wa;] = C,d,, with C, % 0, square root equations for the case of

dependent input and output noise can be obtained by studying square roots (one
block upper triangular, the other block lower triangular) of

M - G
M= | G Q¥
Cie O:Gr! O

Assume that Q! exists, See [24].

Problem 5.6. Derive the following combined measurement- and time-update
equations for the square root information filter. With symbols possessing the usual
meaning,

Q%! 0 Q' + GreAGOYY B
T| SikFi'Ge  SihFx' | = 0 Sictiein
0 RilrH ., 0 0
* 0
5k+l/k+1 = T Ek/k
* _ Ritfzin

6.6 THE HIGH MEASUREMENT NOISE CASE

We have seen in an earlier section that for some low measurement noise
filtering problems, a square root filtering algorithm may be necessary if
numerical problems are to be avoided. In contrast to this, a study of the high
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measurement noise case shows that considerable simplification to the algorithm
for calculating the error covariance is possible using approximations.

For the moment, we shall work with time-invariant, asymptotically stable
signal models and filters. Later, we shall note how the ideas extend to the
time-varying case.

The idea in high measurement noise filtering is the following. Instead of
determining the solution of the steady-state Riccati equation

L =F[L— ZH(H'EH + R)'H'EZ)F + GQG’ 6.1

(which is the optimal one-step error covariance) one obtains instead the solu-
tion of the steady-state linear equation

P = FPF' + GQG' 6.2)

The reader will recognize that P is the state covariance of the signal r_’node_l

and is easier to obtain than X. He should also realize or recall that P — L

> 0. (Why?)
The usual Kalman filter gain is
K= FXH(H'IH + R)! 6.3)
However, one uses instead
K¢ = FPH(H'PH + R)™! (6.4)
which is much easier to compute. Actually, one can even use
K¢ = FPHR™! (6.5

We claim that when the measurement noise is high, this is a satisfactory approxi-
mation. To see this we proceed as follows.
From (6.1) and (6.2), we obtain

(P—%)=FP — L)F + FEH(H'EH + Ry 'H'LF’
Now let us define a high measurement noise situation as one where R is
large relative to H'PH. (Thus, with z, = y, 4 v, E[v,v}] is large relative to

E[y:y:].) Since P — £ > 0, this means that R is large relative to H’ZH and,
accordingly, the above equation for P — I yields

P—Z£=0(R") butnot O(R?) (6.6)
Comparing (6.3) with (6.4) and (6.5), we see that this implies
K — K¢ = O(R"?) (6.7)

Now the steady-state covariance £? associated with use of the gain (6.4) or
(6.5) in lieu of (6.3) is easily shown to satisfy

2r = (F — K'H)ZN(F — K°H’Y + GQG' + KRK¥
and in view of (6.7), we have
I» = (F— KH)Z?(F — KH'Y 4+ GQG' + KRK' + O(R™?)  (6.8)
An alternative expression for (6.1) is, however,
L=(F— KHYEF — KH'Y + GQG' + KRK' (6.9)
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so that

2L OR 7 (6.10)

The asymptotic stability of £ - KFH " is crucial here. (Why )

We sec then that in high noise, the signal mode! covariance will be close
to the optimal error covariance [Eq. (6.6)] but that the error performance
associated with a suboptimal filter 1s an order of magnitude closer to the
optimal error covariance [Eq. (6.10)]. The gain and performance of the
suboptimal filter [Eqgs. (6.4), (6.5), and (6.8)] can be determined in a much
simpler way than that of the optimal filter [Egs. (6.3) and (6.2))].

Obviously, as 4., (R)- »c>, we have £ - P and £# . P, and with
Amin{ R} = oo, there is no point in filtering. What we have shown, however, is
thatas R - o=, _ _

R

[V
which shows that, if there is a point to filtering, the additional error resuiting
from the suboptimal filter becomes negligible the higher the output noise is.

What of the time-varying case? Steady-state equations are obviously
replaced by recursive equations: provided that bounds are imposed on various
system matrices, including R,. R;', P, and X2, one can obtain for certain
constants C, and C,

>0

P. X, CImax A, (R)] T (6.1
k

Ko K- Cimax i, (RN * (6.12)
k

and the derivation carries through much as before. Exponential stability of
the signal model is normally needed (else P, can be unbounded), as is expo-
nential stability of the suboptimal filter.

The ideas of this section originally flow from a study of high noise filter-
ing in Wiener’s book [27] and its extension to Kalman filtering in [28].

Main Point of the Section

In high noise, simplified formulas can be used to calculate the filter
gain and performance.

6.7 CHANDRASEKHAR-TYPE, DOUBLING,
AND NONRECURSIVE ALGORITHMS

Of course, the Kalman filter for the case when all the signal model
matrices including the noise covariance matrices are time invariant can be
solved using the more general time-varying theories discussed so far. And
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in fact a good way to solve the algebraic equation associated with the time-
invariant filter for stationary signals,* namely,

2 =F[Z — ZH(H'EH 4+ R)'H'ZIF’ + GQG’ (7.1)
given F, H, R, G, and Q as time-invariant matrices, is simply to solve for £ as
L= }‘12 sk (7.2)

where
v = FlZup-1 — Zipe- 1 HH Zop\ H + R H'Z 0 IF' + GOG™ (13)

for some nonnegative definite £,,_, (say Z,,_, = 0). Then one computes
the filter gain from K = FEH(H'EH + R)™'.

There are, however, other ways of proceeding when the signal model is
time invariant and the input and measurement noise are stationary. We shall
describe three different approaches.

Chandrasekhar-type Algorithms

Methods are described in [29] based on the solution of so-called
Chandrasekhar-type equations rather than the usual Riccati-type equation.
The advantages of this approach are that there is a reduction in computa-
tional effort (at least in the usual case where the state dimension is much
greater than the output dimension), and with moderately careful program-
ming there is an elimination of the possibility of the covariance matrix
becoming nonnegative. Interestingly, it is possible to compute the filter gain
recursively, without simultaneously computing the error covariance. Of
course, knowing the steady-state gain, one can easily obtain the steady-state
error covariance. The approach described in [29] is now briefly summarized.

Once again we will be working with the now familiar time-invariant
state-space signal model

Xpoy = Fxp + Gw, E[w,wi] = Q0 (7.4)
z, = H'x, + v, E[v,v]] = RS, .5
with E[v,w;] = 0 and the Kalman filter equations
K.,=FX, , HHZ,, H+ R (7.6)
v = (F — KeH )y + Kizy 7.7

(It is possible to cope with dependent input and measurement noise.) A
lemma is now introduced.

*Independent input and measurement noises are assumed.
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Lemma 7.1. With the definition 6%, = X,,,, — Z,«.; for arbitrary
E()/—l _>_ 0’

5Zk+1 = [F — Kk*—lH’][‘sEk + JEkH(HIzk,’k—IH + R)_‘Hlézk]

X [F — Ko H'Y (7.8)
= [F — KH'[[6%, — 6S,H(H'S,,, ,H + R) 'H'83,]
X [F— K,H' (7.9)

Proof. From the Riccati equation (7.3) and Kalman gain equation(7.6),
we have a difference equation for the increment in error covariance as

5Zk+1 = FéZkF’ - Kk+1(H,Zk+1/kH + R)K.

+ K(H'Zipe-1H + R)K (7.10)
But
Ky = F o1 H(H'Z4 i H + RY™!
= [Ki(H'Zys-1H + R) + FOL,HH L. H + R)™! (7.11a)
= [K(H'ZsiuH + R — H'SLH) + FOLH(H'E,,,, H + R)!
=K, +(F— KH )X HH'Z, ., ,H + R)! (7.11b)

Substitution of this expression for K, ,, into the above expression for
JZ,+, and collection of terms yields (7.9). [The derivation of (7.8) along
similar lines is left to the reader.]

The formulas of this lemma underpin the various equivalent Chan-
drasekhar-type equation sets (of which there are a number). We shall limit
our presentation here to one set only, referring the reader to [29] and the prob-
lems for other sets. All the derivations depend on certain observations. First,
as shown by (7.8), rank J%,., < rank 6%,, so that rank 6Z, << rank 6%, for
all k. Second, 8%, may be written as Y, M, Y, where M, is a square symmetric
matrix of dimension equal to rank 8%,. Third, recursions for Y, M., K, and
Q, = H'E,,,_H + R tend to figure in the various equation sets. One such
set is provided by:

Qi =Q, + H'Y, MY H (7.12a)
Kivr = (K Qy + FY, M, Y H)Q ! (7.12b)
Yoo =(F — Kes H)Y, (7.12¢)
Myy, = M, + MY HQ'H'Y M, (7.12d)

with initializations provided by Q, = H'E,,_,H + R, K, = FX,,. (HQ; ',
while Y, and M, are found by factoring

520 = FZO/—IF’ + GOG" — KOQEIK:J — Xo/oy
as YoM, Y, with M, square and of dimension equal to rank Jd%,. In case
Z,.1 = 0and Q has full rank, onecan set M, = Q, Y, = G.
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The derivation of (7.12) is easy. Thus (7.12a) is immediate from the
definitions of Q, and 6%, = Y M, Y}, (7.12b) follows from (7.11a) and
(7.12¢), and (7.12d) from (7.8). An equation for X, , , is also available, as

Tevie = Zym-r + YeM Y% (7.12¢)

Especially if £,/ is not required, there can be computational advantage in
using Chandrasekhar-type algorithms. This is most easily seen by studying
the way the number of scalar quantities updated by the Riccati and Chan-
drasekhar approaches changes as n, the state-variable dimension, changes
while input and output dimension remain constant. With the Riccati
approach, the number varies as n?, while with the Chandrasekhar approach it
varies with n. For values of » that are not high with respect to input and
output dimensions, the Riccati equations can however be better to use.

In the remainder of this subsection, we offer a number of miscellaneous
comments.

1. Information filter Chandrasekhar-type equations can be developed
(see [29]).

2. Perhaps surprisingly, algorithms very like the square root algorithms
dealt with earlier can be used to update the quantities Q,, K,, and
L, = Y, M}?. For details, see [24]. This idea allows the introduction
of some time variation in R and Q.

3. Recall that for optimal filtering from k = 0, one takes X, _, = P,,
the initial state covariance of the signal model. The Chandrasekhar
equations make no requirement that P, be the steady-state signal
model covariance, or zero for that matter—although in both these
cases M, turns out to have low dimension. (See the text and Prob.
7.1.) This means that the algorithms provide exact filters for a class
of signal models with nonstationary outputs (though the outputs
are asymptotically stationary).

4. It should be emphasized that one of the main uses of the Chan-
drasekhar algorithm is to determine the time-invariant filter equa-
tions; thus, transient values of K, will be thrown away and X,
need not be computed. The easiest initialization is £,,_, = 0 (as then
the dimensions of Y, and M, can be helpfully low.)

The Doubling Algorithm

The doubling algorithm is another tool for finding the limiting solution
of the Riccati equation (7.3) associated with time-invariant models and
stationary noise. It allows us to pass in one iteration from X, ,,_, t0 ;4,2
rather than X, ., provided that along with Z_,,_, one updates three other
matrices of the same dimension. Though it can be used for arbitrary initial
conditions, we shall take X,,_, = 0, since this allows us to get away with
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updating three rather than four matrices. Doubling algorithms have been part
of the folklore associated with Riccati equations in linear systems problems
for some time. We are unable to give any original reference containing mate-
rial close to that presented here; however, more recent references include
[31-33], with the latter surveying various approaches to the a'gorithm.

Doubling algorithm.

Uees = 0T 4 Biyi) ', (7.13a)
Bivi = Bi + o (I + Biy) ' Breoti (7.13b)
})k+l = yk "t“ a;(Yk(I /*’ ﬂk}’k)"ka (713C)
with
«, =F B, =HR'H  y =GQG (7.13d)
Moreover,
Ve = Zararoy

We remark that if §, y are symmetric matrices, so are (/ + fy)~'f and
y(I -+ By)™', assuming the inverse exists. (Prove this in two lines!) This allows
one to show that §, and y, in (7.13) are symmetric for all k.

We turn now to a proof of the algorithm. It proceeds via several steps
and may be omitted at first reading. For convenience in the proof, we shall
assume F'is nonsingular.

Relationship between Riccati and linear equations. As the first step in
proving (7.13), we develop a relation between Riccati and linear equations.
Using (7.3), we have

v = Flon(I4 HRT'H'E, ) 'F' + GOG’
= FZin [(F) '+ (F)Y'HR ' H'E, ]!
+ GOG((F')™! 4+ (F) '"HR'H'L, /)
XUF) + (F)THRH Epe ]!
= {GQG'(F'Y"' + [F -+ GOG'(F'Y '"HR "H')% i}
XAF) T+ (F) HRH'Z 17!
=(C + DEy- (A + BZ, )7 (7.14)

with obvious definitions of 4, B, C, D. Now consider the linear equation

with square X,, Y, :
LHI} [ D}L kJ 715
k+1 C k .

Equation (7.14) shows that if X, Y, are such that Y, X;' = X, ._,, then one
must have Y, , X;!, = 2,1, To accommodate £,,_, = 0, we can take
X, =1Y,=0.
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Fast iteration of the linear equation. To obtain a doubling-type iteration
of Z,,x_:, we shall obtain a doubling-type iteration of (7.15). It is clear that
by squaring one can successively compute

A B} A B A B
(I)(2)=[C D]’ (I)(4)=[C Djl’ ces (I)(2")=|:C D}

without computing intermediate powers. Then one easily obtains the matrix
pairs (X,, Y,), (X,, Y.), ..., (X3, Y, in sequence. We therefore need an
efficient iteration for ®(2*%). This flows from a special property of @©(1).

Symplectic property of ®(1). A 2n X 2n matrix Z is termed symplectic if

Z'JZ = J, where
; 0 —I,,}
IR A

1t is easily verified from the identifications of 4, B, C, D in (7.14) that
A B F))! F)"'HR 'H'
(1) = = ( ,) , ( ), , ,] (7.16)
C D GOG'(F'y"' F -+ GQG'(F')"'HR'H
is symplectic. The definition of symplectic matrices shows that if Z is sym-
plectic, so is any power of Z; therefore ®(2*) is symplectic for all k. Now a

further property of symplectic matrices, easily verified, is the following. If
a symplectic Z is written as

Z — |:le ZlZil
Z21 ZZZ
with Z,, nonsingular, then Z,, = (Z1,)"! + Z,,Z!Z,,. This means that if
®(1) is written in the form
;! @By ]

(1) =
) L’x“l_l o) + 707t B,
which may be done by defining «,, f;, y, as in (7.13d), then ®(2*) has the

form
o' o' B ]
Vel 0k 4 vi0i ' B

(7.17)

D(2F) = [ (7.18)

assuming oz ! exists.

Proof of the doubling algorithm. Using the fact that ®(2**!) =
O(2F)D(2%), together with the definitions of a,, B, and y, in (7.18), the
recursions of (7.13a) through (7.13d) are easily obtained. Since with X,

J, I0 :,
’ 1(2) l
izg )0 Vkak—l

we see that Ty 0y = YuX 2 = Ve
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The speed of the doubling algorithm is not in doubt. Numerical stability
appears not to be a problem.

Algebraic Nonrecursive Solution of the Steady-state Equation

In [30], a method is presented for solving the steady-state equation (7.1)
by studying the eigenvalues and eigenvectors of the matrix ®(1) defined in
(7.16). Since any symplectic matrix Zis such that Z=' = J-'Z'J,i.e., Z 'is
similar to Z’, both Z~! and Z must have the same eigenvalues; equivalently,
eigenvalues of Z occur in reciprocal pairs.

Suppose that eigenvalues of ®(1) are distinct. Then for some square

T,, we have
T,, T A OTYT T, 1!
m(l):[ “ ][ }{ y J 19
TZI TZZ 0 A T21 TZZ
with the diagonal entries of A of modulus at least 1. The T; are defined by
eigenvectors of ®(1).
Suppose further that the diagonal entries of A have modulus strictly

greater than 1. (This will in fact be the case, but we shall omit a proof.) Then
the desired steady state Z is given by

$=7T,T; (1.20)

It is not difficult to see this, subject to a qualification given below. Set

[Sll S]ZJ — [Tll TIZ]_‘
SZ! SZZ T2'l TZZ

Then with X, = I, Y, = 0, the solution of the linear equation (7.15) is given

by

X I

)=o)
Y. 0
— Tll T12][Ak O :l[SllJ
TZl TZZ 0 A—k SZ!
Therefore,
YkXI:1 = [szAkSn + TzzA‘kszl][TnAkSn + T12A'k521]—1

Under the assumption on A and a further assumption that S,, is nonsingular,

we have
IimZ%Z,,_ ; =limYXg' =T, Ty}

koo k-
as required. It turns out that in problems of interest, S,, is nonsingular, so
the method is valid. The theory may however run into difficulties if R is
singular and one attempts to use a pseudo-inverse in place of an inverse. From
the numerical point of view, it is unclear that the technique of this subsection
will be preferred to those given earlier.



Main Points of the Section

Via Chandrasekhar-type algorithms, recursive equations are available
for the transient filter gain associated with a time-invariant signal model with
constant Q, R and arbitrary P,. Particularly for P, = 0, these equations may
involve fewer quantities than the Riccati equation, and therefore be more
attractive computationally. Via doubling algorithms, equations are available
for recursively computing X,.,., for k = 1, 2, .. .. The steady state error
covariance can also be determined in terms of eigenvectors of a certain
2n X 2n matrix.

Problem 7.1. Show that the following equations can be used in lieu of (7.12).
Yiiy = (F — K:H)Y,
My = My — M Y. HQ L H' Y M,
Kiyy = Ki + Yt M YL HQ Y,

with Q,,, and X, /. given as before. Explain why, if M, > 0, (7.12) are to be pre-
ferred, while if M, < 0, these equations are to be preferred. Show that M, < 0 if
Yo,y = P, where P is the signal model state covariance, i.e., the solution of P =
FPF’ + GQG’. Compare the dimension of M, in this case with that applying for
arbitrary Xq,_;.

Problem 7.2. Obtain Chandrasekhar-type equations for the case when there is
dependent input and output noise, thus Efv,wj] = Sy, S # 0.

Problem 7.3. Derive Chandrasekhar-type equations associated with an infor-
mation filter.

Problem 7.4. Why would it be unlikely that one could couple, at least usefully,
Chandrasekhar-type equations and sequential processing?

Problem 7.5. Establish doubling algorithm equations to cover the case when
Xo/-1 is arbitrary. (Hint: Use the same equations for &, P, and 9, as in the text
and one other equation.)
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CHAPTER ;

SMOOTHING OF
DISCRETE-TIME SIGNALS

7.1 INTRODUCTION TO SMOOTHING

Our results so far have been chiefly concerned with the Kalman filtering
problem where an estimate of a signal x, is made based on the noisy measure-
ment set {z,, z,, . . ., Z,_,}, denoted Z, _, for short, or the set{z,, z,, . . ., z,},
denoted by Z,. No delay need exist between the receipt of the last measure-
ment z,_, or z, and production of the estimate %X,,_, or X,,. However,
should a delay in the production of an estimate of x, be permitted, then one
could conceive of more measurements becoming available during the delay
interval and being used in producing the estimate of x,. Thus a delay of N
time units, during which z,.,, ..., z,.y appear, allows estimation of x, by

Riwen = E[xi |20, 2450 ooy Zian]

We term such an estimate a smoothed estimate. Any estimator producing a
smoothed estimate is termed a smoother.

Because more measurements are used in producing %,/,.~ than in pro-
ducing £,,,, one expects the estimate to be more accurate, and generally, one
expects smoothers to perform better than filters, although inherent in a
smoother is a delay and, as it turns out, an increase in estimator complexity.
Further, the greater the delay, the greater the increase in complexity. Thus
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it is important to examine the trade-offs between delay in processing data,
improvement in performance, estimator complexity, and design difficulty. In
many practical situations, a small delay is of little or no consequence, and
the limiting factor is estimator complexity.

The particular classes of smoothing problems we shall consider in this
chapter are those which can be solved by applying the Kalman filter results
of the earlier chapters. Thus we consider least squares smoothing for discrete-
time gaussian signals with additive, gaussian, and white measurement noise,
or linear least squares smoothing for linear signal models where the gaussian
assumption on the input and measurement noise is relaxed. The specific prob-
lem which we will look at is the computation of the conditional mean
estimate

Xe-wik = E{x,_n|Z}

(or, more generally, the linear least squares estimate E*{x, _y|Z,}.

Clearly, for most smoothing applications, it is unnecessary to construct
estimators which make available the estimates X,_y,, for all £ and for all N.
Historically, three particular types of smoothing problems have been studied,
each characterized by the particular subset of all possible smoothed estimates
sought. Fixed-point smoothing is concerned with achieving smoothed esti-
mates of a signal x, for some fixed point j, i.e., with obtaining £,,,, 5 for fixed
jand all N. Fixed-lag smoothing is concerned with on-line smoothing of data
where there is a fixed delay N between signal reception and the availability
of its estimate, i.e., with obtaining £, _, for all k and fixed N. Fixed-interval
smoothing is concerned with the smoothing of a finite set of data, i.e., with
obtaining %,,,, for fixed M and all k in the interval 0 <{ k < M. It turns out
that the various types of optimal smoothers which arise from the solution of
the above problems consist of the optimal filter augmented with additional
dynamics. (Actually, the term “smoother” is frequently used to denote just
the system driven from the filter rather than the combination of the filter
and this system, and the term “smoothing equations” is used to refer to the
equations additional to the filtering equations. Both the above usages of the
terms “smoother” and “smoothing equations” will be employed throughout
the chapter since the particular usage intended, where this is important, can
be determined from the context.) The various types of smoothers are now
considered in turn.

Types of Smoothers

The optimal fixed-point smoother provides the optimal estimate of x; for
some critical and fixed point j based on measurement data Z,, where k =
j4+ 1,74+ 2,.... The fixed-point smoother output is thus the sequence
Xiie1s Xjyje2s - - - fOr some fixed j.
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Fixed-point smoothing is useful where the initial states of experiments
or processes are to be estimated as the experiment or process proceeds.
Examples could be the estimation of the initial state of a satellite at the time
of injection into orbit using the orbit tracking data, or the estimation of the
initial states of a chemical process using data obtained from monitoring the
process.

As already noted, smoothing will give better estimates than filtering, or,
more precisely, estimates with smaller error covariance matrices. Since the
achieving of these more accurate estimates is the raison d’étre of smoothing,
it is clear that the following two questions are relevant:

1. How does the improvement in use of the estimate X,, instead of
X,,; vary as k increases ?

2. What is the maximum improvement possible, i.e., what is the
improvement associated with lim, ... X, or X, for large k?

As we shall see later in this chapter, for some estimation problems where
there is a high signal-to-noise ratio, the improvement due to smoothing may
be quite significant, perhaps greater than fifty percent, whereas for other
estimation problems where there is a low signal-to-noise ratio, the improve-
ment may be insignificant.

Later in this chapter, we shall also see that the improvement in estima-
tion due to smoothing is monotone increasing as the interval kK — j increases,
with the amount of improvement becoming effectively constant with a large
enough interval. This interval is of the order of several times the dominant
time constant of the filter, so that it is not necessary to introduce a delay of
more than two or three times the dominant time constant of the filter to
achieve essentially all the improvement due to smoothing that it is possible to
achieve.

The optimal fixed-lag smoother, as previously noted, provides an optimal
estimate of a signal or state x,_y, for some fixed-lag N, based on noisy mea-
surements of x,, x;,..., x,. Now inherent in the fixed-lag smoother is a
delay between the generation of a signal x,_, and its estimation as £, _y .
This delay of N times the sampling interval is the same for all k, and this fact
justifies the nomenclature fixed-lag smoothing. For the case when N is two
or three times the dominant time constant of the optimal filter, from what
has been said concerning the fixed-point smoother above, we can see that
essentially as much improvement as it is possible to achieve via smoothing is
achieved by the fixed-lag smoother.

What are the possible applications of fixed-lag smoothers? Most com-
munication system applications do in fact permit a delay between signal
generation and signal estimation. There is usually an inherent delay in signal
transmission anyway, and so it does not appear unreasonable to permit an
additional delay, possibly very small in comparison with the transmission
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delay, to achieve improved signal estimation. Of course, the key question
which must be asked in such applications is whether or not the extra com-
plexity in receiver design needed to achieve fixed-lag smoothing is warranted
by the performance improvement due to smoothing. For example, is a fifty
percent improvement in estimation worth the expense of doubling the esti-
mator complexity ? Clearly, the answer depends on the application, but the
fact that there are important applications where the answer is strongly
affirmative justifies investigation of this topic.

It may have been the case that a number of estimation problems in the
aerospace industry, ideal for application of fixed-lag smoothing results, have
been handled using the less efficient off-line fixed-interval smoothing tech-
niques. The inefficiency of these off-line techniques should become clear in
the following discussion of fixed-interval smoothing.

The optimal fixed-interval smoother yields the optimal smoothed esti-
mate of a signal at each time in a fixed interval [0, M], given noisy measure-
ments of the signal at each time in the interval. Historically, fixed-interval
smoothing has been a truly off-line process requiring one pass through an
optimal filter (possibly on-line), storage of relevant data, and a second pass
involving a time reversal through a second filter. Such fixed-interval smooth-
ing has certainly found wide application, at least in the space program, where
the off-line processing of data has been justified by the need for data smooth-
ing of some sort. For smoothing of short data sequences, fixed-interval
smoothing is an attractive proposition, but for extended sequences a quasi-
optimal fixed-interval smoothing by means of fixed-lag smoothing is
undoubtedly simpler to implement.

The basic idea of quasi-optimal fixed interval smoothing is as follows.
Let N be chosen to be several times the dominant filter time constant
and consider the case, N < M. Using a fixed-lag smoother, one evaluates
Rimen for k=0,1,. .., M — N, for each such k one will have %,,,,y =
Xum- To obtain %X, for k > M — N, two techniques are available, as
described in Sec. 7.4. One technique works by postulating that measurements
are available on [M - 1, M + N]with an infinite output noise covariance.
Then %,k v = Xpn for M — N < k <C M, and the fixed-lag smoother can
still be used to complete the fixed-interval smoothing. Description of the
second technique will be deferred.

History of Discrete-time Smoothing Results

Numerous papers on the state-space approach to smoothing for linear
dynamical systems have appeared since the early 1960s. Hard on the heels of
solutions to various filtering problems via these techniques came corre-
sponding solutions to smoothing problems. Reference [1] is a survey of many
of the smoothing results now available, with reference to over 100 papers.
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Smoothing as a significant topic in textbooks is more recent [2, 3, 4]. However,
in all the works on the subject of smoothing there are but a relatively few
devoted to applications, and indeed the application of smoothing algorithms
to control and communication system problems is still a wide-open field.

Among the early references are those of Rauch [5] and Rauch er al.
[6] who developed sequential algorithms for discrete-time, optimal fixed-
interval, fixed-point, and fixed-lag smoothing. Weaver [7] and Lee [8] looked
at the fixed-point and fixed-interval problems, respectively, using an aiterna-
tive approach. Mayne [9] showed that numerical advantages in computation
accrue in calculating the fixed-interval estimates as the sum of a forward-
time and reverse-time optimal filtered estimate, rather than as a correction
to filtered estimates as in earlier results, Fraser and Potter [10] further devel-
oped this particular approach and Bryson and Henrikson [11] looked at the
time-correlated measurement noise case.

More recently, Kelly and Anderson [12] showed that earlier fixed-lag
smoothing algorithms were in fact computationally unstable. Stable algo-
rithms have since been demonstrated by a number of authors including
Chirarattananon and Anderson [13] and Moore [14]. The approach taken in
[14] is used to develop the fixed-lag smoothing results of this chapter. The
three types of smoothing problems are viewed in this chapter as Kalman
filtering problems associated with an augmented signal model, i.e., a signal
model of which the original signal model forms a component part. The
development parallels to some extent earlier work by Zachrisson [15] and
Willman [16] on fixed-point smoothing, by Premier and Vacroux [17] on
filtering associated with systems having delay elements, and by Farooq and
Mahalanabis [18] on fixed-lag smoothing.

High signal-to-noise ratio results, and the significance of the filter domi-
nant time constant in defining smoothing lags are described in [19, 20], in
the context of continuous-time results. The ideas however are equally appli-
cable to discrete time. (Close parallels between discrete-time and continuous-
time linear-quadratic problems are normally standard; for the case of the
fixed-lag smoother, however, this is not the case, since the continuous-time
optimal smoother is infinite dimensional, while the discrete-time smoother
is finite dimensional.)

Most recent work on smoothers has been concerned with finding alter-
native formulas and algorithms. As examples, we might quote [21-23].
Examples of applications can be found in [24-28}.

In [27], for example, the problem is considered of constructing the track
taken by a submarine during an exercise in the post-exercise phase, the
reconstruction being to permit analysis and evaluation of the tactics used by
the participants in the exercise. Various sensors provide positional informa-
tion at discrete instants of time. In rough terms, a smoothing version of the
filtering problem of Sec. 3.4 is tackled.
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The Kalman filter itself turns out to be a good fixed-lag smoother for a
wide range of applications as pointed out by Hedelin {29]. The estimate
Xi/k-1 1N some instances is a suboptimal estimate of x,_, for some N. This
observation is explored more fully in [30].

7.2 FIXED-POINT SMOOTHING

In this section, we shall extend the Kalman filtering results of earlier
chapters to provide fixed-point smoothing results. In fact we shall show that,
from one point of view, the fixed-point smoothing problem is a Kalman
filtering problem in disguise and therefore may be solved by direct application
of the Kalman filtering results. First we define the fixed-point smoothing prob-
lem of interest, then develop the structure of the optimal fixed-point
smoother and study its properties.

Discrete-time fixed-point smoothing problem. For the usual state-space
signal model, determine the estimate

X = El[x,12Z,] 2.1
and the associated error covariance
T = E{lx, — Rdlx; — 2 1 Z4d (2.2)

for some fixed j and all & > j.

Derivation of Fixed-point Smoothing Results

Let us consider an augmenting state vector x¢ for the signal model
satisfying for & > j the recursive equation
Xior = X% (2.3)
initialized at time instant j by x§ = x, as depicted in Fig. 7.2-1. From (2.3) we
have immediately that
X =X 249)
for all £k > j and thus from the definitions of conditional estimates and con-
ditional covariances the following identifications can be made:
Xeviie = Xy (2.5)
27:“+1/k = Zj/k (2-6)
Here, X% ,/« denotes the covariance of the error (%, — x%,1).

The strategy we adopt is to simply apply Kalman filter results to the
augmented model of Fig. 7.2-1 to obtain the filtered estimate %2, ,,, and its
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3 n-delay —| H z,

F. 1 closed k=]
open k>|

a _
Xk—X‘

1 n-delay |-

Fig. 7.2-1 Augmented signal model. The blocks labelled n-delay com-
prise an n-vector of parallel, not cascade, unit delays, with n the state-vector
dimension.

error covariance L3, o1, equivalently, the desired fixed-point estimate £,
and its error covariance Z,,. (This approach was first pointed out in [15].
Alternative approaches are described in other texts [2-4]).

The augmented signal model is as follows:

Xkt1 _ Fk 0 X Gk
LZH] - {0 I]i:x‘,"} + { 0 j}wk (2.7)

’ xk
7, =[Hy 0] X + v (2.8)
with the state vector at & = j satisfying [x}, x9} =[x} x|l

Formally then, the Kalman filter for the augmented signal model (2.7)
and (2.8) is described for k > j by the equations

PR MR Paar
X+ 1/k 0 1 K; Xk/k-1 K,
‘with the state at k = j specified in terms of £,,,_, since x2 = x, and thus

%4,-1 = X;,;_,. The gain matrix is given for & > j after a minor simplifica-
tion as

K Fo O Ziwo: [ZenJTH
[ ﬂ:[ A J[ et [ ]J[ k}[H,kzk,k_]HHRk]_,
kil Lo sz oz, Lo

where the error covariance matrix of the augmented state vector is given from
[an/k [Z‘I’c+1/k]’] _ [Fk 0:}[2klk~l [lezt/k—-lll:|
z:II,<+1/k EZH+ 1/k 0 I Zz/k—l Ei‘;kﬂl

Fi O THO e ke | +]C G, 0
X [0 1] [0][1@‘ K2 [OJQk « 0]
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Notice that the matrix X, _, appearing here is precisely that associated with
the usual Kalman filter equation; this is so since the first subvector of the
state vector of the augmented filter is X, ,,_;. The covariance at k = j is given
in terms of the filter covariance Z,/;_, as

l:zl/}—l [):'}/1—1]1 _ [21/1—1 Z]/i—lJ

T - Zisi-1 Zyjea

(In writing down this boundary condition for the above difference equation,
one must use the fact that x3 = x,.) These equations appear cumbersome,
but, as one might expect, one can separate out the Kalman filter equations

for the original signal model and the fixed-point smoothing equations. These
latter equations are now extracted directly from the above augmented filter

equations using (2.5) and (2.6).

The Fixed-point Smoothing Equations

The fixed-point smoother is as depicted in Fig. 7.2-2 and is described
for k > j by the equations

Rime = Xym-1 T K32 (2.9)
with initial state %,,,_,. The gain matrix is given by
% = L1 Hil[HiZyji- 1 Hi + Ri]™! (2.10)
where
i vim = Zhu-1[Fr — KiHiJ' (2.11)
+ E; + o
BNC N DY
- +
y
Fe n-delay
H | Qk/kq
open k< j x 1 closed k<j
closed k> j \ \ open k>j
R e & -
: + Y C Xene = X
: n-delay :
l | !

Fig. 7.2-2 Kalman filter for augmented signal model or equivalently
Fixed-Point Smoother.
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with initial value X5, , = Z,,_,. The covariance of the error term (x, —
X,,) 1s given from

Lo =L — Zaa  HJKLY (2.12)
or equivalently

k

Z/,/k = 2///—1 - ;j{zf,v—nHl[K”,}

k
=Xy — 2 {EHIHIZ,  H + RYVHI[Z 1) (2.13)
=7

The tmprovement from smoothing is [Z,, — Z,/,_,], as is given from (2.13).
Sometimes it is helpful to express the improvement from smoothing in a
rough way as a percentage:

% improvement from smoothing = e = 2y x 100%

triX;, 4]

Properties of the Fixed-point Smoother

Some properties of the fixed-point smoother follow immediately from
the above fixed-point smoothing equations.

1. The fixed-point smoother is driven from the innovations process
Zy = (2, — Hi%y-y) of the Kalman filter for the nonaugmented
signal model. The smoother is a linear discrete-time system of dimen-
sion equal to that of the filter.

2. As in the case of the Kalman filter, the smoother parameters and
error covariance are independent of the measurements and therefore
can be computed beforehand. Also, as in the case of the filter, the
relevant conditional probability density (of x, given Z,) is gaussian
and is therefore defined by the conditional mean £, and the condi-
tional covariance Z,,. A further point to notice is that in the event
that [H.Z,,. ,H, + R,] is singular, the inverse operation on this
matrix, as in the filter calculations, may be replaced by the pseudo-
inverse operation.

3. For the usual cases considered where F, and I, ,_, are nonsingular
for all k, the fixed-point smoother gain K¢ may be expressed nonre-
cursively in terms of the Kalman filter gain K, as follows:

Kt =28 ([FZie1 ] K, (2.14)

where X% ., is expressed nonrecursively as

X

-1
Z?:/k—l == Zj.'j~l [Fl - KIH;]’ (2'15)

i

)
.

4. For the time-invariant case when H,, K, Z, ._,,and F, are indepen-
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dent of k and are denoted by H, K, Z, and F, respectively, the above
expression for X2, ,, and K% and X, simplify as
K% = 52, [FE'K (2.16)
where
8y = Z[F' — HK'|F7 2.17)
and

- k —
Ty = £ = 5 (B HIH'SH + R H31)
[k ~ - ~ =
_5 - z{z [F'J- H[H'SH + R]‘IH’F"’}Z (2.18)
=

where the notation F = [F — KH']is used for convenience. Notice
that even for the case of a time-invariant signal model and a time-
invariant Kalman filter, the fixed-point smoother is time varying
since K¢ is time varying. Notice also that further manipulations of
(2.18) yield a linear matrix equation for the improvement due to
smoothing [ — Z,,] as

[£—%,,] — SFEE — 2,8 FE
= SH[H'SH + R|"'H'E — E[F')- /" \H[H'SH + R|"'H'F*i*1%
(2.19)

This equation is derived by expanding its left-hand side using
(2.18). Notice that in the limit as k approaches infinity, we have that
lim,_.. F¥~/*1 = 0 and thus (2.19) reduces to the linear matrix
equation
E—3%,.] — EFEIE —2, )2 'FE = SH[H'SH + R"'H'S
(2.20)

The quantity [ — Z,/.] is the maximum improvement possible due
to smoothing. This equation may be solved using standard techniques
to yield a solution for £ — X,,..-and thereby X,... The equation also
helps provide a rough argument to illustrate the fact that as the
signal-to-noise ratio decreases, the improvement due to smoothing
disappears. For suppose that with F, G, H, and Q fixed, R is increased.
As we know, as R — oo, L — P, the covariance of the state of the
signal model, K — 0, and F — F. The left side of (2.20) therefore
approaches
(P—Z;.) — PFP\(P—X,.)P'FP

while the right side approaches zero. Therefore, P — X, approaches
zero, or, as R — oo, £, — Z. Rigorous analysis for continuous-time

signal smoothing appears in [19], and Prob. 2.1 illustrates the claim.
5. The improvement due to smoothing {X — ¥,,] increases monotonic-
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ally with increasing k, as indicated by (2.13). The eigenvalues of the
Kalman filter matrix £ = [F — KH’], and in particular the dominant
eigenvalue of [F — KH’], govern the rate of increase. As a rule of
thumb, we can say that essentially all the smoothing that it is possible
to achieve can be achieved in two or three dominant time constants of
the Kalman filter.

6. The stability question for the fixed-point smoother is trivial. Equation
(2.9) is relevant, and shows that any initial error in the smoother
state persists; i.e., the smoother is Lyapunov stable, but not asymp-
totically stable. Equation (2.9) also shows that %,,, for large k will
be computed as the sum of a large number of quantities; it is con-
ceivable that round-off errors could accumulate. The solution, at
least in the time-invariant case, is to set K%, an exponentially decaying
quantity, to be zero from some value of k onwards.

Fixed-point Signal Smoothers

Frequently, smoothing problems arise when an estimate of the entire
state vector is not required, as in the problem of signal smoothing when the
output signal y, = H;x, is of lower dimension than that of the state vector.
For such problems one might obtain the smoothed estimate of y; using the
smoothed state estimates as y,,, = H'%,,,, or more directly by premultiplying
(2.9) by H’; and using the identifications j,,, = H' %, and y;, , = H%,,_,.
Instead of an n-dimensional smoother driven from the Kalman filters, where
n is the dimension of the state vector x,, we have a p-dimensional signal
smoother driven from the Kalman filter, where p is the dimension of the
signal vector y,.

The approach just described may also be applied to yield smoothed
estimates of any other linear combination of states, say, §, = H x, for some
specified H,.

Main Points of the Section

A study of fixed-point smoothing points up the fact that improvement
due to smoothing is monotonic increasing as more measurement data
becomes available. The time constant of this increase is dependent on the
dominant time constant of the Kalman filter. As a rule of thumb, the
smoother achieves essentially all the improvement possible from smoothing
after two or three times the dominant time constant of the Kalman filter.
This maximum improvement from smoothing is dependent on the signal-to-
noise ratio and the signal model dynamics and can vary from zero improve-
ment to approaching one hundred percent improvement for some signal
models at high signal-to-noise ratios.
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Problem 2.1. Suppose there is given a scalar, time-invariant signal model
where F, = 095, H, = 1, Q, = 1, and R, = 10. Show that the maximum improve-
ment due to fixed-point smoothing of the initial state (£ — X,,..) is greater than
thirty percent of £. Show that the improvement is considerably less for the case
F, =095, H, =1, Q, =1, and R, = 100, and is negligible for the case F, = 0.1,
szl,QkZJ,ande=1.

Problem 2.2. For the signal model as in Problem 2.1, where F, = 0.95, H, =
1, Qx = 1, and R, = 10, determine the improvement due to fixed-point smoothing
of the initial state (£ — X,,,) as a percentage of § for k = 1, 2, 5, and 10. Estimate
the value of & for which the improvement due to smoothing is ninety percent of that
which is possible. How does this value of & relate to the closed-loop Kalman filter
eigenvalue?

Problem 2.3. Let ®(/, ) denote F,_,F,_, ... F;, with F, = F, — K;H}. Show
that

k -
Ry =Xy + Ig,}E//j-1‘5'(1,]')1‘11(”;21/1—11']1 + R)Z,

k -
=Xy, + 1=;+1 i QUHDHHZ o H + R)Z,.

These formulas will be used in Sec. 7.4.

7.3 FIXED-LAG SMOOTHING

The fixed-point smoothing results of the previous section certainly are
able to provide insights into the nature of smoothing, but the fixed-point
smoother has a rather limited range of applications. On the other hand, the
fixed-lag smoother is a very useful device since it allows “on-line” production
of smoothed estimates. It is possible to derive fixed-lag smoothing results
directly from the fixed-point smoothing results of the previous section, or
alternatively to derive the results using Kalman filter theory on an augmented
signal model somewhat along the lines of the derivation of fixed-point
smoothing. Since the second approach is perhaps the easier from which to
obtain recursive equations, we shall study this approach in detail. We shall
also point out very briefly the relationships between the fixed-point and
fixed-lag smoothing equations. We begin our study with a precise statement
of the fixed-lag smoothing problem.

Discrete-time fixed-lag smoothing problem. For the usual state-space
signal model, determine for all k and some fixed-lag N recursive equations
for the estimate

Xeowme = E[xy_n1Z,] 3.0
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and the associated error covariance

Zionne = E{[xp — Zp_nnldlxe — Zonnl | Zi} (3.2)
Derivation of Fixed-lag Smoothing Results

Consider the model of Fig. 7.3-1. It has the state equations

Xea F, 0 -« 0 O x, | [G
x£, 10 0 0 x 0
X&), 0 I 00| x@ 0

T R R LT (33

x ] L0 0 oo T 0l xV | L0 |
- T
x{
o)
’ k
zy=[H; 0 --- 0 0] . -+ v, (3.4
XN+
Yk
+

X + Xk +
W, —»1 G, n-delay > H, z,

x
~z
H
x
=
!

x—\
Zz
"

x

I > IN+1} —
Xy XN -1

Fig. 7.3-1 Augmented signal model.
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The model evidently is an augmentation of the basic signal model we have
been dealing with. As is clear from the figure (or the equations),

(L — |2 B— (N+1)
Xpiy ™= Xy Xke1r = Xe-1s cre Xk = Xp-n

Therefore, conditioning on Z,, we have
Elx® 1 Z] = Zisroin fori=1,...,N+1

In other words, the one-step prediction estimate of the entire state of the
augmented signal model contains within it smoothed estimates of the state of
the basic signal model for lags up to N. Kalman filter results applied to this
augmented signal model lead to equations involving the following state
estimates, augmented covariance matrix, and augmented Kalman gain ma-
trix. The notation we adopt for these quantities is as follows:

2 1 (N+1)7/
Xew1/k Zevrn [l - [ZESH] K,
S(1) (1 a. (LN+1D) ] (1)
Xk v1/k 2 Xk +1k [Zk+1/k) K

, s
SN+ (N 1) (N+1,1) (N+1,N+1) (N+1)
Xke+1/k 2N Zkﬁ ik SRR )RS Ky

For convenience, we make the identifications
2P0 = Zh e and Z%0 = Z0 k= Lo
As noted above, we have fori = 0,1,..., N
= X (3.5
so that
Leriar) =2 e (3.6)
A little reflection shows that the correct initializations of the augmented
state estimate and covariance are given for i, j =0,1,..., N 4+ 1 by
Xojo1 = X 0, =0 fori=0 3.7
and
Zo/or = Py L0 =0 for i, j not both zero (3.8)

The smoothing equations will now be derived, with one or two inter-
mediate steps relegated to a problem.

The Fixed-lag Smoothing Equations

These equations are extracted directly from the augmented Kalman
filter equations as

s+ . D) (+1) 5
X = Xie— + KiTVZ,
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for 0 <Z i < N or, equivalently, by virtue of (3.5),

Xtk = Xp—puy + KTV, (3.9)
where %4, , == xyand %_,._, =- 0. The gain matrices are given by
KéD =20 HIHZ o He - R (3.10)
where
L = T [Fe — KHL' (3.11)
initialized by X&), = Z,4_;. It turns out that the only other covariance

submatrices of interest are the diagonal ones
BEIUA = T, — D HKET)
or equivalently by virtue of (3.6),
Y ik = Zhiney — e HKEDT (3.12)

The fixed-lag smoothing covariance ¥, _,, may be expressed nonrecursively
using (3.12) as follows

H N

&
T wie = Zponiu-n-1 kz (T8 H[KEY
k

= Zp-wk-n-1 — IZEN{E},”/‘:)_IH;[H}EWIH: = RYTHIZSLYY (313)

whereg =1— k + N.

We refer to Egs. (3.9) through (3.13) as the fixed-lag smoothing equa-
tions. The fixed-lag smoother as a dynamical system is illustrated in Fig.
7.3-2; it 1s obtained by stacking together implementations of (3.9) for
different i. A single set of state-space equations corresponding to the figure
are given in the next section.

Properties of the Fixed-lag Smoother

The equations for the fixed-lag smoother bear some resemblance to the
fixed-point smoothing equations of the previous sections, and the properties
we now list for the fixed-lag smoother run parallel to the properties listed in
the previous section for the fixed-point smoother.

1. The fixed-lag smoother described by (3.9) may be viewed as being
driven from the innovations process Z, = (z, — H;X,,_,) and the
states %,,..; of the Kalman filter for the original signal model. The
smoother defined in this way is a linear discrete-time system of
dimension N times the dimension of the filter. Its state-space equa-
tions are
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Fig. 7.3-2 Kalman filter for augmented signal model or equivalently
Fixed-Lag Smoother.

5 Rkik ] 0 00 00 w)?k—l/k-l
RX-1/k 1 00 00 R—2/k-1
X2k _ 010 00 Rk-3/k-1
_2k+1—N/k_ _O 00 --- 1 0_ _xk-N/k—l_
K va
K@ 0
KO | 0.
5 | B (3.14a)




Sec. 7.3 FIXED-LAG SMOOTHING 181

Xe-1/k-1

Xy-2/k-1

Xeenne=0 0 .- 1] : + K@z, (3.14b)

Xk-N/k-1

with zero (or arbitrary) initial states. Of course, it should be noted
that the smoother outputs for k < N are uninteresting quantities.
Also the initial state of the smoother (at k = 0) affects only the
smoother outputs for & << N, but no later ones. This fact should
become clear from studies requested in one of the problems.

2. Itis evident from (3.14) that with no extra effort, smoothed estimates
foralllags i =1,..., N — [ can be obtained. This property is not
shared by other forms of smoother discussed later.

3. As in the case of the Kalman filter, the smoother parameters and
error covariance are independent of the measurements and therefore
can be computed beforehand. Also, as in the case of the filter, the
relevant conditional probability density (of x,_y given Z,)is gaussian
and is therefore defined by the conditional mean %,_y, and the con-
ditional variance Z, _y . If [HiZ, - H, -+ R, is singular, the inverse
operation on this matrix, as in the filter equations, may be replaced
by the pseudo-inverse operation.

4. For the time-invariant case when H,, Ky, £, ._,,and F, are indepen-
dent of k and are denoted by H, K, £, and F, respectively, the quanti-
ties Z{, | ., K, and X, _y are also independent of k and are denoted
by X9, K®, and Z,, respectively. This means that the fixed-lag
smoother is time invariant, For 0 << i < N we have

K@V = SOH[H'SH + R}
0 = $[F' — HK'} (3.15)

and

E—-Z)= Z {SOH[H'EH + Ry 'H'[E9]}

- z(i (FYH[H'SH - R)"' H'F' })z (3.16)
where we have used the notation £ = [F —_KH']. Further manipula-
tion leads to a linear matrix equation for [ — Z,] as

£ — 3] — EFEE — 5, )8 1 FE
— SH{H'SH + RI"'H'S
— E[F'PWH[H'EH + R H'F¥'E  (3.17)
If one identifies N with k& — j in the fixed-point smoothing equations,
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(3.17) becomes identical with (2.19). (Why?) Letting N approach
infinity, we obtain

£ —-2]—-SFEE—X. )8 'FS = SHIH'SH + R 'H'S (3.18)

which is naturally equivalent to (2.20). Therefore as for fixed-point
smoothing, the greater the signal-to-noise ratio, the greater the
possible improvement from fixed-lag smoothing.

5. From (3.16), it is evident that the improvement due to smoothing,
viz., [£ — Z,], increases monotonically as N increases. The eigen-
values of the Kalman filter matrix £ = [F — KH'], and in particular
the dominant eigenvalues of [F — KH'], govern the rate of increase.
As a rule of thumb, we can say that essentially all the smoothing that
it is possible to achieve can be achieved with N selected to be two or
three times the dominant time constant of the Kalman filter. Though
this remark has been made with reference to time-invariant filters,
with some modification it also holds for time-varying filters.

6. The fixed-lag smoother inherits the stability properties of the original
filter since the only feedback paths in the fixed-lag smoother are
those associated with the subsystem comprising the original filter.
[Stability is also evident from (3.14); all eigenvalues of the system
matrix are zero.] The smoother is therefore free of the computational
instability problems of the smoothers in the early literature.

7. The storage requirements and computational effort to implement
the fixed-lag smoothing algorithm (3.9)-(3.11) are readily assessed.
For the time-varying case, storage is required for at least

[Feci — Ko H )] Zicik-i-r and X4

fori=1,2,...,Nand for H {H.Z,_ 1H,+ R.] ‘Z. For the time-
invariant case, storage is required for £;,_;, fori=1,2, ..., Nand
for [F — KH'), £, and H[H'EH + R]~',. Computational effort is
reasonably assessed by the number of multiplications involved. Here
the key cost for the time-varying case is the calculation of Z{),_, for

i=1,2,..., N requiring (Nn®) multiplications. For the time-
invariant case, the key cost is the on-line calculation of K{*"Z, for
i=1,2,..., Nrequiring but (mnN) multiplications.

8. A special class of problem for which filtered state estimates yield
fixed-lag smoothed estimates is studied in Prob. 3.3. Generalizations
of this simplification are explored in [30].

An Efficient Time-varying Fixed-lag Smoothing Algorithm

One rearrangement of (3.9) and (3.10) is

Riecike = Speipu—r F T (el (3.19)
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where
e = HJH Lo He + R EL (3.20)

This arrangement together with the explicit formula for Z{, _; obtained by
successive application of (3.11), namely,

k-1
Ewk—l = Ly ifk—im1 I;[;I_'[Fl — KH] (3'21)

suggests the further restructuring of the smoothing equations for | << i << N
as

Xpcike = ot P Zasynoir€d Y (3.22)
where
e’V = [Fi; — Ki Hi_Jel! (3.23)
Successive application of (3.22) and (3.23) for i =0, 1, ..., N yields the
efficient algorithm
N .
Rr-wie = Rionie-n  Zhonik-n-1 [2:; 3/&'1:”—)"] (3.24)

This algorithm reduces the key calculation cost from (Nn®) multiplica-
tions for calculating £, _, to (Nn?) multiplications for calculating e§* ! for
i=1,2,..., N. Also an (Nn?*p) cost is eliminated in the algorithm. This
improvement in calculation efficiency is at the expense of requiring storage
for e, _,, e, ., ..., el h.

Further reduction in calculation complexity may be achieved by pro-
cessing the measurement vector one component at a time; a development is
requested in a problem.

Reduced Dimension Time-invariant Fixed-lag Smoothers

The fixed-lag smoothers derived earlier are not necessarily of minimal
dimension when viewed as finite-dimensional linear systems. Standard tech-
niques could be readily employed, at least in the time-invariant case, to pass
from any unreachable and/or unobservable realization to a minimal realiza-
tion of the smoothing equations. Alternatively, we shall now consider two
different realizations of the fixed-lag (state) smoothing equations which may
be of reduced dimension. Any reduction in the dimension of the smoother
depends on the dimension p of the signal vector and the dimension m of the
signal model input. The technique used is not one of casting out unreachable
or unobservable parts of the smoother, as will be seen.

Successive applications of the smoothing equations (3.9) for i = 0,
1,..., Nyield

k
2k~N,/k:5€k~N/k~N»l Z K(qﬂ)fl (3-25)

By Y
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where g =/ — k + N. The delayed filtered states £,_y/,x_~-; can be obtained
from the Kalman filter equations

2k~N+l;’k—N = F2k~N/k—N—1 + ka—;v (3-26)

We see that the smoother, driven from the relevant Kalman filter, requires
N delays of dimension p to achieve Z,for/ =k — N, k — N+ 1,...,kin
(3.25), and a further Kalman filter (3.26). Thus we have a fixed-lag smoother
of dimension (n + Np) rather than (Nn) as we had earlier in the section. For
the case of large N and n, and small p, this clearly leads to a considerable
reduction in smoother dimension.

It is also possible to achieve a fixed-lag smoother of dimension (n +
Nm). The derivations will be left to the reader to work out in one of the prob-
lems, but the method of approach is simply described as follows. Instead
of the augmented signal mode! used in earlier derivations, where the par-
ticular augmented states xy = x,_y are achieved by feeding the original
signal model states directly into N cascaded delay elements, each of dimen-
sion n, an augmented signal model is used where the augmented states
xi = x,_y are achieved by feeding the original signal model inputs directly
into N cascaded delay elements, each of dimension m; then the input sequence
delayed by N time units is fed into a system which is identical to the original
signal model, except that the discrete-time arguments of the system matrices
are appropriately delayed. The augmentations to the original signal model
are therefore of dimension (n + Nm), and as a consequence, when deriva-
tions paralleling those described earlier in the section are applied to the
augmented signal model, the resulting fixed-lag smoother driven by the
Kalman filter for the original signal model is of dimension (n + Nm).

Fixed-lag Signal Smoothers

As in the case of fixed-point smoothing, when the dimension of the
signal y, = Hx, is less than the dimension of the state x,, it is possible to
construct a signal smoother with less storage requirements. The details will
be omitted.

Fixed-lag Smoothers Driven by Filtered Estimates

Recall that the fixed-lag smoothers above are driven by the innovations
process Z, and the states %, ,_, of the Kalman filter. There is no difficulty
reorganizing the various equations so that the smoother is driven by the
filtered estimates alone. To see this, note that from the Kalman filter equa-
tions we have

Kz, = Xierme — FiXepa
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and as a consequence
L = (K;Kk)_IK;()?k&l/k — Fi S, k—I)
The latter equation of course requires that K, has rank p where p is the
dimension of z,. Alternative fixed-lag smoothing equations are, thus, for
0<i<N,
Rpoe = Xpopaenr + K§:+1)(K;Kk)’]K;<(’Qk+l’k - Fk’(‘:k'kll)
or for the case when [F, X, _,]7! exists for all k, we have that

Kl(‘H”f = Z%- {FeZin- 17 KiZy
and thus that

xkAl'/k = xk—l/k—l + Zl(cl,')’k—l[szk/k—I]~l(xk-f-l/k - Fk)/ek’kﬂl)
Clearly, the disadvantage of this smoothing equation is that more com-

putations are involved in its implementation than for the earlier algorithm
(3.9).

Relationships Between Fixed-lag and Fixed-point
Smoothing Equations

So far in this chapter, we have derived the fixed-point smoothing equa-
tions and the fixed-lag smoothing equations by application of Kalman filter
theory to appropriately augmented signal models. It is an interesting observa-
tion that each of these smoothing equations can be derived directly from the
other, and so we devote this subsection to indicating how this can be done.

First we shall specialize the fixed-lag smoothing equations to yield the
fixed-point smoothing equations. Setting

P ; — g lk=) — (k=j, k-
l‘”k_—ja K¢ =KFEP 28,0 =2, and ¢, = 27

we may substitute directly into the fixed-lag smoothing equations (3.9)-
(3.13) to achieve immediately the fixed-point smoothing equations (2.9)-
(2.13).

This idea is easily reversible to allow derivation of the fixed-lag
smoothing equations from the fixed-point equations. One replaces j in the
fixed-point equations by & — N, and then rearranges them in recursive form.
The details are omitted.

Suboptimal Fixed-lag Smoothers

The work of P. Hedelin [29, 30] suggests that the filtered estimate X,
can sometimes provide a better estimate of x,_, than does %, y_n: this
surprising result suggests that the filter can sometimes be used as a subop-
timal smoother, and sometimes an optimal smoother designed for a lag N
can be used as a suboptimal smoother for a lag greater than N.



Main Points of the Section

Stable, finite-dimensional, fixed-lag smoothers can be constructed driv
from a Kalman filter and derived by means of Kalman filter theory applie
to the original signal model augmented with delay elements. Manipulatior
of the various equations result in more efficient algorithms. For exampl
for the time-invariant smoother, the dimension of the smoother may t
either Nn, n + Np, or n + Nm, or even lower as illustrated in a problem
depending on the method of derivation. (Here, n is the signal mode! dimen
sion, p is the signal dimension, and m is the signal mode! input dimension.
The theory of the fixed-lag smoother is quite tidy, but the engineerin
application requiring tradeoffs between improvement due to smoothing
smoother complexity, and amount of fixed-lag requires the solution of some
matrix equations.

Problem 3.1. Show that the outputs of a fixed-lag smoother driven from a
Kalman filter with the smoother states instantaneously reset to zero (or some arbi-
trary values) at k = j yield the correct fixed-lag estimates for k > j + N.

Problem 3.2. Write down the Kalman filter equations for the augmented sig-
nal model (3.3)-(3.4) and extract the fixed-lag smoothing equations (3.9)~(3.12).
Derive the reduced order fixed-lag smoother of dimension (n + Nm) described in
the text, where m is the signal model input vector dimension. Sketch block diagrams
of the augmented signal model used and the resulting smoother.

Problem 3.3. Suppose there is given a single-input signal model in completely
reachable canonical form with

1 (1)
07 [0 X070
!
x| |0 x| | o
! 1
= ; + Wi
)
_____ [
X —ap)—a, - —a, ) x{ 1

Show that it is possible to build a (state) fixed-lag smoother of dimension N, where
it is assumed that the fixed-lag is N and the smoother is driven from the Kalman
filter. These ideas are generalized in [30].

Problem 3.4. Write down transfer functions for two of the fixed-lag smoothers
referred to in the section (of course, the time-invariant case must be assumed).

Problem 3.5. Work out the storage requirements and the number of multipli-
cations required for the fixed-lag smoother (3.24) for the case of sequential pro-
cessing with R = diag {ry, r5, ..., rp}.

186



7.4 FIXED-INTERVAL SMOOTHING

Experimental data is often noisy and available only over a fixed time
interval. In this section, we consider the smoothing of such data. We shall
first define the fixed-interval smoothing problem and then develop algorithms
for its optimal and quasi-optimal solution.

Discrete-time fixed-interval smoothing problem. For the usual state-space
signal model, determine for fixed M and all / in the interval 0 <</ << M the
estimate

i = Elx)| Z ) 4.1)
and the associated error covariance
T = E{{x, — X000 — 200 1 Z 0} (4.2)

As a first step to providing a practical solution to this problem, we shall
define a solution that is unlikely to be of great utility. It can, however, be
modified to obtain a useful solution.

The Optimal Fixed-interval Smoothing Equations

Let us first consider the fixed-lag smoother equations (3.14) specialized
to the case when the fixed-lag N is chosen such that N = M +- 1. These are:

’Ek/k 00 --- 00 "%k»l"krl KE:” —I 4

Rk 70 -+ 00 D PP K@ 0
. — . . . . + . 2k+ xk'k—l

gk—M/k 00 ... 10 )’ek~M—I,r'k-l KﬁcM”) 0

(4.3)

When k = M, the smoothed estimates %,,,, are all available as subvectors of
the vector on the left side of (4.3). We conclude that the fixed-interval
smoothed estimates %, are available from a fixed-lag smoother by taking
k = M and choosing the fixed-lag as N = M + 1.

Other forms of fixed-lag smoother do not provide smoothed estimates
for all values of lag; it is also possible to use such forms to achieve fixed-
interval estimates. We postulate that measurements are available over the
interval [M + 1, 2M], but that the associated output noise covariance is
infinity (making the measurements worthless). Then one builds a fixed-lag
smoother to operate over [0, 2M]. (Note that it cannot be time invariant in
view of the change of noise covariance.) At time M, £,,,, is available, at time
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M -1, X\ ,p4, is available, at time M + 2, £,,,,,, is available, and :
But because of the worthlessness of measurements past time M, or
Ximer = Xy Xameer = Xy, and so on,

In the state-estimation equation, the effect of the infinite noise covai
matrix on {M + 1, 2M] is simply to disconnect the Z, input to the smc
fork > M.

As stated earlier, the procedure outlined in this subsection is unlik
be of great utility; the main reason is that M may be large, so that the d
sion of the optimal smoother becomes very large indeed. Some reducti
dimension is possible using the reduced dimencion smoother ideas devel
in the last section, but then one may have to wait till time 2M to recov
the smoothed estimates. Even with such reduction in dimension, the rec
dimension smoother has dimension proportional to M.

Let us now consider a way round these difficulties.

The Quasi-optimal Fixed-interval Smoother

Suppose that instead of identifying N with M, we take N as several t
the dominant time constant of the Kalman filter. Then, as we ki
Zisk+nw = Xpn for k 4+ N < M; this means that a fixed lag smoother (of
realization) with lag N will produce estimates X4 1, %y ars + -« » Xarn gy 7
M ; in fact, it is frequently the case that N << M.

It remains to be seen how to obtain %, ., for k > M — N. ~
approaches are possible. If the fixed-lag smoother is of a form contai
fixed-lag smoothed estimates for all lags less than N, %,,,, for k > M -
will be available at time M, simultaneously with £,,_n.. Alternatively,
irrespective of the form of the fixed-lag smoother, one may postulate ou
noise of infinite variance on [M + 1, M + N]and run the smoother thror
till time M + N. The output will be £,,_n,,, at time M 4+ 1, %,,_,,
at time M + 2, etc.

Other Approaches to Fixed-interval Smoothing

As remarked in the introductory section, there are other approaches
fixed-interval smoothing. These approaches involve running a Kalman fil
forward in time over the interval [0, M], storing either the state estimates or
measurements. Then these stored quantities are run backwards to obtain
fixed-lag smoothed estimates, in reverse sequence as %y _1/ars Xare2/a - -
The storage requirements and delay in processing compare unfavoura
with the quasi-optimal smoother, unless N and M are comparable, and
this instance the fixed-lag smoother approach would seem effective and :
more demanding of storage requirements and processing delays.
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We can derive the equations as follows. Using Eqs. (2.9) through (2.11),
it is easy to establish, as requested in Prob. 2.3, the following equations:

k
Ry = %y, + E/Em»15'(1,1)%(”?21»;. H, 2 R)'Z (d.4a)

&
=X+ ,=;‘41 }:,///—ld)’([,}.)Hl(H;zqul + R)TYZ (4.4b)

Here, &(/, j) denotes F,_,F,_,... F,and F, = F, — K,H}. With j replaced by
(j — 1) in (4.4b), we have

&
X = 2/—1//-1 -+ sz»u//—zé/(l,j — DH(HZ,, . H -+ R)'Z,
=7

- k )
= ’?/-1/}—1 + Zl~1/1‘—2F//—IZ;‘/'—! ;Ej'j-lé (1,])
=J
X H(HZy,,H, + R) 'z

= 21-1/14 + Zj—l/,l-zf']—izj—/}—l()zj/k - 55]’]—1)
with the last equation following using (4.4a). Notice incidentally that, as is
easily shown,

Z/—w/—zF,/—x = E/—w—lF’/q

so that, replacing k by M, we have
T FZT (R - %) (4.5)
This equation yields smoothed estimates by taking j = M, M — |, M — 2. ...
The initialization is evidently with a filtered estimate.

We leave to the reader the derivation of a recursion for the error cov-
ariance:

Xyt = X5

Z}—LM = Zj—l/'/vl -+ A/~l[zj M Z/"j—l]A'j~1 (4~6)
where
Ajvl = Z/—I,’j—lF,/qu'}—l 4.7)
Formulas for smoothed estimates which involve computation of Rpon for
initializing purposes and storage of the measurements rather than filtered
estimates for running a recursive algorithm can be found in [6].

An alternative derivation of the fixed-lag equations can be obtained in
the following way. Because p(x,, x,, ..., Xy | Z,,) is a gaussian density, the
sequence Xo, £y/a5 - - - > Xarar Maximizes the density for fixed Z,,. One
can show this maximization is equivalent to the minimization (assuming
nonsingular Py, Q,, and R)) of

M~1

J= ‘%(xo — Xo) P53l (x, — %) + 20 [%WrQ;_’Wr

+ 3z — Hix)' ROz, — Hix)l + $za — Hixp) Raf (2pr — Hiyx,yp)

subject to x,., = Fix, + G,w,. Various approaches to this minimization
problem exist (see, e.g., [3]).
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Finally, we comment that there exists a group of smoothing formu
[9, 10, 21] based on the principle of combining £, and E[x, | Z4+ 1, Zeaz, -
z), the latter quantity being computed by a “backwards-time” filter.

Main Points of the Section

Fixed-interval smoothing can be achieved either optimally or quasi-o
timally by direct application of the fixed-lag smoothing equations, which
turn are Kalman filtering equations in disguise. The computations involvt
in quasi-optimal fixed-interval smoothing may be considerably less than v
optimal smoothing for large data sets.

Problem 4.1. Use (4.5) and (4.7) to show that with %/, = x; — %4/,

Xyovim + AjaZime = Zyoapms + A Froa %m0
Show that
El%; i/m2ml =0 and E[%; ;. %j.1,;-1]=0

and thus obtain (4.6).

Problem 4.2. Obtain a formula expressing £,_,,,_; in terms of ¥,,,; explain
how it might be of assistance in fixed-interval smoothing calculations, assuming the
formula to be numerically stable.

Problem 4.3. Obtain fixed-interval smoothing equations corresponding to the
case when Q = 0. Show that the smoother can be thought of as a backward pre-
dictor, i.e.,

i = F7 % m Py = F7 P g(F)7!

provided F;! exists.
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CHAPTER 8

APPLICATIONS IN NONLINEAR
FILTERING

81 NONLINEAR FILTERING

So far in this text we have seen that the optimal linear filtering theorems
and algorithms are clean and powerful. The fact that the filter equation and
the performance calculations together with the filter gain calculations are
decoupled is particularly advantageous, since the performance calculations
and filter gain calculations can be performed off line; and as far as the on-line
filter calculations are concerned, the equations involved are no more com-
plicated than the signal model equations. The filtered estimates and the per-
formance measures are simply the means and covariances of the a posteriori
probability density functions, which are gaussian. The vector filtered estimates
together with the matrix performance covariances are clearly sufficient statis-
tics* of these a posteriori state probability densities.

By comparison, optimal nonlinear filtering is far less precise, and we
must work hard to achieve even a little. The most we attempt in this book is
to see what happens when we adapt some of the linear algorithms to non-
linear environments.

*Sufficient statistics are collections of quantities which uniquely determine a prob-
ability density in its entirety.
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So as not to depart very far from the linear gaussian signal model, in the
first instance we will work with the model

X1 = filxe) 4 @(x)w, (1.1
2 = h(x;) + v (1.2)

where the quantities F,x,, H,x,, and G, of earlier linear models are replaced
by fu(xx), hi(x,), and g,(x,), with fi.(+), A,(+) nonlinear (in general) and g,(+)
nonconstant (in general). The subscript on f,(+), etc., is included to denote a
possible time dependence. Otherwise the above model is identical to the
linear gaussian models of earlier chapters. In particular, {v,} and {w,} are zero
mean, white gaussian processes, and x, is a gaussian random variable. We
shall assume {v,}, {x,}, and x, are mutually independent, that E[v,v;] = R,,
Elw,wi] = Q,, and x, is N(x,, P,). Throughout the chapter we denote

Fo=0 g ) G g ()

x= %1 X x=fina
[This means that the i j component of F, is the partial derivative with respect
to x, of the ith component of f,(-), and similarly for H}, each derivative being
evaluated at the point indicated.]

In the next section, approximations are introduced to derive a clearly
suboptimal filter for the signal model above, known as an extended Kalman
Jilter. The filter equations are applied to achieve quasi-optimal demodulation
of FM (frequency modulation) signals in low noise. A special class of ex-
tended Kalman filters is defined in Sec. 8.3 involving cone-bounded non-
linearities, and upper bounds on performance are derived. In Sec. 8.4, a
more sophisticated “gaussian sum” nonlinear estimation theory is derived,
where, as the name suggests, the a posteriori densities are approximated by
a sum of gaussian densities. The nonlinear filter algorithms involve a bank of
extended Kalman filters, where each extended Kalman filter keeps track of
one term in the gaussian sum. The gaussian sum filter equations are applied
to achieve quasi-optimal demodulation of FM signals in high noise. Other
nonlinear filtering techniques outside the scope of this text use different means
for keeping track of the a posteriori probability distributions than the gaus-
sian sum approach of Sec. 8.4. For example, there is the point-mass approach
of Bucy and Senne [1], the spline function approach of de Figueiredo and
Jan {2}, and the Fourier series expansion approach used successfully in {3],
to mention just a few of the many references in these fields.

Problem 8.1. (Formal Approach to Nonlinear Filtering). Suppose that
Xper = f(xi) + glxi)wi ze = h(xi) + i

with {w,}, {vi} independent gaussian, zero mean sequences. Show that p(x.., , | xx, Zi)
is known and, together with p(x, | Z,), determines p(x,.,, |Z,) by integration. (This
is the time-update step.) Show that p(z;,, [ Xx+1, Zi) is known and, together with



Sec. 8.2 THE EXTENDED KALMAN FILTER 195

P(xkr1 | Zy), determines p(x,,|Z,,,) by integration. (This is the measurement-
update step.) A technical problem which can arise is that if g(x,) is singular,
P(xkit | Xk, Zi) is not well defined; in this case, one needs to work with characteristic
functions rather than density functions.

8.2 THE EXTENDED KALMAN FILTER

We retain the notation introduced in the last section. The nonlinear
functions f,(x,), g.(x,), and A,(x,), if sufficiently smooth, can be expanded in
Taylor series about the conditional means %, , and £,,,_, as

Flxi) = fillZon) + Fole — X)) -+ -+
g(x) = glZun) + - =G + -+
h(xe) = h(Zape-) + Hilx, — o) + o

Neglecting higher order terms and assuming knowledge of %,,, and £, ,_,
enables us to approximate the signal model (1.1) and (1.2) as

Xpo1 = Foxp + Gow, + uy 2.1
2, = Hix, + v, + (2.2)

where u, and y, are calculated on line from the equations
U = fil%em) — Filin Vi = hlEipne-1) — Hifppeo (2.3)

The Kalman filter for this approximate signal model is a trivial variation of
that derived in earlier chapters. Its equations are as follows:

EXTENDED KALMAN FILTER EQUATIONS:

e = Raneos + Lilzie — BilZisi- )] (2.4)

v = [elZin) (2.5)

Ly = Zyje  H SN Q. = HiZyuH, + R, (2.6)

Zie = Zepeor — Zupee HilHiZin o Hie + R HZ o, (27)

Livin = FiZenFi + GG (2.8)
Initialization is provided by X,,_, = Py, £,,-; = X,.

The significance of £, .,,. and £, , .. The above extended Kalman filteris
nothing other than a standard and exact Kalman filter for the signal model
{2.1)~(2.3). When applied to the original signal model (1.1) and (1.2), it is no
longer linear or optimal and the notations £, ,, and X,/,_, are now loose
and denote approximate conditional means and covariances, respectively.
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Coupling of conditional mean, filter gain, and filter performance equations.
The equations for calculating the filter gain L, are coupled to the filter
equations since H, and F, are functions of £,,,_;. The same is true for the
approximate performance measure X, _,. We conclude that, in general, the
calculation of L, and %,,,_, cannot be carried out off line. Of course in any
particular application it may be well worthwhile to explore approximations
which would allow decoupling of the filter and filter gain equations. In the
next section, a class of filters is considered of the form of (2.4) and (2.5),
where the filter gain L, is chosen as a result of some off-line calculations. For
such filters, there is certainly no coupling to a covariance equation.

Quality of approximation. The approximation involved in passing from
(1.1) and (1.2) to (2.1) and (2.2) will be better the smaller are ||x, — £, |I*
and || x; — X,/ |[*. Therefore, we would expect that in high signal-to-noise
ratio situations, there would be fewer difficulties in using an extended Kalman
filter. When a filter is actually working, so that quantities trace (Z«/e) and
trace (X;/.- ) become available, one can use these as guides to || x, — £, |[?
and || x;, — %4, /1%, and this in turn allows review of the amount of approxi-
mation involved. Another possibility for determining whether in a given
situation an extended Kalman filter is or is not working well is to check how
white the pseudo-innovations are, for the whiter these are the more nearly
optimal is the filter. Again off-line Monte Carlo simulations can be useful,
even if tedious and perilous, or the application of performance bounds such
as described in the next section may be useful in certain cases when there exist
cone-bounded conditions on the nonlinearities.

Selection of a suitable co-ordinate basis. We have already seen that for
a certain nonlinear filtering problem—the two-dimensional tracking problem
discussed in Chap. 3, Sec. 4,—one coordinate basis can be more convenient
than others. This is generally the case in nonlinear filtering, and in [4], an even
more significant observation is made. For some coordinate basis selections,
the extended Kalman filter may diverge and be effectively useless, whereas
for other selections it may perform well. This phenomenon is studied further
in [5], where it is seen that V), = %;,_; Lk %4/x-1 is a Lyapunov function
ensuring stability of the autonomous filter for certain coordinate basis selec-
tions, but not for others.

Variations of the extended Kalman filter. There are a number of varia-
tions on the above extended Kalman filter algorithm, depending on the deriva-
tion technique employed and the assumptions involved in the derivation.
For example, filters can be derived by including more terms in the Taylor
series expansions of f,(x,) and h,(x,); the fil:ers that result when two terms
are involved are called second order extended Kalman filters. Again, there
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are algorithms (see problems) in which the reference trajectory is improved by
iteration techniques, the resulting filters being termed iterated extended
Kalman filters. Any one of these algorithms may be superior to the standard
extended Kalman filter in a particular filtering application, but there are no
real guidelines here, and each case has to be studied separately using Monte
Carlo simulations. Other texts [6, 7] should be consulted for derivations and
examples. For the case when cone-bounded nonlinearities are involved in
an extended Kalman filter, it may well be, as shown in [9], that the extended
Kalman filter performs better if the nonlinearities in the filter are modified
by tightening the cone bounds. This modification can be conveniently effected
by introducing dither signals prior to the nonlinearities, and compensating
for the resulting bias using a filtered version of the error caused by the cone
bound adjustment.

Gaussian sum approach. There are nonlinear algorithms which involve
collections of extended Kalman filters, and thereby become both more power-
ful and more complex than the algorithm of this section. In these algorithms,
discussed in a later section, the a posteriori density function p(x.|Zy) 1s
approximated by a sum of gaussian density functions, and assigned to each
gaussian density function is an extended Kalman filter. In situations where
the estimation error is small, the a posteriori density can be approximated
adequately by one gaussian density, and in this case the gaussian sum filter
reduces to the extended Kalman filter of this section.

The following theorem gives some further insight into the quality of the
approximations involved in the extended Kalman filter algorithm and is of
key importance in demonstrating the power of the gaussian sum algorithms
of later sections. In particular, the theorem shows that under certain condi-
tions, the notion that the errors || x, — £,/ /1* and || x, — £, ||* have to be
small to ensure that the extended Kalman filter is near optimal can be relaxed
to requiring only that ¥,, and X,,_, (or their traces) be small. With
y[x — %, Z] denoting the gaussian density,

5] = exp {—3{(x — )T (x — x)}
{Qny 2]
the following result can be established:

y[X - X_a

THEOREM 2.1. For the signal model (1.1) and (1.2) and filter of (2.4)
through (2.8), if
POV Zi 1) = YIxXe — Rese—vs Ziseos] (2.9)
then for fixed A,(-), %4/s-;, and R,
p(x | Z) —> ylxi — Rases Tinl
uniformly in x, and z, as £, ,_, — 0, Again if
Pkl Z) = Ylxe — Zies Zienel (2.10)



198 APPLICATIONS IN NONLINEAR FILTERING Ch. 8

then for fixed £i(+), g«(+), £4/x, and Z,,

Pkt | Z3) —> YXsr — Ris 1/ i1l

as X,/ — 0. In these equations, it is assumed that the relevant prob-
ability densities exist, otherwise characteristic functions must be used.

Proof.* By Bayes’ rule, we have
PXps 2 Ziy) = p(xe | Z)p(2i | Zicoh) = p(2ic| Xy Zie- IP (X | Zi- )
or
p(x 1 Z) = P | xJp(xl Zy 1)
| PGl xDP(xe] Zi- e,

Denote the denominator (which is evidently independent of x,) by §-*.
Then from (1.2) and (2.9),

p(x|Z) = é?[xk — Xpsk-15 Zrsn- 100126 — Be(x1), Rl
= O{¥[xx — Rusk-1> Zuse-1IPlze — Hilxy — Rpjpey)
— h(Zije-1)s R + €43
where
€ = VX — Zpeo1s Zise-1JP[26 — Bulxi), Ril

— Mz — Hillxy — Zijp-1) — B(Zise-1), Rel} 2.1
Now tedious algebraic manipulations involving completion of the square
arguments (see the problems) give the relationship
Yxe = Risiemts Zape- Wz — Hexe — o) ~— MlRasi- ) Ry

= Y[xe ~ Zsis Zinel?[2 — P(Far-1), Q] (2.12)
where X/, i/ and Q, are as defined in (2.4), (2.6), and (2.7). Without
the replacement of y(z, — h.(x,), R,] by an approximating quantity
involving x, linearly, an identity like (2.12) cannot be obtained. Notice
that the approximating quantity involves approximation of z, — h,(x,)
by the same quantity as in the approximate signal model of (2.2), for
which (2.4) and the following equations constitute the Kalman filter.
Notice also that the approximation error is wrapped up in the quantity
€,
Using (2.12), there results
p(xe| Z) = Yz — Wi 1)y Q¥ — Xisis Zicne] + €
f{y[zk — M(Fase-1)s QeP[xk — Ziesns Zined + €43 dx,

_ Pz — B(Esi- )y QulPlxe — Zasior Zui] + €
Yz — Al(Riji-1)s Q] + Iek dx,

*The proof may be omitted on a first reading.
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In the problems, derivation is requested of the facts that with
(), X4y and Z,_, all fixed, then X,,,_, — O implies €, — 0 uni-
formly in x, and z,, and [ €,dx, — 0 uniformly in z,. The first part of
the theorem then follows.

For the proof of the second part of the theorem, we must work with
characteristic functions in case p(x..,|x,) is not well defined. Thus in

lieu of
PG 120 = [ e |20 Z,)
we write
Braizi®) = [ $rrn (P31 Z,) dx,
Here,

¢Xbxlxn(s) = exp [js,fk(xk) - %slg(xk)ng’(xk)s]
The following quantity approximates @, .,..():

Varatxn8) = exp [Js' T filZe/n) + Filxie — Zi)] — 15'G0:Gles]
One can show that

Va2 = [ Wi Z,) e = XD [ R 16 — §5'Ews 5]
(2.13)
and that

[ Braatn® = Vot D1p (31 Z,) dx, (2.14)

can be made arbitrarily small, for fixed real s, by choosing £, , arbitrarily
small. Proof of the first claim is requested in Prob. 2.5, and of the second
claim in Prob. 2.6. Therefore, for any fixed s,

¢Xn1'zx(s) —_> Wx.,ang(S)
and this means that

Pt Z1) —> Y(Xiewy — Zisrsns iwr/x)

The question of whether the convergence may be uniform is not clear,
although if g.(x,)Q.g(x,) is bounded above and below for all x, by a
nonsingular matrix, one can prove uniformity of convergence. The
theorem is now established.

As it stands, the theorem is of very limited applicability if (2.9), (2.10)
are to hold approximately for k =0, 1, 2, .. .. First, the a priori density
P(x,) must be gaussian. Second, in view of the formula X, |, = F.Z,,.Fr +
G Q.G it is necessary that G, Q, G, be very smallif X, ,, is to be very smali;
i.e. the input noise variance must be very small. Even then, one is only guar-
anteed that (2.9), (2.10) will hold approximately. As it turns out, the gaussian
sum filter of a later section provides a way round these difficulties.
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ExaMpLE: Demodulation of Angle-Modulated Signals An example of the ap-
plication of extended Kalman filter theory is now discussed to illustrate its
usefulness and limitations. We consider the communications task of the
demodulation of frequency- or phase-modulated signals in additive gaussian
white noise, with the modulating signal assumed gaussian [8-11].

Let us consider the case of frequency modulation (FM) where the mes-
sage A(#) has a first order Butterworth spectrum, being modeled as the output
of a first order, time-invariant linear system with one real pole driven by con-
tinuous-time “white” noise. This message is then passed through an integrator

to yield 8(r) = J.‘ A(T)d7, which then is employed to phase modulate a carrier
(1]

signal with carrier frequency @, rad/sec. The model state equations can then

be written as
1

o | =5 0 |[A® 1
[0~ - PE o]
2(8) = /2 sin[@.t + 6] + v(p)

for some noise disturbances v(¢) and w(#) and some § > 0. Of course, higher
order state models can be constructed for messages with more sophisticated
spectra.

Continuous-time signal models such as above have not been discussed in
the text to this point, nor is there a need to fully understand them in this
example. After z(¢) is bandpass filtered in an intermediate frequency [IF] filter
at the receiver and sampled, a discrete-time signal model for this sampled signal
can be employed for purposes of demodulator design.* The equations for the
state of such a model are linear, but the measurement equations are nonlinear.

Two methods of sampling are now described, and the measurement-
update equations of the extended Kalman filter derived for each case. A dis-
cussion of the time-update equations is not included, as these are given
immediately from the equations for the state vector, which are linear.

() Uniform scalar sampling. A periodic sampling of the received signal
after bandlimiting on the IF filter is carried out so that the sampled signal can
be represented by the following nonlinear scalar measurement equation:

Zy = ﬁ sin (wok + l'xk) + v (2.15)

Here, x; is the state at time k of a linear discrete-time system driven by white
gaussian noise, @, is the intermediate frequency, and /’x; is the phase. For the
FM case, x; = [Ax 6:]and I'x; = 0, and thus I’ = [0 1]. The message we
denote as ¢’x;, and for the FM case we see that ¢’ = [1 0}, yielding c’x;, = Aq.
We introduce the assumptiont that {v,} is white gaussian noise with mean
zero and covariance E{vxv;} = r 04, and is independent of {x,]}. Evidently,

*The development of discrete-time models by sampling of continuous-time systems is
described in Appendix C.

+To give a more rigorous derivation of a discrete-time signal model from a sampled
bandlimited process turns out to be more trouble than it is worth.
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he(x) = /2 sin(@ok + I'xy), Hy = /2 [cos(wok + 'S i _y)
We also define
Qk = Hk,Ek'kAlHk "f r = 2[’2[( k_11C032 (a)()k ”‘ 1/—{‘1< kAI) oo r
Then the extended Kalman filter measurement-update equations are
e = Zrik-1 + Zik-1 o/ 21(cos ok
+ VR Q% ze — /2 sin(wek + I'Sig 1)) (2.16)

Tk = Zamor — 2Zpo g w0 cos? (@ok + U'Ryiny)  (2.17)
(The time-update equations are as in a standard Kalman filter and need not be
restated here.) In this particular example it is clear that there is coupling be-
tween the processor equation (2.16) and the covariance equation (2.17).
Decoupling of the above nonlinear filtering equations is possible if it is assumed
that components at twice the carrier frequency will not propagate through the
low-pass filtering of a combination of the time-update equations and (2.16).
The term

2 cos (wok + 1/2]\,,/](_1) sin (wgk + 1’2](/;(,_]) = sin 2((001( -+ [/-gk'k-\)

can be dropped from the above equations, and the term
2 cos? (CUQI( + 1/5(‘:)(/)‘_1) =1 4+ cos Z(Cl)ok + 1/2/( 'k—l)

can be replaced by 1. The equations are now
Sk = Rionot + ot (TZx 12 1)V /2 1z, cos (ok 1'%y ) (2.18)

Yiw = Ziait — Tl (Vg oyl 1)1 (2.19)
and it is clear that the covariance equation (2.19) is decoupled from the pro-
cessor equation (2.18). For those familiar with phase-locked loops, it is not
hard to see that the processor (2.18) can be realized as a digital phase-locked
loop.

Simulation studies in [8] show that at least for transient responses, the
performance of the uncoupled estimators is not as good as that of the coupled
estimators. From the limited data available it also appears that the same is true
in high noise environments under steady-state conditions. However, perfor-

mance of the uncoupled estimators in low noise environments and under steady
state is as good as the performance of the coupled estimators.

(it) In-phase and quadrature-phase sampling. The in-phase and quadra-
ture-phase sampling technique, described in [9] and explored in the problems,
translates the scalar analog FM signal to a two-dimensional, discrete-time,
baseband process with measurement equations.

sin ['x
Ze=4A"2 o (2.20)
cos I'xy

It is assumed* that the noise term {v,} is now a gaussian white vector noise

*As with scalar sampling, the derivation of a more sophisticated signal model is not
warranted.
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process with mean zero and covariance

0
Efv)] = [(: ]ak,

and is independent of {x;}.

Evidently, with
sin I'x k
hk(x) = A/ 2

cos I'xz
08 "%y /5
0hi(x) — .z I: C‘ Ik 1j| v
ax % =%xsk-1 —Ssin I’J“ck/k_l
Some routine calculations then yield that
H (H{Zy k-1 Hp + Ry)7?
= /2lcos I'Zyp_y  —sinUSpoiJr + 20 pey D)
= Hilr +2I'Z 1 )71

we have

Hf =

The measurement-update equations are therefore

R = Rupmr + (0 + 208 D L Hillze — l(Rae-)] (2.21)

Tk = Zxmer — 20 + 21 Zaesem s ) e M Zkje1 (2.22)
and by making the same approximations as for the scalar sampling case, we
obtain

B = Zepmoy + 0+ 200 i D e Hyzie (2.23)

Note that the error covariance equation is decoupled from the processor equa-
tion which, in turn, may be realized as a digital multivariable phase-locked
loop.

Simulation results. Consider the case of FM demodulation where the
signal model states and transmitted signal are

x(H) = [l(t)i| s(t) = /2 sin{w,t + 0]
116}

Here, A(f) is the message and 0(¢) =J: A7) dt.

For simulation purposes we assume that A(-) is gaussian with mean zero,
unit variance, and that it has a first order Butterworth spectrum with a band-
width (1/8) radians/second. Now FM theory tells us that the power spectral
density of a wide-band frequency-modulated waveform s(7) is determined by,
and has approximately the same form as, the probability density function of
the message A(7); and, in particular, for the case here when the message is gaus-
sian with unit variance, we also have that the baseband spectrum has a root-
mean-square bandwidth of 1 rad/sec.* The bandwidth expansion ratio is the

*An adequate heuristic derivation is given in many undergraduate texts (see, e.8., [18]).
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ratio of the bandwidth of the baseband of s(¢), here 1 rad/sec, and the band-
width of A(r), here (1/f) rad/sec, and is thus B.
The state model in continuous time which has the above properties is

i -1 om 1
o)™ Lo Lo
0) 1 o (L@ 0
where w(s) is a zero mean noise process with E[w(/)w(1)] = (2/8)d(¢ — ) and

d(t — 1) is the Dirac delta function. All we say here about this model is that
when it is sampled at ¢, = k7, we have

i °"p(_7§> Olra. 1
xk“é[GMJ: “pew(-L) -1 4 [ek]{—ﬂ}“ -

Elwwi] = [1 — exp (—2%)] Sp  Ewid =0 2.25)

We take this discrete-time system with output (2.15) or (2.20) where
Efv,w,] = 0* to be the signal model.

Further details on the derivation of discrete-time models for FM demodu-
lation are given in [8], including a rationale for selecting a sampling rate of
greater than eight times (say sixteen times) the baseband bandwidth, here
1 rad/sec.

The performance measure frequently taken for FM systems is the steady-
state inverse of the message error covariance &5, where &, = lim E[A; — A1)
koo

In Fig. 8.2-1, this measure is plotted against the ratio of the carrier signal
energy to the noise energy (carrier-to-noise ratio CNR), which in our case is
Q@B[rT) with T = 27/16.

Monte Carlo simulations are employed to calculate the curves for two
different bandwidth expansion ratios f# =25 and B = 100. The filter for
quadrature- and in-phase sampling is a shade more complex than that for the
standard sampling technique, but there is a significant performance improve-
ment. Both performance curves exhibit a knee (threshold) as channel noise
increases. Above threshold (i.e., in low noise) the performance turns out to be
near optimum, but below threshold the low error assumptions used in the
derivations of the extended Kalman filter are no longer valid and the perfor-
mance is far from optimal. A comparison with more nearly optimal filters for
the quadrature- and in-phase sampling case is given in a later section.

Main Points of the Section

Kalman filter theory can be applied to yield a useful nonlinear estimator
(an extended Kalman filter) for certain nonlinear estimation problems.

*This assumption appears reasonable even though a strict derivation of a sampled
model from the above continuous-time model has E[v;w;] == 0 for all j, k.
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Fig. 8.2-1 Performance of extended Kalman filter FM demodulators.

Application of the extended Kalman filter to a specific problem, as illus-
trated in the example of FM demodulation, may require ingenuity and
appropriate simplifications to achieve a reasonable tradeoff between per-
formance and algorithm complexity. Simulations may be required to deter-
mine under what conditions the filter is working well. Normally it is
necessary that the magnitude of the state error be comparable with the
dimension of the region over which the nonlinear system behaves linearly.
Under certain conditions, it is sufficient for the magnitude of the mean square
state error to be small.

Problem 2.1. Formulate an iterated extended Kalman filter algorithm as fol-
lows. Use the idea that once an estimate 2/, is calculated via the usual extended
Kalman filter equations, then A.(x;) can be linearized about the estimate £/, rather
than £,/,_,. Generally this should be an improved estimate and thus give a more
accurate linearization and thereby a more accurate signal model than (2.3). With
this “improved” model, an “improved” calculation for k; and £,/ can be achieved.
Is there any guarantee that the iterations will converge and achieve an improved
estimate ?

Problem 2.2, Derive extended Kalman fixed-lag smoothing algorithms.
Problem 2.3. Establish the identity (2.12) in two ways: (a) Express

fxe = B e, + llze — Hi(xx — Rajeey) — i (Rasi 1) |2rp
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in the form |{x, — all’; + b by a completion of the square type argument. (b)
Alternatively, postulate that (2.1) and (2.2) are exact, and apply the usual Kalman
filter theory. Likewise establish the identity (2.14).

Problem 2.4. With €, defined as in (2.11), show that for fixed £/,_y, Ax(+),
and Ry, €, — O uniformly in x, and z, as X x., — 0, and [ €, dx,— 0 uniformly
in z; as Xy, — O. [Hint: Show first that e~ — ¢~©-8* — 0 uniformly for
y € (—o0, ) as § — 0. Now take arbitrary # > 0, and show that

Plze — he(xi), Re] — iz — Hi(xe — Zepu-1) — M(Zeo1), R <11

provided that || x; — £,/_, [| < some ¢(11); the continuity of A,(+) must be used.
Show that if ||x, — %/_; ]| > ¢, one can choose Z,_; sufficiently small that

POk — Rrkoss Bhmor) < LQmY™H] Re V2]

Conclude that €, < 1 for all x;, z,. To obtain the integral result, express the integral
as a sum of two integrals, one over |[xx — £/ || < ¢(r), the other over

Wxe — £a/e-11l = (). Let iy — 0 to show that the second integral converges
to zero uniformly with respect to z,.}

Problem 2.6. Check the evaluation of (2.13) by direct calculation.

Problem 2.6. Show that for fixed real s, the integral in (2.14) can be made
arbitrarily small. [Hint: For fixed s, and € > 0, there exists J such that | ¢, (., (5)
W e8| < € when [ x, — %xi ]| < &. Break up the integral into two integrals,
one over || x; — £ |l < §, the other over || x; — %/ |l = 8. Show that the second
integral can be made arbitrarily small by choosing X/, suitably small.]

Problem 2.7. Let £(f) = cos [21f,¢ + 6(f)] be a bandpass process with band-
width W such that W < f;,. Sample at ¢, = ¢k/W, where & is a scalar satisfying
0 < & << 1, k is the sampling index (0, 1, . . .), and also at f;, = #, + A for A a small
fraction of the sampling interval (¢;,; — #z) to obtain the vector sampled process
Kt &Y fork = 0,1, . . .. Establish that with the above assumptions &(-) can
be reconstructed from the sequences of &(#;) and &(7;). For the case when t, =
km/f,, where m is an integer << fo/W and 1 = t, + 1/4f,, show that £(r,) =
cos [8(t,)] and £(1,) = —sin [0(14)), the in-phase and quadrature-phase components.

83 A BOUND OPTIMAL FILTER

In this section, we examine a specialization of the signal model of (1.1)
and (1.2) by assuming that

Xy = f(xe) + Gowy (3.1
ze = h(x,) + v 3.2)
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As earlier, {w,} and {v,} are independent, zero mean, white gaussian sequences
with covariances E[w,wj] = Q.0,; and E[v,v)]] = R,J,,. Here G, is indepen-
dent of x,, and the nonlinearities f(-) and A(-) are assumed to satisfy the
cone bounds

| filx + 8) — fulx) — FL || <|IAF, S| (3.32)
| h(x + 8) — hi(x) — Hid|| <||AHLS || (3.3b)

for all x and 8, and for some matrices F,, H,, AF,, and AH, independent of
x and J. Here ||y || denotes the Euclidean norm (y'y)'/%. Evidently if f,(-) is
differentiable, its slope lies between F, — AF, and F, + AF,, and likewise
for h,(-).

We shall study filters of the following class:

Rene = Zap-r + Lilze — B(Rase-1)] (3.4a)
2k+l/k = fk(-’ek/k) (3-4b)

Here, as in the extended Kalman filter equations, £, , denotes a state estimate
at time k given measurements z,, zy, . . . , Z; that is not necessarily a condi-
tional mean estimate. The structure of the filter (3.4) is the same as that of the
extended Kalman filter, and it is evidently a heuristically reasonable struc-
ture. In contrast, however, to the extended Kalman filter, the filter gain L,
does not depend on the state estimate; for the moment we shall leave the
sequence {L,} unspecified, but subsequently we shall pin it down.

One reason for studying the above somewhat restricted class of non-
linear filters is to gain some insight into what happens when a linear filter has
unintentional cone-bounded nonlinearities. More importantly, we are able
to obtain performance bounds for this class of nonlinear filter and, more-
over, we are able to derive a bound-optimal filter as the filter for which the
error variance upper bounds are minimized. From the theoretical point of
view, then, the filters of this section are more significant than extended Kal-
man filters for which no general performance or stability results other than
approximate ones are known. Of course, it should be recognized that when
a signal model satisfies the restrictions (3.3) and the extended Kalman filter
gain is decoupled from the state estimate, then the extended Kalman filter
itself belongs to the class of filters studied in this section.

As we develop results for the class of filters described above, it is well to
keep in mind that the looseness of the sector bound (3.3) determines the loose-
ness of the performance bounds to be derived. For signal models with loose
bounds (3.3), as when £, (x) is sin (w,k -+ 'x) in the FM signal model of the
previous section, the bounds will not be of much use.

The theory developed below for performance bounds and bound optimal
filters is a discrete-time version of continuous-time results in [12].



Performance Bounds

First we introduce the following definitions and recursive relationships.

In the following equations {«,} and {B,] are sequences of positive scalars

which will be specialized later. Also {L,} is to be considered a fixed sequence:
later, it too will be specialized.

X = X — Xpsp Zin = E{ZenXis} (3.5

and similarly for £,,,, and X, ;.
- g 1 - T 'old 7
Beoe = (0 + @)F S0Py + (14 1) AFS,AFDI + G,0,G: (3.62)
k

i:k/k = (1 + ﬁk)(l - Lkﬁ;)ik/k—l(l — Lkﬁ;(),
1

k

+LkRkL;+(I 4 )tr(Aﬁ;Ek,k-,Aﬁk)LkL; (3.6b)

initialized by £,,_, = Z,,_, = P,. With these definitions, we have the first
main result.

THEOREM 3.1 (Performance Bounds). With the signal model (3.1)-(3.3),
the filter (3.4), and with the definitions (3.5) and (3.6), the filter error
covariances are bounded as

Zk/k S 2k/k Zk+l/k .<_ 2k+1/k (3-7)

for all @, > 0 and f, > 0. For a fixed sequence {L,}, the bounds are
minimized with «, and B, chosen as

* [ tr (AI‘:,‘)-:,‘/,‘AI‘:;)]‘/Z
oy = n—"——_—_——:,———
tr (FyZy i Fi)

pr — [ tr (L, Li) tr (AHLE, - AH,) }'/2 (3.8)
tr[( — LiH)Zy- (I — L H)
Proof * With the definitions
Pr = fe(x1) — filFup) — Fkik/k o= Se(x) — fillZip)
Gx = h(x) — hi(Rypp_y) — ﬁ;ik/k—l h = hi(xe) — Pe(Risi- 1)
we have
Tivik = E{fkfk’} + GkaG;c
T = E{(Fin-y — Lib[Zpn-y — Leh )} + LR,L (3.9
Now

fufi= Fkik/ki;f/kp-;r + piPk + Fi¥enpi + pifinEr (3.10a)

*The proof may be omitted at first reading.
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[ik/k-l — Lkiik][sék/k—l - L/J’k]' = [I - Lkﬁ;(])‘zk/k—lx;:/k—l[l - Lkﬁ;v]l
+ qukq;cL;r + [ — Lkﬁ;(]ik/k—lq;cl‘;r + LyqiXiepe- I — Lkﬁ;:ll
(3.10b)

Taking expectations of both sides of (3.10) and substitution into (3.9)
does not immediately lead to a recursive relationship in Z,;, and T, ...
However, with some manipulation, we can obtain the desired recursive
relationships. Expectations of the first summands on the right-hand
sides in (3.10) are easily dealt with. We deal next with the second term;
observe that the cone-bound inequalities (3.3) may be rewritten as

”pk”é”AF_ksék/k” Ilqug“Aﬁ;c‘ik/k—lll (3.11)

For arbitrary y, we then have by the Cauchy-Schwarz inequality
1y pel? <1y IPllpell* and |y'Ligil* < || Liy |21l gl
Therefore, by application of (3.11)
E[p:pi] < ElZinAFAF 4]l = tr (AFZ, hAFDI (3.12a)
E[L.qiqiLil < E [i;c/k—lAﬁ kAﬁ;:ik/k—l]LkL;c =1t (Aﬁ;czk/k-lAﬁ )L Ly
(3.12b)

We deal with the last two terms on the right side of (3.10a) as follows.
Since

y'F-kfk/kP;cy < oy Iy’F—kik/k |

Pry
O

l rp o~ ~7 g 1 ’ ’
< 70‘1:[)’ FikipXepnFry + o y PkPkJ’]
for any &, > 0, we have the bound
-~ ’ ~7 il I nid 1 = g
E[F % Px + PiXienFi) < ou[FiZepFr + a_,%tr (AFZy i AF )]

Likewise, in relation to (3.10b), we have the following bound for any
B <O0:

E[(I _ Lkﬁ;c)ik/k—lq;tL;c -+ Lkai;c/kq(I - Lkﬁ;c)l]
< B [(1 — LS — LY + % tr (Aﬁ;zk,k-lAﬁk)LkL;]

Substitution of these inequalities into (3.9) and (3.10) yields the desired
recursive inequalities:

T <1+ a)FZenFr + (1 + ail) tr (AFZ i AFDI + GO,G
2k/k g (1 + ﬂk)(I - Lkﬁ;‘)zk/k—l(l - Lkﬁ;‘)l
1 ry’ r 7 ’
+ LRy + (14 g) tr B S00 AHIILL @3.13)
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Subtracting (3.13) from (3.6) results in difference equations in [Z, ., —
T and [Z, /., — Z.x-,] which carry nonnegative definite initial values
into such values for all k, thereby establishing the bounds (3.7). Optimal
values for  and f are obtained by searching the af space to minimize
tr (£,,) and tr (Z,,,,,). Setting the relevant partial derivatives to zero
yields the optimal values of (3.8).

Remarks

The recursive equations for the bounds &,,, and £, .. can be viewed as
standard filtering equations for a linear signal model related to the original
nonlinear model (3.1) and (3.2), but with additional noise at the inputs and
outputs.We see that the effect of the nonlinearities is taken into account by
the addition of noise to a linear signal model. Notice, however, that the
calculation of the covariances of the additional noise terms requires the
solution of the recursive equations for £,,, and £, ,,,. As the nonlinearities
become more linear in the sense that the cone-bound parameters AH, and
AF, approach zero, the standard filtering equations for a linear signal model
defined by matrices {F,, H,, G,, Q,, R,} are obtained.

A Bound Optimal Filter

So far, we have given no indication of how the gain L, might be selected.
Here, we shall show that it is possible to select L, in order to minimize the
bound on the error covariance (of course, this is different from choosing L,
to minimize the error covariance itself). The resulting filter is termed abound-
optimal filter.

One of the advantages of the error covariance bound equation is that
the bound is computable in advance; the same is true of the bound-optimal
sequence {L¥}, which has the property that

Ef/k = ik/k(L:) <EZ (L) and Z},,, = zku/k(Lt) < ZevinlLy)
for all other gain sequences {L,]}.
The precise result is as follows.

THEOREM 3.2 (Bound Optimal Gain). With notation as earlier, and with
the {a}, {f.} sequences arbitrary but fixed, the bound optimal gain
sequence is given by

F=( 4 BOZtu- H(WF) 3.14)
where

x = [Rk 0+ BOEE e + (1 + L

k

) te (AFLS ,Aﬁk)l]
(3.15a)
Ston = (1 + a)FStuFi +(1 4 o) r AFRILAFDI + 60,6,
k
(3.15b)
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e =1+ BIEtn-1 — (1 + Bt HWE  HZ
= (1 + B — LEH)E - (3.15¢)
and
i"§/—1 = Zo/-1 = P,.
Proof. Lengthy manipulations of (3.6) and the definitions (3.14) and
(3.15) immediately yield

2k+1/k —Zhan=0+ “k)F-k(ik/k - il:k/k)i;c
1 o
+ (1 + “_k) tr [AF (2 — k/k)AFk]I

S — e = (1 + B, ) tr [AH ey — £ )AH L L,

+ (4 BT — L) Eppe-s — Etn-0)I — L HY
+ (L — LYWHML, — LYY

With (£,/, — £¥,) nonnegative definite, clearly (£,,, — £¥,)and (Zi411
— Z¥, 1) are nonnegative for all k and L,, as required.

Observe that as the cone bounds collapse, the bound optimal filter
becomes the Kalman filter. Also observe that the bound optimal filter is
achieved for a specified {a,} and {f,} sequence. Different sequences lead to
different {L}}, and it is not straightforward to simultaneously optimize o, B,
and L,.

Long-term Performance

Questions arise as to what happens as k — oo: Can one obtain a time-
invariant filter ? Will the error bound tend to a finite limit? Will the filter be
stable ? It is awkward to state quantitative answers to these questions. Never-
theless, certain comments can be made. Consider (3.6), and suppose that
F,, G, L,, etc., are all constant. Then the mappings for constructing Z,,,
fromE,,_,and £,,,, from &,/ are linear; this means that one could arrange
the entries of £,,,_, and £, in a vector o, say, and find constant matrices
B and C for which o,., = Bo, + C. A sufficient, and virtually necessary,
condition for o to approach a finite limit is that |A,(B)| < 1.

For the bound optimal filter, the situation is a little less clear, in that the
update equation for passing from o, to ¢, is nonlinear. We can still, how-
ever, make several comments.

1. If for some L in (3.6), one has X, ,, and £, ,, approaching a finite
limit, then with L replaced by L¥, Z, , and £, , . will be bounded.

2. As the nonlinearities become more and more linear, £,,, and £, ,,
approach the usual linear filtering quantities; thus one could reason-
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ably conjecture that for small enough AF and AH, one would have
L¥.and I}, , . approaching a finite limit as k — oo if the correspond-
ing optimal quantities in the linear situation approached a finite limit.

As far as stability is concerned, we can again make qualitative remarks.
An exponentially stable linear system retains its exponential stability if a
small amount of nonlinearity is introduced [13]. We should therefore expect
that the bound optimal filter would be asymptotically stable for small enough
nonlinearities if the corresponding optimal filter in the linear situation was
exponentially stable.

Main Points of the Section

The Kalman filter can be imbedded in a class of nonlinear filters which
are designed for application when the signal models are nonlinear with the
restriction that the linearities are cone bounded. The cone-bounded non-
linearity assumption allows a derivation of performance bounds for the non-
linear filters, and if desired, a bound optimal filter can be derived. In the

limit as the cone bounds collapse, the filters become linear, the performance
~ bounds approach the actual system performance, and the bound optimal
filter approaches the Kalman filter.

The theory of this section is perhaps most significant for the perspective
it allows on the linear filtering theory. We are assured that in applying linear
filtering theory to a process which has mild sector nonlinearities, we cannot
go far wrong if we model the nonlinearities as additional process and mea-
surement noise.

Problem 3.1. For the case of a scalar state signal model, is it possible to derive
tighter performance bounds than those of this section ?

Problem 3.2. Carry out the manipulations required to demonstrate that L} as
defined in (3.14) is the bound optimal filter gain.

84 GAUSSIAN SUM ESTIMATORS

In more sophisticated nonlinear estimation schemes than those of the
previous two sections, an attempt is usually made to calculate, at least ap-
proximately, the relevant a posteriori probability density functions, or suffi-
cient statistics of these functions. For the case of interest in this chapter where
the state vector x, is a first order Markov process, knowledge of the signal
model equations, the a posteriori density function p(x,|Z,) at time ¢,, and
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the new measurement at time k + 1 is actually sufficient for an update of the
a postertori density function to p{x,,,|Z,.,). (See Prob. 1.1.) With knowl-
edge of p(x,|Z,) for each k, either a MAP (maximum a posteriori), condi-
tional mean estimate, or other type of estimate can be calculated.

Though this approach is conceptually appealing, the difficulties when no
appoximation is used can be very great. In general, the storage of p(x,|Z,)
requires a large number of bits, since for each value of x,, the corresponding
p(x.| Z,) must be stored. If p(x, | Z,) is definable via a finite number of param-
eters, this problem is alleviated, but such a description is not possible in
general. Further, even assuming storage difficulties can be overcome, there is
another difficulty, that of computation, because in each iteration, an integra-
tion is required. Again, for special forms of density, the integration problem
can be circumvented.

Approximation of some description is, in effect, needed to overcome
the storage and computation problem. One type of approximation depends
on making the assumption that the low order moments of p(x,|Z,) are, at
least approximately, a set of sufficient statistics, and then near optimal esti-
mators for a limited class of problems can be derived. The assumptions may
be sound when the estimation error is small or the nonlinearities mild. The
extended Kalman filter of the previous section can be derived in this way.

The extended Kalman filter involves working by and large with approxi-
mations to densities defined using first and second order moments. One way
to refine this idea would be to work with higher order moments, but such a
refinement tends to concentrate attention on approximation of the density
in the vicinity of its mean. In this section, we examine a different type of
refinement, in a sense involving collections of first and second order moments
that do not concentrate attention on only one part of the density. More
precisely, we work with the signal model of (1.1) and (1.2) restated as

Xieer = filxe) + gulxidwy 4.0
2, = h(x) + v 4.2

with {w,} and {v,} having the usual properties, including independence. We
develop Bayesian estimation algorithms using gaussian sum approximations
for the densities p(x,|Z,), k=0, 1, 2,.... (See[14-16].) In the gaussian sum
approach, the key idea is to approximate the density p(x,|Z,) as a sum of
gaussian densities where the covariance of each separate gaussian density is
sufficiently small for the time evolution of its mean and covariance to be
calculated accurately using the extended Kalman filter algorithm. The result-
ing estimators consist of a bank of extended Kalman filters, with each filter
tracking the evolution of its assigned gaussian density. The signal estimate is
a weighted sum of the filter outputs, where the weightings are calculated from
the residuals (or nominal innovations) of the extended Kalman filters. In 2
low noise environment, the resulting estimator can be very nearly optimal.
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In a high noise environment, it is necessary to frequently reinitialize the
algorithm in such a way that the conditional error covariance associated
with each separate gaussian density, and thus each filter in the filter bank, is
always sufficiently small for the filter to be operating near optimally. In other
words, instead of working directly with an estimation problem in which
there is inevitably a large error variance, as in a high noise environment, we
work with an appropriately assembled collection of somewhat contrived
problems in which the error variance is small for each problem of the collec-
tion, as in a low noise environment, and for which optimal or near optimal
solutions exist. The solutions of the subproblems are so orchestrated as to
yield an optimal or near optimal solution to the original problem.

Gaussian Sum Approximations
Let y(x — m,, B,) denote the normal (gaussian) density
yx — my, B) = (2r)™"*| B,|7/* exp {—{(x — m))'B; ' (x — m,)}

The mean is the n-vector m, and the covariance is the nonsingular matrix B,.
The following lemma, quoted from [17], sums up the approximation property.

LemMa 4.1. Any probability density p(x) can be approximated as closely
as desired in the space* L,(R") by a density of the form

pAx) = 3 aplx — m, B (4.3)

m
for some integer m, posttive scalars a, with ; o, = 1, n-vectors m,, and
positive definite matrices B,.

A proof is requested for this intuitively reasonable result in the problems.
Notice that p,(-) itself satisfies the two crucial properties of a probability
density: it is nonnegative for all x and integrates over R" to 1.

There are numerous approaches to the numerical task of approximating
an arbitrary probability density by gaussian sums [14] using nonlinear optimi-
zation techniques, but in any given application the chances are that sim-
plifications can be achieved by taking into account the class of densities
investigated, as illustrated in the FM demodulation example considered later
in this section. A general approximation procedure is also outlined in the
problems and shows that an arbitrarily small bound on the covariances of
the summands may be imposed.

To help understand the importance of the gaussian sum description of a
density, let us assume that p(x,|Z,) is expressed as the gaussian sum

(x| Z,) = ;I“ik'y[xk — my, Bl 4.4

*The approximation is such that J. | p(x) — p4(x)}dx can be made arbitrarily small.
&
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Then X, = E[x;|Z,)and £, = E[x, — £,,)(xi — %:,)'] are readily cal-
culated, and this is a crucial advantage of using gaussian sums. The calcula-
tion is easy, yielding

X = Z_:l Cgy g (4.52)

Zem = 1; OBk + Repe — mu X Eepe — my)'} (4.5b)

Measurement-update Equation

We now examine the question of passing from p(x,|Z,_,) to p(x:|Z,)
when a new measurement z, becomes available. More precisely, we shall
assume that p(x, | Z,_,) is a weighted sum of gaussian densities, and we shall
show how p(x,|Z,) can be similarly expressed. Suppose then that

Pl Zy ) = g:l O, k-1 Y[Xx — My, Eik] (4.6)

If p(x|Z,_,) were simply y[x, — i, B,], then our knowledge of the ex-
tended Kalman filter suggests it would be reasonable to approximate p(x, | Z,)
by y[xi — my, B,], where

My = My + Kylze — h(my)] (4.72)
n o - ) ’ ah (x)

B, =B, — B, H,Q;:;'H,.B H;, = -k 4.7b

i* 1k ek ped g [ D gy = e (4.70)

K, = ErkszQt_kl (4.7¢)

Qlk = Hi,kE{kHlk + Rk ) (4-7d)

However, p(x,|Z,_,) is not simply one gaussian density, but a linear com-
bination of such. It turns out that p(x,|Z,) is then approximately a linear
combination of the densities y[x, — m,,, B,,] with weights determined by

-1 P[2e — B(My), Quil (4.7¢)
IZ:' 0y, k-1 VM2 — B(my), Qi

More precisely, we have the following result.

THEOREM 4.1. With z, = h(x,) + v, as in (4.2), and with p(x,|Z,-))
given by (4.6), the updated density p(x,|Z,) approaches the gaussian
sum

Oy =

‘; A ¥[xe — My, Byl

calculated via (4.7) uniformly in x, and z, as B,, — Ofori=1,2,...,
m.
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Proof. Following the pattern of proof for Theorem 2.1, we have
p(xi | Zy) = OpCaic| x)p(xi | Zi-y)

=0 g:x ai,k—l{y[xk — Mg, Elkh’[zk — h(x), R}

where -1 is a normalizing constant independent of x,. Results within
the proof of Theorem 2.1, tell us that the term {.} above approaches

Yz — hmy), Qulylxe — my, Byl
uniformly in x, and z, as B, — 0 for i = 1,2, ..., m. Moreover, as
By, — 0, one also has

JY[xk — My, Erk]?[zk — hi(xe), Re) dx, —>

JY[Zk — b (), Qulyixe — my, Byl dx, = ylz, — b (M), Q)
uniformly in z,. Since
o= E at,k—xj Ylxe — My, Elk]y[zk ~ hi(x0), Re] dx,
it follows that
o — 1=21 0, k-1 Y12k — Be(mu), Quld

The claim of the theorem is then immediate.

Time-update Equations

With knowledge of the density p(x, | Z,) expressed as the sum of gaussian
terms and knowledge of the dynamic equations of the state vector x,, it is
possible to calculate approximately the one-step-ahead prediction density
Mxisi1Z,), also expressed as a sum of gaussian terms. More precisely, we

consider p(x,|Z,) as the summation

p(xe| Zy) = Z:ml 0Pl — My, Byl 4.8)

and apply our extended Kalman filter theory to yield an approximate expres-
sion for the one-step predicted estimate of each gaussian distribution
Y% — My, B, ] to the gaussian distribution y[x;+, — My 441, By r+1], Where

Fipers = fms)  Fo = 250 (4.92)
El,k+l = FuBuFi + Gi(m,)Q,Gi(my) (4.9b)

We are led to the following theorem.

THEOREM 4.2. With x,,, = fi(x:) + g.(c)w, as in (4.1) and p(x, | Z,)
expressed as the gaussian sum (4.8), the one-step-ahead a posteriori
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density p(x;., | Z,) approaches the gaussian sum
; VX — ’ﬁi,kﬂ,ﬁi,kn]
uniformly in x, as B,, — Ofori=1,2,...,m.

The proof is a straightforward extension of that for Theorem 2.1, and
is omitted.

Filter Implementation

In both the measurement- and time-update equations described above,
the updated mean and covariance of each summand follow from the usual
extended Kalman filter equations. Thus, on the proviso that the m separate
extended Kalman filter covariances are small, one implements the overall
filter by running m separate extended filters and adjusting the weights a, , at
each measurement update. (The weights are not changed at each time update.)

The conditional minimum mean-square-error estimate X/, is simply the
weighted sum of the states of the bank of extended Kalman filters as in (4.5).

Whenever the individual filter covariance matrices get too large, it is
necessary to reinitialize in the sense that one reexpresses p(x,|Z,) or
P(xx411Z), as the case may be, as a sum of gaussian densities, all with small
covariance. (This may have to be done after each time update, if the input
noise variance is large.)

In summary, the above results suggest the following recursive estimation
algorithm for updating an a posteriori density p(x, | Z,), initialized by k = 0.

{1} = Approximate p(x,|Z,_,) with a sum of m gaussian densities as

in (4.6) satisfying some constraint B,, < €I for some small € > 0.

{2} = Apply the measurement-update equations as in Theorem 4.1.

{3} = Apply the time-update equations as in Theorem 4.2.

{4} = Setk 4+ 1 = k.

{5} = Check that B,, < el. If the constraint is satisfied, go to {2}; if not,

go to {1}.
In view of the earlier theorems, we have:
THEOREM 4.3. For the algorithm composed of steps {1} through {5}, as
m — oo then € can be chosen such that € — 0, resulting in the property

that B,, — 0 and B,, — 0. Moreover, the gaussian sum approximation
to p(x,| Z,) approaches p(x,|Z,).

Remarks

1. Simulation results on some examples suggest that the above algorithm
still works satisfactorily even when m is surprisingly small (say m = 6).
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For the case when m = 1, the algorithm of course reduces to the
extended Kalman filter, which can be satisfactory on occasions.

2. In many cases, an optimal approximation of p(x, | Z,_,) by a gaussian
sum with covariance constraints would require too much on-line
calculation to be practical. However, it may be possible to construct
simple and suboptimal methods which work reasonably well, as the
following example shows.

EXAMPLE. Demodulation of Angle-Modulated Signals Referring to our example
of FM demodulation of an earlier section, we consider a single-pole message
model corresponding to the first order Butterworth message spectrum with

state equations.
A —pro [l +[1 (*) (4.10)
= w .
RN

Thus the state of the FM model is a two-dimensional vector composed
of the message A(f) and the phase 6(r). The transmitted signal is s(7) =
&2 sin{w.r + 6(1)], where @, is the carrier frequency, and is corrupted by
additive gaussian noise assumed to be white in the bandwidth of interest. The
received signal is frequency shifted to an intermediate frequency @,, where it
is bandlimited and sampled via in-phase and quadrature-phase sampling as in
Sec. 8.2. (See also [9] for further details.) There results a baseband process
which can be modeled in discrete time with a sampling period of 7, as

Xeo1 = Fxp + wy
and
sin 8
2 = «/—2—[ k] + v
cos 0,

In these equations we have xi = [Ax 6.1 = [A(kT) O(kT)], while F, is
the transition matrix ®(T) of (4.10) and defined from

. _ R-1
@) = [ b O:l(b(t) d0) =1
1 0
and E[w,wj] = Qb where

T 2ﬁ’1 0
- 5%
o} jo o(r)[ , o} () dt

Also {w,} and {v;]} are assumed to be independent, zero mean, white gaussian
noise processes with E[v,v)) = rld,. [If the received signal before sampling is
assumed to be white with variance 76(¢ — 7), then to a first order of approxi-
mation r = /T.] We set A(t,) = Ao, a random variable with probability density
N[0, 11, and 8(z,) = 8, is uniformly distributed in [—z, 7).

For this FM demodulation example, the step {1} of the gaussian sum
algorithm above, where p(x;|Z;.,) is approximated by a gaussian sum in
which the covariance B;, of each gaussian term (i =1, 2, ...) must satisfy
B, < €Ifor some small € > 0, may be relaxed. In fact, only the phase variance
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B3> (the 2-2 component of B,;) need satisfy B32 < € for some small € < 0, as
explored in one of the problems. Of course this relaxation represents a con-
siderable reduction in implementation effort since any selection of a grid of
means 77, in the x space (here the §4 space) will be less dense as A varies than
would otherwise be the case.

To achieve a practical realization of the gaussian sum algorithm for the
FM demodulation problem, three simplifying decisions are made as a matter
of engineering judgment. They are now listed:

1. The densities in the gaussian sum approximations are initialized or
reinitialized as having the same phase variance. This leads to con-
siderable simplification in the measurement update equations. In effect,
the grid of /1, in the A space is equispaced as @ varies, with the spac-
ing dependent in a simple way on €, as defined above.

2. The a posteriori density is approximated by a gaussian sum with means
my; along a one-dimensional grid in the 64 (phase-frequency) space
usually not parallel to the @ axis. Such an approximation allows a con-
siderable reduction in the number of terms in a gaussian sum approxi-
mation and, in effect, reduces the dimension of the problem. The
underlying assumption here is that the a posteriori densities condi-
tioned on phase are approximately gaussian. This assumption appears
a reasonable one from the simulation results and is supported to some
extent by the relaxation of the covariance constraints discussed above
and in Prob. 4.3.

3. In approximating p(x;|Z) by a gaussian sum with covariance con-
straints, we consider the phase 8 to be modulo 2z. Thus the 84 space
is cylindrical. The advantage of considering the probability density
p@|2, Z,) as a folded density on a circle rather than the unfolded
density on a real line should be clear. Such a density could be repre-
sented reasonably accurately by a gaussian sum on a finite grid of, say,
six points evenly spaced around the circle. In support of this simplifica-
tion we note that the conditional innovations z, — hx(7;) in (4.7)
associated with the extended Kalman filter depend on the phase error
modulo 27z rather than on the actual phase error.

The above engineering decisions, when taken together, lead to the grid
points 7, being evenly spaced around an ellipse on the 4 cylinder, not neces-
sarily orthogonal to the A axis but unlikely to be parallel or near parallel to it.
In any reinitialization, the orientation of the ellipse on the 84 cylinder must be
determined and the phase angle of a reference grid point must also be
determined.

Employing the above simplifications and also certain variations not dis-
cussed here, [16] develops a more detailed algorithm than that of the previous
subsection, designed specifically for the FM demodulation problem. However,
in essence it is a bank of m extended Kalman filters where the state estimate is
taken to be the conditional mean, calculated as a weighted sum (4.5) of the
outputs of the filters.
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In the digital computer simulations, lim E{A%(t)} = 1 (as for the example
fmseo

of Sec. 8.2), the root-mean-square bandwidth of the FM baseband spectrum
= 1 rad/sec, the bandwidth expansion ratio is 8, and T = 27/16 sec to permit
adequately fast sampling of the FM baseband process.

A commonly used steady-state performance display consists of plots of
&7, the inverse of the “evaluated” mean-square message error, versus CNR
= 2f]r, the carrier-to-noise ratio in the message bandwidth. For our curves,
¢, is evaluated as the average over 40 sample paths of the quantity

1 2100

3000 k;‘:,oo (A — Axnd?

A set of such steady-state performance curves for ff = 100 is presented
in Fig. 8.4-1. The curve m = 1 corresponds to the performance of the decoupled
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Fig. 8.4-1 Performance of FM demodulators—m is the number of filters
in the filter bank.

quasi-optimum demodulator as presented in an earlier section. In the region
of high CNR, the performance of the demodulators is the same for all m.
However, in the region of low CNR, the performance for larger m is improved
over that for smaller m. In such a region, ;! for m = 2 is roughly 1 db better
than that for m = 1, while for m = 6, the improvement is about 3 db.

The demodulators also have improved transient performance in the high
CNR region, as illustrated in Fig. 8.4-2.
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Fig. 8.4-2 Transient performance for FM demodulators—m is the num-
ber of parallel filters.

Main Points of the Section

We have demonstrated that significant performance improvement can
be achieved by using gaussian sum nonlinear estimators involving a bank of
extended Kalman filters rather than the simple extended Kalman filter.
Unfortunately, the cost associated with increase in filter complexity is con-
siderable, and as we have demonstrated in the FM example, ingenuity may
be required in any application to achieve a useful tradeoff between perfor-
mance and complexity.

It is of theoretical significance that optimal nonlinear estimation in high
noise can be achieved in the limit as the number of filters in the filter bank
becomes infinite. It is also of interest to view the simple extended Kalman
filter as a suboptimal version of the optimal gaussian sum filter.

Finally, we have demonstrated in this chapter that an understanding of
the optimal linear filter goes a long way in penetrating some of the deeper
problems associated with nonlinear filtering.

Problem 4.1 (Gaussian Sum Approximation). Let x be a scalar quantity, and
suppose p(x) is prescribed. Choose € > 0. Select & such that

j px)dx < €
lx]>a
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Let xo = —&, X1, x5, ..., Xy, & be points in [—¢&, &] uniformly spaced with
X — X1 = A. Set

Palx) = EIAp(xf)?[x — x;, kA?]
where £ is a fixed quantity. Show that for suitably small A,
[ 1P —pildx < e
The quantity k can be adjusted to minimize [ | p(x) — p,(x)| dx, which is 0(€).
Problem 4.2. Carry out the manipulations required for the derivation of (4.5).

Problem 4.3. In step {1} of the gaussian sum algorithm described in the text,
show that for the FM demodulation example the covariance constraint By, < €I for
some small € > O can be relaxed to requiring that the phase variance B3 (the 2-2
component of B,;) should satisfy BA2 < € for some small € > 0. Demonstrate this
by using the observation that the message is a nonlinear function of the phase 6
but not the frequency A.
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CHAPTER 9

INNOVATIONS
REPRESENTATIONS, SPECTRAL
FACTORIZATION, WIENER AND
LEVINSON FILTERING

9.1 INTRODUCTION

The first central idea of this chapter, developed in Sec. 9.2, is that the
one Kalman filter can be optimal for many different signal models, although
its performance may vary between these models; i.e. the filter gain is the same
for a collection of different models, while the error covariance is not.

The collection of signal models with the same Kalman filter have a com-
mon property: their output covariance is the same. Equivalently then, the
first idea of the chapter is that the Kalman filter is determined by the covari-
ance of the measurement process rather than by the detail of the signal model.
This idea seems to have first been put forward in [1]. More recent develop-
ments are contained in [2-5], the last reference considering the discrete-time
problem.

Once the many-to-one nature of the signal model to Kalman filter map-
ping is understood, the question arises as to whether there is one particular
model, in some way special as compared with the others, among the collec-
tion of signal models associated with the one Kalman filter. Indeed there is;
this model is the innovations model, so-called because its input white noise
process is identical with the innovations process of the associated filter. Per-
haps the most crucial property of the innovations model is that it is causally
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invertible, in the sense that the input noise process to the model can be com-
puted from the output process in a causal fashion. There are, however, many
other very important properties and alternative characterizations; for exam-
ple, it is immediately computable from the Kalman filter, being in a sense an
inverse to the Kalman filter.

It turns out that the problem of computing an innovations representation
from a covariance parallels, in case the covariance is stationary, a classical
problem of minimum phase spectral factorization. In this classical problem,
one is given a power density spectrum and one seeks a transfer function
matrix with certain properties, including the property that a linear system
excited by white noise and with the sought-after transfer function matrix has
output spectrum equal to that prescribed. Many solutions are known to this
classical problem [6-18].

In this chapter, we also examine two classical approaches to filtering:
Wiener filtering and Levinson filtering. Wiener filtering theory [19-21] intro-
duced the idea of statistically representing signals, and was in many ways a
precursor of Kalman filtering. To understand it, the concept of spectral
factorization is required. Levinson filtering theory [22, 23] aimed at simplify-
ing the computational aspects of Wiener theory, and has since found wide
application. Both theories require stationarity of the underlying processes.

In the remainder of this section, we discuss the problem of signal estima-
tion, showing that covariance data alone suffices to determine the estimate.
Though signal estimation is not the same as state estimation, this perhaps
suggests the reasonableness of the claim that the Kalman filter qua state
estimator is definable using covariance data.

We shall also illustrate the fact that there is an infinity of different signal
models with the same output covariance. In conjunction with the later proof
that this covariance alone determines the Kalman filter, this shows that the
mapping {signal model} — {Kalman filter} is certainly a many-to-one map.

Signal Estimation Using Covariance Data

Let us suppose that there is a zero mean signal process {y,}, zero mean,
white noise process {v,}, and measurement process {z, = y, + v,}, all jointly
gaussian. Let v, be independent of y, for [ < k.

Further, suppose that E[z,z] is known for all k and /. Let us observe
certain properties of formulas for one-step prediction estimates and the

associated errors.
From the projection theorem as pointed out in Chap. 5, we have

E[z;|Zy1) = El2, 2 KE[Zi \Z) 11} ' Z, -, (1.1)

Every entry of E[z,Z}_;) and E[Z,_,Z_,]is known, being part of the covar-
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iance data. Therefore,

Vi1 = Zpny = My 2y, (1.2)
where M, _, is computable from the output covariance data only. What of
the estimation error? We have

E{[zx — Zipe-1llzi — Zi-i]'} = Elz,2i]
— Elz,Z - WE[Zy 1 Zk}T'E[Z, 2] (1.3)
and this quantity is known from the output covariance data. On the other

hand, the error covariance associated with the signal estimate requires more
than the output covariance data. For we have

E{lye = umlye — Jen-)} = Eyeyil

— EZi HEZ Ze BT EZ oy (14)
Now E[y,Zi_\] = E[(z.. — v.)Z_ 1] = E[2,Z ], so that this quantity is
known from output covariance data only. On the other hand, E[y,y:] =
E(z,z;] — E[vvi], and we evidently need to know E[vv] in addition to
E[z,z]] for all k and /.

For state estimation, as we shall see in the next section, the estimate is
determinable from the output covariance data alone, as for the signal esti-
mate. However, the state estimate error covariance is not determinable from
the output covariance data above, again as for the signal estimate error
covariance.

The use of (1.1) in practice could be very burdensome, since the inver-
sion of matrices of ever-increasing dimension is required. If it is known that
y. = Hix,, with x, the state of a finite-dimensional process, and if a finite-
dimensional system generating X,,._, can be found, then y,.,_, = H % n-1
can be found much more easily than via (1.1). However, without an underlying
finite dimensionality, there is really no escape from (1.1) or an equivalent.

An alternative to (1.1), incidentally, is an estimate involving the innova-
tions. Thus in lieu of (1.1), one has

Sk = E[sz;~X]{E[Zk—IZ;:«I]}_IZI(—I (1.5)
which, because of the whiteness of the innovations sequence Z,, becomes
Zprk-1 = ; E[zkz;]{E[‘:lzl 171 (1.6)

Though this formula appears to have eliminated the problem of computing
{E{Z:_,Z 1} %, itintroduces another problem, that of computing E[z.Z}}, Z,,
and E[Z,z]] for all k and /. This issue is taken up in Prob. [.1.

Signal Models with the Same Output Covariance

In this subsection, we illustrate the existence of many signal models with
the same output covariance. Consider

Xper = X, + Wy Zp = X, + v,
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We shall show that with an initial time in the infinitely remote past, we car
obtain the same output power spectrum for an infinity of different nois¢
statistics. In view of the fact that a power spectrum is a z-transform of ¢
stationary covariance, this is equivalent to showing that many different signa.
models have the same output covariance.

Accordingly, in addition to taking an initial time in the infinitely remote
past, we take [w, v,] white, with

o £(l —a)

Wy 3
E{l:v J[w, v,]} = 5 4s. O
& —3—(1 —a) 3- 3

Here a is a parameter chosen to make the covariance matrix nonnegative
definite, but is otherwise unrestricted. Note that the set of allowable « is
nonempty, since & = 1 is a member.

The transfer function matrix linking {[wkjl} to{z,}is [z 1 ! I:I. There-
Vi -
fore, the power spectrum of {z,} is
2 1
R B o E | IS
— 1 =i, = T ]
T 20— 3% I ==

which is independent of «. Therefore, an infinity of signal models can pro-
duce the one output power spectrum.

Main Points of the Section

It will be shown that the output covariance of a signal model is sufficient
to define a Kalman filter, that there is a special signal model among the class
of all those with the same output covariance, and that when the covariance
is stationary, this special model is related to the classical concept of spectral
factorization.

For signal estimation, output covariance data alone is enough to define
the filter, even with no finite dimensionality, though more data is needed to
compute the associated error variance.

There can exist an infinity of signal models with the same output
covariance.

Problem 1.1. Suppose that z, z,, . . . is a scalar output process. Set E{z;z]] =
rx; and form the semi-infinite matrix R with k! entry as r;. Show that it is possible to
recursively define a factorization of R as T'ST, where S is diagonal and T is upper
triangular with unity elements on the diagonal. Interpret the formulas (1.1) and
(1.5) using this factorization.



Sec. 9.2 KALMAN FILTER DESIGN FROM COVARIANCE DATA 227

Problem 1.2. Suppose z, = y; + v, with [y}, {vi} jointly gaussian and of
zero mean, with {v;} white and v, independent of y, for / <{ k. Determine what data
are necessary for computing predicted and smoothed estimates of y, and what data
are required for computing the associated error variances. Does it make a difference
if {y+} and {v,} a~e independent ?

Problem 1.3. Consider the signal models defined in the last subsection. Com-
pute the steady-state Kalman filter for different values of ¢, and check that the same
filter is obtained, but that its performance depends on «.

9.2 KALMAN FILTER DESIGN FROM COVARIANCE DATA

Our main task in this section is to illustrate that the Kalman filter can
be determined simply from the output covariance of the signal model. Ac-
cordingly, we shall suppose that the signal model is

Xery = FuXp -+ Gewy 2.1
Zpy = Yo + v = Hix, + v, (2.2)
where {w,} and {v,} are zero mean, jointly gaussian, white processes with

Wi P O S
R R

Also, x, is @ N(%,, P,) random variable, independent of {w,} and {v,}. For
simplicity, let us take ¥, = 0.

We shall compute the output covariance of this model and then show
that the Kalman filter gain as computed from the model is also computable
from the covariance.

Covariance of (z,]}

In Chap. 2, we calculated E[z,z]] in case S, = 0. Coping with nonzero
S, is simple provided one uses the easily established fact that Efx,v] =
®, ,.,G,S, for k > ! and is zero otherwise; here, @, , is the transition matrix
associated with F,. With P, = E[x,x;] and given recursively by

Py = FkPkF;c + GkaGZ (2-4)
one has
Elz,zid =L,  Elzz) = Hi® M, (kK >1) (2.5)
where
L, = H,P.H, + R, M, = F,PH, + GS, (2.6)

Of course, for k < I, we have
E[Zklﬂ = {E[ZIZ;]}’ = [H§¢I,k+1Mk], = M;c(b;,k+1Hl



Knowing the Covariance of {2}

Earlier we have intimated that knowledge of the covariance of {z.} is
sufficient to determine the Kalman filter. Let us make more precise the notion
of knowledge of the covariance of {z,}.

First, we can conceive of knowing the values taken by E[z,z] for all k
and /, without knowing separately the values of F,, etc. In the stationary
case, one has E[z,z]] = C,_; for some C, _,.

This knowledge is all we need in order to draw certain conclusions about
the calculation of signal estimates as opposed to state estimates, as we dis-
cussed in Sec. 9.1.

Second, we can conceive of knowing the values taken by E[z,z;] for all &
and / by knowing certain matrix functions L,, 4,, and B, for which E[z,z;]
== L, and E[z,z]] = A}B, for k > I. This means that one knows something
about the finite-dimensional structure of the {z,} process, but one does not
know F,, H,, and M, individualty. Using this knowledge, we can show that
signal estimates may be calculated by means of a finite-dimensional filter.

Third, we can conceive of knowing the quantities F,, H,, M,, and L,
in (2.5). This knowledge, as it turns out, is sufficient to calculate the Kalman
filter as a state filter for all signal models of the form of (2.1) through (2.3).
Since state estimation can only take place when a coordinate basis has been
fixed, the fact that one needs to know these extra quantities should be no
surprise.

Actually, from the signal estimation point of view, the second and third
situations are the same. For suppose that the {4,} and {B,} sequences are
known. Define F, = I, H, = A, and M, = B, ; solve the state filtering prob-
lem associated with these parameters. Then a signal estimate is immediately
obtainable from the state estimate of the filter.

State Estimation Using Covariance Data

When the signal model of (2.1) through (2.3) is known, we compute the
Kalman filter error covariance and gain matrix as follows:

Zivin = FiZup-1Fe — FrZipi- 1 Hie + GS)(H i Zeje-1 He + Ri)™?

X (FyZjk-1He + GiSe)' -+ GQiGy 2.7
with £,,_, = P,, and
K. = (FiZp-1Hx + GieSi)(H i Zgs- Hy + Re)™? (2.8)

The relation with the covariance data is obtained in the following way.

THEOREM 2.1 [5]. Consider the signal model of (2.1) through (2.3), with
output covariance as defined in (2.5) and Kalman filter gain and error

228
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covariance as defined in (2.7) and (2.8). Consider also the equation
Tyry = FToFie + (Fe T Hy — MLy — H T H)  N(Fe T H, — M)

(2.9)
initialized by T, = 0. Then
Ky = —(F,T\He — M) (Ly — H.T.H.)™! (2.10)
and
P.=Z-y + Ti (2.11)

The crucial points to note are that both 7, and K, are determined from
output covariance data only. On the other hand, since P, is not determined
by output covariance data only, X, . _, is not determined by output covariance
data only.

The proof of the theorem can be easily obtained by induction, or see [5].

Several miscellaneous points follow.

1. As we know, 0 << £, ., < P,. It follows from (2.11) that 0 << T,
< P,. The matrix T, can be identified with a covariance in the follow-
ing way. Because x, — X, _, is orthogonal to Z,_,, it is orthogonal
to Xx/x-1, and accordingly

E[ka;c] = E{[(xk — Ren-) + ik/kw][(xk — X)) + 2k/k~l]I}
= El(xr — X~ — X))’} 4 El g Ren-i]
The definitions of P, and X,,,_, and comparison with (2.11) show,

then, that
T, = E[-ik/k—lfc;t/k—l] (2~12)

Thus T, is the state covariance of the Kalman filter.

2. The quantity H;Z, -, H, is the error covariance associated with the
estimate P/, of y,. We noted in the last section that this quantity
had to depend only on E[z.z;] for all k and / and on Efv,v;] = R,.
This can be checked from the fact that

H;czk/k—lHk = (HI:Pka + Rk) - H;chHk — Ry

The first term is E[z,z;], the second is computable from covariance
data, and the third is known.

3. One might conjecture results similar to those above for smoothing.
Actually, it is true that optimal smoothed estimates of y, depend on
E[y.y1], E[y:v), and E[v,v)) separately;i.e., knowledge of E[z,z;] alone
is not sufficient to define a smoothed estimate, while to obtain an
optimal smoothed estimate of x,, the full signal model needs to be
known. See Prob. 2.3. Of course, optimal smoothed estimates of z,
can be obtained from knowledge of E[z,z;]. (Why?)

4. Equation (2.11) shows that larger P, are associated with larger £, ,_,
for signal models with the same output covariance. Especially in the
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stationary case, one can give interesting interpretations (some involv-
ing frequency domain ideas) of the ordering properties of the P, of
different signal models with the same output covariance (see [24, 25)).

Main Points of the Section

The Kalman filter gain is computable from the signal model output
covariance via (2.9) and (2.10), while filter performance depends on the par-
ticular signal model via the equation P, = X,,,_, + T,. Here, T} is the state
covariance of the Kalman filter and depends only on the signal model output
covariance.

Problem 2.1. Suppose that {z,] is a stationary process, generated by an
asymptotically stable signal mode! of the form of (2.1) through (2.3) with all matrices
constant. Show that if F, H are known and E[z,z]] is known for all k and /, and if
[F, H] is completely observable, the quantity M in (2.6) is computable.

Problem 2.2, Consider the matrix 7 defined recursively by (2.9). Show that

T+, can be characterized by
L 2] -0 nim ma=o0)
M. L, Hi
(Hint: Show that with the nonnegativity assumption, the nonnegative matrix is
congruent to the direct sum of X — F,ToFy — (FiTuHye — MY Ly — H T H,)™!
(FkaHk — Mk), and Lk — HLTka]

Tk+l = min {X

Problem 2.3. Compute E[x,z] for I > k for the signal model of (2.1) through
(2.3). Using the formula
Elxc| Zism]l = Elx Zi s ml E[ZksmZ i seml} ' Zksm
argue that %,,,, depends on the particular signal model and is not determined

solely by knowledge of F, Hy, M,, and L, in the formulas for E[z,z]]. Discuss also
the quantity E[yi|Zi,m).

9.3 INNOVATIONS REPRESENTATIONS
WITH FINITE INITIAL TIME

As we now know, there is an infinity of signal models corresponding to
the one Kalman filter. For this section, we identify one such model and
identify some of its key properties.

The model is termed the innovations model. Here are some of its impor-
tant properties.

1. It is determinable from the covariance data only and is unique.
2. Theinput to the innovations model can be determined from its output.
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3. The Kalman filter can estimate the state of the innovations model
with zero error, and the Kalman filter innovations sequence is iden-
tical with the input noise sequence of the innovations model (hence
the name).

The first property has great significance. In many practical situations, a signal
model of a process may not be known, yet covariance data is obtainable by
experiment. In principle then, this data can be used to construct one possible
signal model for the process.

The results in this section all apply in nonstationary situations and with
finite initial time. In the next section, we take up the special aspects associated
with stationary processes, and we allow an initial time in the infinitely remote
past.

One way of obtaining the innovations model is as a sort of inverse of a
Kalman filter. We shall introduce the model this way.

The Kalman Filter as a Whitening Filter

We usually think of the output of a Kalman filter as a state estimate
Re/x—1. Instead let us think of the output as the innovations sequence {Z,}.
Thus the filter equations (with input z,, state £,,,_,, and output Z,) are

v = (Fe — KiH )R- + Kizi X1 =0 (3.1a)

Iy = —H;(ik/k—l + 2 (3.1b)

(We assume operation is over [0, oo) and X, = 0 in the usual notation.) Recall
that the innovations sequence {Z,} is white. Then (3.1) define a system with
the following property: The input is a non-white process {z,}, the system is

computable from E|z,z]], and the output is a white process {Z,;}. Such a system
is termed a whitening filter.

Inverse of the Whitening Filter

Now let us turn the whitening filter idea round. We seek a system with
input Z, and output z,, i.e., an inverse to (3.1). This is easy to obtain. For when
z, 1n (3.1a) is replaced by Z, + H; X/, using (3.1b), we have

Xivime = Falpnoy + Ky Xorog =0 (3.2a)

while (3.1b) also implies
2 = HiRimoy + 2 (3.2b)
What we are saying is the following: Suppose that a Kalman filter is known
and that the innovations sequence {Z,} of the filter is available. Then from

{.}, we can construct {z,} by taking {Z} as the input to a certain finite-dimen-
sional system, the output of which will be {z,}.



Innovations Model
To obtain the innovations model, we need the following idea.

DEermviTION 3.1, Suppose there is given a process {a,}. Whenever we can
define a process* {@,} whose statistics are the same as those of {a,}, we
say that {@,} is a realization of {a,}. If a set of statistics are given and we
can define a process {d,} wWhose statistics agree with those prescribed,
we say that {@,} is a process realizing the prescribed statistics.

Equation (3.2) shows that there is a linear system which, if the input is a
special white noise process {Z,}, has output {z,}. What if the input is simply a
white noise process {7} that has the same statistics as {,}, i.e., is a realization
of {Z,}? Then we should expect the corresponding output process {Z,} to no
longer be identical with {z,}, but to have the same statistics as {z,},1.e.,to be a
realization of {z.}.

This thinking leads to the following definition.

DEerINITION 3.2 (Innovations Model). Let there be a zero mean gaussian
process {z,} resulting from some signal model of the form (2.1) through
(2.3). Suppose that E[z,z;] = L, and E[z,z;] = H @, ;. M,fork > [ in
the usual notation. Define the sequences {T'}, {Q.}, {K,} byt

Tiry = FiThFi + (FiToHy — My )Ly — Hi T H) '(F, T, H, — M,)’

T,=0 (3.3a)
Q, = L, — H,.TH. (3.3b)
K, = —(F. T H, — M)Q;! (3.3¢)

The innovations model for {z,}, defined for £ > 0, is the linear system
X1 = FiXi + Ky X =0 (3.42)
i, = H\% + 6, (3.4b)

with {7,} a zero mean gaussian sequence with

E[5k75; = Qk5k1 (3~5)

Itis important to note that the innovations model falls within the class of
signal models introduced at the start of the last section.

The argument prior to the above definition and comparison of (3.2) and
(3.4) suggests that {Z,} must be a realization of {z,}. Let us formally state this
fact; we leave the straightforward proof to the reader.

*The overbar does not denote a mean, but is used simply to distinguish two related
quantities.

tEquations (2.1) through (2.3) actually only force L, — H . Ti H} to be nonnegative
definite. If the inverse in (3.3a) fails to exist, a pseudo-inverse should be used. Though the
theory will cover this situation, we shall assume existence of the inverse to keep life simple.
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THeoreM 3.1. The output process {Z,] of the innovations model is a
realization for {z,}, and
E[%%] = T, (3.6)

In the definition of the innovations model, we gave formulas allowing its
computation from covariance data. The crucial quantities are of course K
and Q;; these are the Kalman filter gain and filter innovations covariance. So
the innovations model is also immediately computable from the Kalman filter.
Again, the filter quantities K, and Q, are computable directly from a pre-
scribed signal model; i.e. one does not have to compute first the output
covariance of the signal model, then from it K, and Q,; it follows that the
innovations model is computable from any signal model. In summary, the
innovations model associated with a given covariance E[z,z)] is computable
from one of the following.

1. The covariance itself
2. The Kalman filter corresponding to the covariance
3. A signal model generating the covariance

The first observation means that the construction of an innovations
model provides a solution to the covariance factorization problem (sometimes
termed the spectral factorization problem, though this terminology is more
properly reserved for situations in which {z,} is stationary and the initial time
is in the infinitely remote past). The covariance factorization problem is, of
course, to pass from a prescribed covariance to a linear system with white
noise input with output covariance equal to that prescribed. In this section,
we are restricting attention to a finite initial time, but in the next section, we
allow an initial time in the infinitely remote past, which in turn allows us to
capture some of the classical ideas of spectral factorization (see [1-19]).
Nonstationary covariance factorization is discussed in [5, 26-33), with [5]
providing many of the ideas discussed in this section. References [26-33]
consider the continuous-time problem, with [30-33} focusing on state-variable
methods for tackling it.

Point 3 above raises an interesting question. Suppose there is prescribed
a signal model

Xpa1 = Faxp -+ Kevg (3.7a)
Ze = Hyx, + v, (3.7b)

with v, a zero mean, white gaussian process with
Efvv)] = Uy, (3.8)

Is it the innovations model for the {z,} process? Equivalently, would the gain
of the associated Kalman filter equal the quantity K, in (3.7)?
The answer is yes, provided that Q, is nonsingular.

THEOREM 3.2 (Uniqueness of K, Q,). Consider the signal model defined
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by (3.7) and (3.8) with x, = 0 and Q, nonsingular. Then it is an innova-
tions mode! in the sense of Definition 3.2.

Proof. To prove the claim, the strategy is to compute the Kalman filter
gain and innovations covariance and check that these quantities are the
same as K, and Q,. From (3.9), x.,, = Fixi + Ki(z, — H}x,) with
x, = 0. This equation shows that x, is computable from z, for / < k,
i.e., E[xi|Z:.,] = xi. Thus the equation can be rewritten as

~ -~ 7 A

Revve = Filpnoy + Kil(ze — HiRine-1)
Also

-~ 7 o~ 7’

Zy =2 — HiRypeoy = 25 — Hipxy = v

So E[2,7.} = E[v,vi] = 4. This completes the proof.

Further Relations between the Innovations Model and
the Kalman Filter

In the course of proving Theorem 3.2, we constructed the Kalman filter
gain and error covariance for a signal model which proved to be an innova-
tions model. The error covariance turns out to be zero since x;, = E[x,|Z,_,].
We also showed that the filter innovations process was identical with the
input of the innovations model. In summary:

TreoreM 3.3. Consider a signal model of the form of (3.7) and (3.8),
with x, = 0 and Q, nonsingular. The associated Kalman filter is

Xivre = Fiulypoy + Kz — HieZep-r) (39)

and one has %,,,, = x,.;, Of zero error covariance, and 7, = z, —
HiZieoy = v,

This result is also consistent with the fact that for an arbitrary signal
model, one has P, = X, ,,_, + T, in terms of the earlier notation, while,
according to (3.6), one has P, = T, for the innovations model. This means
that for the innovations model X, ,_, = 0.

Causal Invertibility Property of Innovations Representation

The innovations model (3.4) has the property that it is causally inver-
tible, i.e., 7, is computable from Z, for / << k. This comes about in the follow-
ing way. First, 5, appears in the output equation (3.4b), which allows us to
rewrite (3.4a) as

Xpar = Fik -+ Kk(z-k - H;:ik)
Second, because x, = 0, %, can be determined from z, for I < k, and thus,
from (3.4b), 5, can be determined from z, for [ < k.

This causal invertibility property can be taken as the defining property of

an innovations representation; i.e., we are making the following claim.
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THEOREM 3.4. Consider a signal model of the form
Xes1 — Fkx;‘ + kak (3.103)
Zp = H;‘xk + Vi (310b)

with xg, {w,}, {vi} jointly gaussian, x, is N(0, P,) and independent of
{w.} and {v,]}. Also, {w,} and {v,} are zero mean and with covariance

Wg P Qe Sk
il d=5 S omm

Suppose that the driving noise [w;  v:]’ is causally computable from {z,].
Then the model must be of the form of (3.4) and (3.5), save that possibly
P, 7 0 but H; @, P, o H, = 0 for all k.

Proof. Since z, = Hyx, + v, and v, is computable from z,, one must have
no uncertainty in Hyx,, i.e., HyP,H, = 0. Then v, = z,. Since w, is
computable from z,, one must then have w, = L,v, for some L,. Since
2, =Hix,+v,= H\Fyx, + H|Gyw, + v, and v, is computable from z,
and z,, there must be no uncertainty about H Fyx,, i.e., H1F P, FoH, =
0. Then v, is known exactly. Then w, = L,v,, because w, is known exactly
from z, and z, or equivalently v, and v, ; one could not have w, = L, v,
+ L,,v, with L,, = 0 without violating the whiteness property.

More generally, we conclude that H;®, ,P,®, H, = 0 for all k
and w, = Lv,. Setting K, = G,L,, the model of (3.4) and (3.5) is
recovered. This proves the theorem.

Thecondition H;®, P, P, ,H, = 0forallk hasanobviousinterpretation;
none of the initial uncertainty in x, is allowed to show upin{z,}for & > 0. This
means that the statistics of {z,} would be unaltered if x, were changed from
being N(0, P,) to N(0, 0). So the difference in a causally invertible model with
P, # 0 and the true innovations model where P, = Ois trivial. For this reason,
one identifies the notion of innovations model and causally invertible model.

Other Types of Innovations Representation

So far, the innovations representations dealt with have been state-
variable models. In the remainder of this section, we examine other types of
representations—those associated with infinite-dimensional processes, and
those associated with ARMA representations.

Innovations Representations Lacking Finite-Dimensional
Content

Let {z,} be a process defined for k > 0 with E[z,z] prescribed, but not
necessarily associated with a finite-dimensional system. An innovations
representation is a writing of z, as

k
Zy :[:zogklﬁl (3.11)
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with {#,} zero mean, white and gaussian, and with g,, = I for all k. One can
show that {#,} must be identical with Z, = z, — Z,,_,. The causal inverti-
bility is easily checked.

Such a representation is essentially defined in Prob. 1.1 in the scalar case.
In the vector case, let & be the (m + 1) X (m + 1) block matrix whose k/
block entry is E[z,z;]. One writes

®R=T'ST (3.12)
where T'is block upper triangular with identity blocks on the diagonal, and S'is
block diagonal. The entries of T define the g,;, and the uniqueness of the fac-

torization corresponds to the uniqueness of the innovations representation,
See Prob. 3.4.

Innovations Representations for ARMA Processes

An ARMA process is defined by a vector difference equation of the form

Zy 4+ AsrZiey + o0 + Az = Bogvr + -+ 4 Butio,,  (3.13)

More often than not, the 4,;, and Bj, do not depend on k; the process {v,} is

zero mean, white and gaussian, and {z,}is the output process. If (3.13) is defined
for k > 0, some form of initialization, deterministic or random, is needed.

An innovations representation of the process is provided by

e+ Az + 0 AuZien = Cobe + - + Cuileo (3.14)
where C,, are coefficients determined in a way described below, {7,} is a zero
mean, white gaussian process, and is causally computable from {z,}. Initial
conditions are z_, =z, = -+ =z_,=0and o_, = -+ =d_, = 0.

We obtain the results by setting up an equivalent state-space model to
(3.13), finding a corresponding state-space innovations model, and obtaining
(3.14) from this model.

The key to doing this is the following lemma:

Lemma 3.2. For m < n the state-variable equations

—'_Al,k+1 I -~ 0 0] _Bl,k+1 — Al,k+1B0k—
—Azk42 ot oo Bz,k+z - A2,k+ZBOk
Xpai = . c e I O xp + . .
_An—l,k+(n—1) 0 I
__An,k+n 0 0_ _ -
(3.152)
Zg=[ 0 --- 0 O]x; + Botx (3.15b)

imply (3.13).
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Proof. We use a superscript to denote a subvector of x,. We have
z, = xp + Bgv, [from (3.15b)]
= —ApXiy + xio0 + (B — AuBoi- 1)V
+ B,v, [from (3.15a)]
= —Auzr .y + AuBo e Vi1 + XEo1 + (B — AueBo k-1 )0k
+ By, [from (3.15b)]

= — A2k + XE_y + Byt — Byui-, [by rearrangement]

= —AyZyy — ApXio, + xi, +(By — Ay Bo k-2 )V
+ Bowvi + Brvio, [by (3.152))
= —~AuZioy — ApZioy + ApBo g2V, + Xi_,

+ (Bax — AwBok-2)0k-2 + Boxvx + By [by (3.15b)]
= —Apziy — ApZioy + Xicr + Bovi + B,
+ B,,v._, [by rearrangement]

The general pattern should then be clear, and the lemma is proved.

The lemma shows how to connect (3.13) to a state-variable equation in
case m << n. If m > n, we add further terms to the left side of (3.13), viz.,
AvisaZi-msv T ot ApZiem, With A=A, = - =A4,,=0.
Then we can use the lemma again.

The Kalman filter for the state-variable model of (3.15) is readily derived,
as is the innovations model, which has the form of (3.15) save that the matrix
multiplying v, in(3.15a) is replaced by the Kalman gain matrix, {v,}is replaced
by a different white process {#,}, and x, = 0. Then (3.14) follows from this
state-space innovations model. As initial conditions for (3.14), we take
z,=2,=-+=z_,=0andd_, = .- =95_, = 0toreflect the fact that
x, = 0.

Main Points of the Section

Among the class of state-variable signal models with the same output
covariance, one stands out—the innovations model. Its important properties
are as follows.

1. It is computable from either the output covariance, or the Kalman
filter, or an arbitrary signal model.

2. It is essentially unique.

3. The Kalman filter applied to an innovations model estimates the
innovations model states with zero error, and the filter innovations
process is identical with the innovations model input process.
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4. The innovations model solves the covariance factorization problem,
while the Kalman filter solves the whitening filter problem.

5. The innovations model is causally invertible, and any signal model
which is causally invertible is virtually an innovations model; causal
invertibility is the property that the input is causally obtainable from
the output.

One can also define innovations representations where no finite dimen-
sionality is involved, and innovations ARMA models can be associated
with an arbitrary ARMA model.

Problem 3.1. Show that among the class of all signal models of the form of
(2.1) through (2.3) with the same output covariance, the innovations model has the
least state covariance.

Problem 3.2. Let T} be as in Definition 3.2, and suppose that the signal model
of the form of (2.1) through (2.3), realizing the {z;} process, has E[x;x}] = T. Show
that the model must be an innovations model as in (3.4) and (3.5), save that X is
only determined to within addition of a matrix whose rows are in JU[Q,].

Problem 3.3. Consider the causally invertible model defined in Theorem 2.3.
Suppose that F, H are a constant, completely observable pair. Show that P, = 0.

Problem 3.4. Consider the equation ® = T'ST, where ® is an (m + 1) X
(m + 1) block matrix, T is upper triangular with identity blocks on the diagonal,
and S is diag [Qo, Q, . . ., Q.]. Let the & — I block entry of T be Ty; = gix. Show

k

that if z; = 3 ge@; with E[65;] = Qi0y;, then E[z,z]] is the k — I block entry of
i=0

®. Show also that if 7.5, T; = T4S5.T,, with T;, S; possessing the properties listed

above, then T, = T3, S; = Sz. [Hint for second part: (T%)"'T} is lower triangular
and equals S,7,77!S1?!, which is upper triangular.}

9.4 STATIONARY INNOVATIONS REPRESENTATIONS
AND SPECTRAL FACTORIZATION

In this section, we concentrate on innovations representations for sta-
tionary processes. The section divides naturally into four parts:

1. Review of classical frequency domain based ideas of spectral fac-
torization, with foreshadowing of connection to the innovations
ideas.

2. Discussion of state-variable innovations representations commencing
at a finite initial time for stationary processes; such representations
turn out to be time varying, but asymptotically time invariant.
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3. Discussion of state-variable innovations representations commencing
in the infinitely remote past for stationary processes. Such representa-
tions are time invariant, and are connected with the classical ideas.

4, Discussion of other approaches than those using state-variable mod-
els: ARMA representations and the Wold decomposition.

Time-invariant Innovations Representations—Frequency
Domain Properties

Suppose that {z,} is the output process of a linear, asymptotically stable,
finite-dimensional system driven by zero mean, stationary white noise {v,}
commencing in the infinitely remote past. Then {z,} is a stationary process,
and a calculation of Chap. 4 effectively led to the result.

O,z(2) = W(E)QW'(z7Y) “4.1)

Here W(z) is the transfer function matrix of the system in question, Q is the
covariance of v,, i.e., Q = E[v,v:], and ®,,(z) is the power spectrum matrix
of {z,}. The power spectrum is related to the covariance in the standard way:

®,,(z) = k}"i Elz,24)z7 (4.2)

Passing from W(z) and Q to ®,,(z) is straightforward. The converse
problem of spectral factorization is harder. From ®,,(z), one is required to
construct W(z) and Q satisfying (4.1), with Q nonnegative definite symmetric
and W(z) rational with all poles in |z]| < 1 [so that W{(z) corresponds to an
asymptotically stable system].

Throughout this section, we restrict attention to the case when z, is a
Sfull-rank process, as now defined. (This restriction is frequently a very rea-
sonable one, and is standard in the literature.)

DEerINITION 4.1. {z,} is a full-rank process if there exists no signal model
with output covariance E[z,z;] which is driven by a white noise process
{v,} with the dimension of v, less than that of z,.

In terms of (4.1), we see that a process will not be full rank if there
exists a decomposition with Q of smaller dimenston than ®@,,(z); and in that
case, O, ,(z) will be singular for all values of z. The converse is also true; i.e.,
if ®,,(z) is singular for all z, {z,} is not a full-rank process, but we shall omit
any proof of this result. If {z,]} is a full-rank process, ®,,(z) will be nonsingular
for almost all z, but not usually for all z. Note also that any scalar process is
automatically full rank.

It is clear that any solution of the spectral factorization problem defines
a realization of the {z,} process: one simply drives the system with transfer
function matrix W(z) by a white noise process {v,} with E[v,v;] = Q. The
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question then arises as to what the innovations representation is. The answer
is described in the following theorem for full-rank processes.

THEOREM 4.1. Suppose that ®,,(z) is constructed in the manner
described above and is of full rank for almost all z. Then there is a
factorization of ®,,(z) as

®,,(2) = WERQRW'(z™Y) 4.3)

where W(z) is a square, real, rational, transfer function matrix, all poles
liein|z| < 1,lim W(z) = I, W-!(z)is analyticin| z| > 1[or, equivalently,

7400

W(z) has constant rank in | z| > 1], and {1 is positive definite symmetric.
Moreover, the factorization is unique and defines an innovations rep-
resentation.

We shall offer a proof here of only the uniqueness part. (The remainder
of the proof will be filled in by our state-variable treatment of innovations
representations.) Following the uniqueness proof, we offer 2 number of
remarks concerning the theorems.

Proof of Uniqueness.* Suppose that

W\(z)ﬁx W,x(zﬂl) = Wz(z)ﬁz le(z_l)
where W,(z) and &, are as described in the theorem statement. Then
QW WL = (W@ W20,

The assumptions on the W, imply that the right side is analyticin|z| > 1,
the left side in | z| < 1. Therefore,

U(z) = [W, (2] W, (2)3)
is analytic everywhere except possibly on |z|= 1. One checks easily
that U(z)U'(z7") = Q,. Now on | z| = 1, U'(z™1) = U'*(z) since U(2) is
real, rational, and z°! = z*. Therefore
trace Q, = trace [U*(2)U(z)] = X |ui,(2) 2
¥
So clearly, no element of U(z) can have a pole on |z| = 1. Hence U(z)
is analytic everywhere. Letting z — oo yields lim U(z) = §1/* and so it

is also bounded. Hence U(z) is a constant by Liouville's theorem. It is
immediate then that W,(z) = W,(z) and , = Q,.
Remarks on Theorem 4.1

1. If ®,,(z) is nonsingular for all | z] = 1, as is often the case, the claim
of the theorem can be strengthened in that W(z) has constant rank in
|z] > 1, rather than | z| > 1.

*This proof may be omitted without loss of continuity.
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The innovations property is linked with the fact that W~!(z) is
analytic in | z| > 1. At least if the analyticity extends to |z| >> I, this
means that W~!(z) is a causal inverse for W(z). The state variable
interpretation is as follows. If W(z) =1+ H'(zl — F) 'K, then
WNz)=I—H(zl—F+ KH)'K and if |[A(F— KH")| <1,
W '(z) has the required analyticity property.

. Theorems very like Theorem 4.1 can be found in the literature [6-15].

However, instead of requiring @, ,(z) to be constructed in the manner
described, it is usual simply to postulate the following properties for
®2(2):

(a) ®;z(z)is analyticon|z| = 1, is rational, and has full rank almost

everywhere.
(b) @z2(2) = DZ(z7").
(¢) ®,,(z) is nonnegative definite hermitian on |z|=-1 (in fact

positive definite hermitian almost everywhere on | z| = 1).

If ®,,(2) is defined via (4.1), where W(z) and Q have the properties
specified earlier, it has the three properties just listed. But the impor-
tant point is that if these properties are simply assumed for ®,,(z),
the theorem is still true. In this chapter, we shall not prove this last
claim (although it can be proved using state variable ideas [18], as
well as by more classical procedures).

It is possible to prove results for the case when {z,} is not a full-rank
process. They are a good deal more complicated.

. Classical treatments often give the name minimum phase to the W(z)

of the theorem statement. This arises because in the scalar case, the
phase of W(e’*) for any real w is less than that of any other spectral
factor. Another name is minimum delay. The heuristic reasoning for
this name is well described in [34]. See also [25] for the connection
with state-variable ideas.

“Knowing*’ the Power Spectral Matrix

In the classical treatments of spectral factorization referred to above, it is
usual to assume that ®, ,(z)is given as a matrix of rational functions of z. How-
ever, in treatments of the classical spectral factorization problem via state-vari-
able ideas, it is necessary to assume that one knows matrices F, H,L, and M
such that

Op,(z) =L + H'(zI — F)"'M + M'(z"'] — F)"'H (4.4)

and |A,(F)| <1 Let us describe how these might be found from ®,,(z),
expressed as a matrix of rational functions. Broadly, there are two approaches.

1.

One carries out a partial fraction expansion of ®,,(z). [This neces-
sitates factoring of the least common denominator of all elements of
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®,,(z).] There results
Ozz(z) = A4 + }: + Z

where |z,| < 1, and we have assumed for convenience that ®,, is
bounded as z — <o and has no repeated poles. Rewrite C,(z — z;7!)™!
—Cz; — CizHz7' — z)7', which yields

Ik
Opa(d) = L+ T2 + TP

z~—z,

Z;

[The B/* arise because ®,,(z) = ®3,(z7!).] Then one obtains a state-
variable realization of }; Bz — z,)7! (see Appendix C);i.e.,one finds

F, H, and M such that H'(zI — F)"'M = 3 B(z — z,)"'. One has
[

|A(F)| < 1 as a result.
2. One obtains a Laurent series expansion of ®,,(z) convergent in an
annulus a < |z| < a7':

Ozp() = 3% Cir™ (4.5)

The quantity C, is precisely E[z,z;]; therefore, if covariance data is
known, C, is available at once. Otherwise, one has

1

= yrT D ()2 dz 4.6)

lz]=1
the integral being takenin an counterclockwise direction. Having (4.5),
one then finds F, H, and M such that H'(zI — F)"'M =3, C:z™*

21
(see Appendix C). The integral in (4.6) can be computed via Cauchy
residue theory (but this is almost like using the partial fraction
method), or by using numerical values of ®,,(z) on |z|=1, or,
approximately, by a discrete Fourier transform type of calculation.

Innovations Representations for Stationary Processes
with Finite Initial Time

Suppose that {z,} is a stationary, full-rank process as described above.
Then for some quantities F, H, M, and L, we have

Elz.z5] =L k=20

4.7
= HF'M k >0

or equivalently
©Oy(z) =L+ H'(zZI — F)y"'M + M'(z7'I — F)'H 4.8)

Also, [A(F)| < L.
The data F, H, M, and L might be all that is available. Alternatively,
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we might know a signal model with {z,] as the output process. Let us work,
however, just with the covariance data.
As we know, the innovations representation with initial time & = 0 1s
given by
Xear = Fx, + K9, X, =0 (4.9a)
7, = H'x, + 9, (4.9b)
where {3,} is zero mean, white, and gaussian with E[7,5;] = €, and where
K, and Q, are defined as follows. Let
T.., = FT\,F' + (FT.H -~ MYL — H'TH)(FT.H— M) (4.10)

Ty =0
Q,=L— HTH (4.112)
K, = —(FT,H — M)Q;' (4.11b)

We see immediately that though z, is stationary, the innovations model
is not time invariant. However, we do have the following important result.

THEOREM 4.2. With definitions as above, the innovations model is
asymptotically time invariant.

To prove this theorem, we shall first study the sequence T,.

LEMMA 4.1. The sequence T, converges monotonically to a limit T,
satisfying (4.10) with T, and T, replaced by T.

Proof* We first show the monotonicity of T,. The signal model (4.9)
has the property that E[x,x}] = T,. Therefore, the following signal
model, obtained by studying (4.9) on [l, o) and then shifting the time
origin, has the same output covariance as (4.9):

Xeoy = Fxp + Kpoyvi
2z, = H'x, + v,
with E[v,vi] = Qusy, Elxox3] = T4, E[x,] = 0. Now (4.9) is the innova-
tions representation for this model, so that P, — T, > 0, where P,
= E[x,x%]. (See Theorem 2.1.) On the other hand,

E{x,x] = E[ik+]i;(+1] = Tis

by Theorem 3.1, so that T,,, — T, > 0. (An algebraic proof of mono-
tonicity is contained in the problems.)

Convergence of T, follows from the monotonicity and the existence
of an upper bound on T, provided by the state covariance of the signal
model generating {z,}. (See Theorem 2.1.)

*The proof may be omitted without loss of continuity.



244 INNOVATIONS REPRESENTATIONS, SPECTRAL FACTORIZATION Ch. 9

The proof of Theorem 4.2 is now virtually immediate. Using (4.11),
we have
Q=1mQ, =L~ HTH (4.12a)

koo

K = lim K, = —(FTH — M)Q! (4.12b)

k~+o0

Innovations Representations for Stationary Processes
with Initial Time in the Infinitely Remote Past

The first matter we have to explore is the definition of an innovations
representation with initial time in the infinitely remote past. Actually, we
proceed in a very straightforward fashion. We consider Definition 3.2, which
applies to a finite initial time. We let the initial time approach —co and see
if the resulting quantities, e.g., Q,, K, have limits. If they do, we associate
these with the innovations representation with initial time in the infinitely
remote past.

Now suppose the initial time in Definition 3.2 is changed from 0 to k,;
if F, H, M, and L are constant, it follows easily that T; ., = Ti-z0,0 = Trk—s4a3
here, the second subscript denotes the initial time, the first subscript the
running time. Likewise, K ., = K _x, and Q, . = Q,_,.. Letting k; — —oo
is equivalent to letting £ — co. In the light then of (4.12), we have the follow-
ing.

DEFINITION 4.2. Let z, be a stationary process with covariance as given
in (4.7). Let K, Q defined in (4.12) be the steady-state values of the
matrices defining the innovations model with finite initial time. Then the
innovations model with initial time in the infinitely remote past is defined
by

%p4y = F%, + Kb, (4.132)
Z, = H'x, + v, (4.13b)

and
E[5,97] = Qd,, E[5,]=0 (4.13¢)

Observe that for this model, E[x,x;] = T, the limiting solution of (4.10).
Of course, it is time invariant, and this is a helpful property in practice.

Now that the model has been defined, we need to check to what extent
the properties applicable with finite initial time carry over to an initial time in
the infinitely remote past. We start by studying the issue of causal inver-
tibility, which, it should be recalled, is a property possessed by all innova-
tions models, and only by models which are, to all intents and purposes,
innovations models.



Causal Invertibility of Time-invariant Innovations Models

DEFINITION 4.3. A signal model

Xpuy = Fx, + Gy (4.14a)
i, =H'% + 5, (4.14b)
w S w
E{[-"J[W; 62]} = [Q }5% E[ _*—| =0 (4.14c)
Vr S R Ve |
with | A,(F)| < 1, is causally invertible if from z,, Z;,+,, ..., Z, one can

construct quantities w, ., and 7, ,, such that as k, — —oo, W, ,, — W,
and 7, ,, — 9,, convergence being in mean square.

We then have the following theorem.

THEOREM 4.3. The innovations model (4.13) is causally invertible. Any
causally invertible model is an innovations model.

Proof.* First suppose that (4.13) is an innovations model. Consider the
Kalman filter for (4.13) assumed to commence operation at time k,.
Then this filter will simply be a time-shifted version of the inverse of
(4.9). (Why?) The filter is

o - = o
Speam = Flpoy + Ky (8 — H Rim-1)

with £, ,,_; = 0. Let £, _, denote the error covariance of the filter.
Then we have the relation

E[iki;] = Zin-1 + E[f‘k/k—xfc;c/kq]
orT =%, + Ti_y,, where T is defined by (4.10). Letting k; — —oo
shows that £,,,_, — 0, i.e., £, 41 — X Define 9, ,, = Z, — H'Zpn-1s
this quantity being computable from the Z, sequence restricted to k£ >
ko. Then 9, ,, — Z, — H'X, = ¥, when k, — —oco, as required.
Second, suppose that (4.14) is causally invertible. We shall argue

first that E[x, %] must be T. For any model of the form of (4.14), with &
fixed and k, arbitrary but k, < k, we have

k-1
X — Frix, =3 FitiGw,
ky
For arbitrary € > 0, choose k, so that
E[F*% %, % (F) ] < el

This is possible because |A(F)| < 1.

Choose k, such that z.,zy,.,...,2; define an estimate of
k=1

3 F*¥=/=1Gw, with error covariance less than €. This is possible because
ki

*The proof may be omitted without loss of continuity.
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of the causal invertibility property and the fact that only a finite number
of terms occur in the summation. Call the estimate a. Observe then that

]

Since || ¢ -+ d[|* < 2||¢]|* + 2||4]|* for all vectors ¢, d, we have

EQl%, — alP] = £

k=1
k =K1y k—i=1( v
Fekg,, + Ek F-i"1Gw;, — a
1

k-1
El|%, — alP) < 2E(| P, 7] + 26| | £ P67, — a

2
:|<46n

where n = dim x,. Now E[X.|z., . . . , z;] is the minimum variance esti-
mate of X, given z,,, . . ., Z;, and so the associated mean square error is
also overbounded by 4¢n.

Imagine a Kalman filter for (4.14) with initial time of the filter equal
to k,. Let X,/,_, denote the error covariance. Let P denote the state
covariance of (4.14). Then the by now frequently used connection be-
tween these quantities yields

Tk—ku =P — Zk/k—l

As k, — —oo, we have Z,,,_, — 0 as a result of the bound developed
above, and so E[x, %] =P =T.

This almost completes the proof. Weknow that E[z,z;] = H'P*"' M,
where M = FPH + GS. Also from the innovations model it follows
that M = FTH + KQ. Since P = T, we have GS = KQ. Also E[z,zy]
= L = H’'PH + R from the signal model, and L = H'TH + Q from the
innovations model. Therefore, since P =T, R = Q. Next, from the
signal model, P — FPF’' = GQG’ while from the innovations model,
since P =T, P — FPF' = KQK’. Summing up,

GOG’ GS}_[KQK’ KQ) _ Kok |
[S'G’ R | ok’ Qil*[l][ ]

That (4.14) is the innovations model is then immediate.

Uniqueness : Models *“Like”” the Innovations Mode/

Consider any signal model of the form

Xpe1 = Fx, + Kv, (4.15a)
z, = H'x, + v, (4.15b)
Evv] = Q6,, E[v,]=0 (4.15¢)

where | 1,(F)| < 1 and the initial time is in the infinitely remote past. Must it
be an innovations model for the {z,} process? As we know, with minor
qualification in the finite initial time case, the answer is affirmative. A major
upset, however, occurs in the infinitely remote initial time case. What we shall
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prove below is that (4.15) is an innovations model if and only if | A(F — KH")|
<l

THEOREM 4.4. If (4.15) defines an innovations model, then | A,(F — KH")|
< 1. Conversely, if |A(F — KH)| < 1, then (4.15) is an innovations
model if [F, H]is completely observable, and has the same transfer func-
tion as the innovations model otherwise.

Proof * Consider the signal model
Xe+r = Fx, + Kv, + wy (4.162)
z, = H'x, + v (4.16b)

with {w,} a white noise sequence independent of {v,} and with E[w,wi]
= €l. Let P, denote E[x,x;] and Z, the steady-state value of the filter
error covariance associated with this model, and let L., M., Q,, K,, and
T. be defined in the obvious manner. The conditions are fulfilled to
ensure that X, exists and that the associated steady-state Kalman filter
is asymptotically stable, i.e., |A(F — K.H')| < 1. One way to see this
latter fact is to derive it from the steady-state equation

L, =(F—KH)(F—-KHY +(K—-K)QK—K) + €l

say by use of the discrete-time lemma of Lyapunov.

Now let us consider the effect of letting € — 0. It is trivial to
establish that P, — T, the state covariance of (4.15), and that M, — M.
Now I, is monotone increasing with € increasing. (One way to see this
is to show that the solutions of the transient error covariance equation
are monotone with €.) Therefore, lilrgl T, exists; call the limit £. Since P,

— X, = T, must satisfy

T, = FT.F' + (FT.H — M)L, — H'T.H) " \(FT.H — M)’

and lim T, = T exists, we obtain
elo

T=FTF + (FTH — ML — H'TH) \(FTH — M) (4.17)
Because lim P, = T and lim £, > 0, T << T. Let us show that T = T.
el0 el0
The signal model

Xpsy = Fx, — (FTH — M)Q" v,
z, = H'x, + v,

is easily checked to be a realization of {z,} because (4.17) holds. There-
fore its state covariance is underbounded by the state covariance of the
innovations representation, i.e., T > 7. Hence T = T.

*The proof may be omitted at a first reading.



Now K, = —(FT.H — M)Q;' and |A{F — K,H’)| < 1. Taking
limits yields
K= —(FTH —M)Q ' = —(FTH — M)Q"' = K
Also, |A(F — KH')| < 1. This proves the first part of the theorem.
To prove the second part, let W(z) denote the transfer function

matrix I + H'(zI — F)"'K. Then because (4.15) is a realization of a
certain power spectrum @, ,(z), we have

W@QW'(z71) = z4(2)
Now W(z) is analytic in | z| < 1, lim W(z) = I, and because

WY z)=1—H'zI —(F— KH)"'K
W(z) is of constant rank in [z| > 1. [Use the fact that |1,(F — KH')|
< 1.] By Theorem 4.1, for a given ®,,(z) there is only one W(z) with
these properties. Since the innovations representation is guaranteed to
have a transfer function with these properties, any representation with
these properties must have the same transfer function matrix as the
innovations representation and must have the same input noise covari-
ance as the innovations representation. If [F, H]is completely observable,

H'(zI — F)"'K = H'(zI — F)"'K,
implies K = K, so that (4.15) is then our innovations model. This proves
the theorem.

The above theorem provides an important link to the result of Theorem
4.1. As noted in the proof of the theorem, the innovations model transfer
function matrix, I + H’'(zI — F)™'K, is of constant rank in{z{ > 1 because
[A(F — KH'}| < 1. Thus we have:

THEOREM 4.5. The transfer function matrix of the innovations repre-
sentation is minimum phase.

Let us make a number of other observations.

1. The existence partof Theorem 4.1 was not proved earlier. The results of
Theorems 4.2 through Theorem 4.4 allow the filling in of this proof, in
that a constructive procedure has been given for the minimum phase
spectral factor; i.e., the spectral factorization problem has been solved.

2. There is no suggestion that the formal inverse of the innovations
representation, viz.,

Xeey = (F— KH')x, + Kz, (4.18a)

v, =2z, — H'x, (4.18b)

is necessarily stable, let alone asymptotically stable. Thisis because F —
KH'may have repeated eigenvalues on the unit circle(see the problems).
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3. It turns out that if ®;,(z) is positive definite everywhere on |z| = 1,
many of the preceding ideas can be strengthened. This we now do.

Power Spectra Positive Definite on|z| =1

Frequently, a power spectrum matrix will be positive definite on |z| = 1.
For example, if {z,} is the output of a system with both white measurement
and input noise, and if these noises are independent, ®,,(z) will be positive
definite. For with z, = y, + v,, the independence of {y,}and {v,} means that
®,, = Oy + @,y Since O, is nonnegative definite and @, is constant and
positive definite on |z| = 1, ®,, is positive definite on |z| = 1. The main
result is as follows:

THEOREM 4.6. Let {z,} be the output process of a signal model of the
form of (4.14), with |A(F)| < 1 and initial time in the infinitely remote
past. (Causal invertibility of the model is not assumed.) The following
conditions are equivalent:

1. ®;,(2) is positive definite on |z| = 1.
2. If (4.15) is the innovations model, then |A(F — KH')| < 1.
3. The system
Zisin = (F — KH )%y oy + Kz, (4.19)

with initial time in the infinitely remote past is a Kalman filter for
(4.15) with zero error covariance and is exponentially stable.

4. The system of (4.18) will reconstruct {v,} causally from {z,} (see
Fig. 9.4-1); conversely if the system (4.15) follows the system
(4.18), the output of (4.15) reconstructs the input of (4.18).

{"k} Innovations {z"} w '@ *{V—ki

— Model Wi(z)

{ad = 4]
- W (2 > Wl —

Fig. 9.4-1 Invertibility of innovations model when power spectrum is
positive definite on unit circle.

The reader may find it helpful to review the factorization result of Sec.
4.6 at this point.

Proof* 1 = 2. O,,(2) = W(2)QW'(z™!), where W(z) = I+ H'(zI —
F)7'K. Since ®,,(z) is positive definite on | z| = 1, W~!(z) is analytic on

*The proof may be omitted at first reading.
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|z| = 1. Because (4.5) is an innovations model, W ~(z) is analytic in | z|
> 1. Since
W(z)=1—H'(zI —F—KH'Y'K

this means all observable and controllable modes of F — KH' are
asymptotically stable. All other modes are asymptotically stable, since
unobservable and/or uncontrollable modes of F — KH' are also modes
of F, and |A(F)| < 1.

2 == 3. Equation (4.19) is obtained as the limit as k, — —oo of
the Kalman filter for finite k,. Since |4,(F — KH')| < 1, the equation
defines a filter with initial time in the infinitely remote past. Also, from
(4.15) we have x,,, = (F — KH')x, + Kz,, and with an initial time in
the infinitely remote past it follows from this and (4.19) that %, ,,, = x,.

3 == 4. We just argued that x, in (4.15) also obeys (4.18a). Also
(4.18b) is trivial from (4.15b). The converse is equally easy.

4 = 1. The hypothesis demands that |A(F — KH")| < 1. Modi-
fication of the argument that 1 = 2 then establishes that 1 holds. This
proves the theorem.

We remark that without the knowledge that |A(F — KH')| < 1, one
cannot use (4.19) as a Kalman filter. Thus there are covariances which have
innovations representations with infinitely remote initial time, but not an
associated Kalman filter for an infinitely remote initial time.

We also remark that though it may be the case that there exists no
Kalman filter with infinitely remote initial time because |A,(F — KH')| < 1
fails, there is always a Kalman filter with finite initial time. It is always
asymptotically stable, and exponentially asymptotically stable in case [1,(F
— KH")| < 1. A guided derivation is called for in the problems.

In case one desires a constant filter when ®,,(z) is not positive definite
on |z| = 1, a suboptimal, constant, asymptotically stable filter can be ob-
tained which performs close to the optimum (see the problems).

Other Types of Innovations Representations
for Stationary Processes

The innovations representations described above for stationary pro-
cesses involve state-variable equations. We mention two other types of
representations here which have found frequent use.

Vector ARMA representation. Consider a process defined by

it Az + -+ Az =B+ o+ BuUken (4.20)

where the 4,, B, are coeflicient matrices and {v,} is a zero mean, white gauss-
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ian process. In case the initial time is — oo, to ensure stationarity of {z,}, we
require
det[Iz» +- A,z ' 4+ - + 4]+ 0 [z] >1 (4.21)

In case (4.20) is to be an innovations representation of a full-rank process
valid for an infinitely remote initial time, one requires B, to be nonsingular
(in which case by slight redefinition of v, it can be taken as the identity
matrix) and also that

det[Iz" + B,z"' + --- + B,]#0  |z|>1 (4.22)

In case this does not hold, (4.20) is, of course, still a representation, and there
exists an associated innovations representation which is unique.

If the initial time associated with the innovations representation is finite,
then (4.20) cannot be an innovations representation; the innovations repre-
sentation involves time-varying parameter matrices which are asymptotically
constant; it is of the form

e+ AL+ AL = Co,kﬁk 4o Cm,k&k—m (4.23)
with C, , — C, as k — oo. These results can be found in, for example, [35,

36]. They follow from the state-variable result of this section, and the ARMA
process/state-variable connection of the previous section. See Prob. 4.7.

Wold decomposition. Suppose a stationary process {z,} has a power
spectrum ®,,(z) which is analytic on |z| = 1. Then Wold’s theorem states
that there exists a stationary white process {v,} causally obtainable from {z,}
and such that

i=v+Twe  +Tu,+ - (4.24)

with ‘; IT¢]|*> < oo. This is an innovations representation, since
Elzp|Z, ) = Elze |Vl =T + Tovpny + -+

so that Z, = v,. One can also conceive of representations given by (4.24)
with v, stationary and white, but without the causal invertibility property.
These ideas are discussed in, for example, {37, 38}, with [38)] providing a dis-
cussion in the context of Kalman filtering.

Provided one works with second order statistics only, these ideas extend
to nongaussian processes and wide-sense stationary processes.

Main Points of the Section

The various results are all for full-rank processes, which class includes all
scalar processes.
Given a power spectral matrix ®;,(z), one is interested in finding W(z)
and Q such that
O 2(z) = W(2)QW'(z7')
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If W(z)is analytic in | z| < 1, lim W(z) = I, and of constant rank in |z} > 1,

W(z) is unique and is termed minimum phase.

Given a stationary output covariance of a signal model, one can define
an innovations representation with finite initial time which is time varying
but asymptotically time invariant. In the steady state, it is also an innovations
representation associated with an initial time in the infinitely remote past and
is causally invertible. In order that

Xpey = Fxp + Ko, 2= H'x, + v, Efvv) = Qb E[v] =0

with | A(F)| < 1 and initial time in the infinitely remote past, be an innova-
tions representation, it is necessary and virtually sufficient that | 1,(F — KH")|
< 1. The transfer function matrix of an innovations representation is mini-
mum phase.

When the spectral factorization problem is described in state-variable
terms, the constructive technique for obtaining the innovations representa-
tion provides a classically important solution of the spectral factorization
problem.

If ®,,(z) is nonsingular everywhere on |z| = 1, one has [ A,(F — KH')|
< 1, and the formal inverse of the innovations model is the Kalman filter.

Similar conclusions apply to vector ARMA representations. The vector
ARMA model

it Az + o F AL =0+ B + o0+ Buliem
is an innovations model with initial time in the infinitely remote past if and
only if
det[lIzn + A;z»" '+ -+ 4+ 410 for|z|>1
and
det[Iz:™ + Bz" '+ .- +B,]#0 for|z|>1

Problem 4.1. (Monotonicity of T}). Show that
X M F
T; =min{XX=X’,[ :!—[ ]TF’ H 0}
k+1 I M’ L H k[ ] =

for an arbitrary initial condition of (4.10), so long as L — H'T, H > 0. Conclude that
if for two initial conditions T% (i = 1, 2,) one has T} > T3, then T} > T}. Take
T% = 0; take T§ = T?. Conclude that T} = T#%., and establish the monotonicity.

Problem 4.2. Show that of all time-invariant representations of the one
covariance, the innovations representation ‘has the smallest state covariance. Con-
sider the steady-state equation

X = FXF' + (FXH — ML — H'XHY""(FXH — M)’
in which the symbols have the usual meanings and L — H’XH > 0. Show that if

there are multiple solutions, the smallest is T, the state covariance of the time-
invariant innovations representation.
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Problem 4.3. Consider the full-rank spectral factorization problem as one of
passing from a quadruple {F, H, M, L} to {F, H, K, Q}. Suppose that [F, M] is com-
pletely reachable. Show that [F, K] is completely reachable. (Hins: Using the steady-
state equation for T, show that if F/'w = Aw and K’w = 0 for some scalar 4 and
nonzero w, then Tw = 0. Conclude that M'w = 0. Suppose also that

F=[Fll Flz], M=[Ml}
0 F, 0
with [Fy1, M,] completely reachable. Let w be such that w'F,; = Aw’. Show that

[0 w]T, = Oforallkandthat{0 w]K = 0. Thusif[F, K]is completely reachable,
[F, M] must be completely reachable.)

Problem 4.4.
(a) Consider the following two systems, defined with initial time in the infinitely
remote past:

Xes1 = dxe + vx Xkey = $Xk + 30k
Zr = Xp + vk Zp = Xp + Uk
E[Ukvﬂ = 5“ E[vkvﬂ = %5kl

Check that E[z,z;] is the same for both systems, and show that the first system is an
innovations representation but the second is not.
(b) Show that

Xks1 = l}) ;]xk + [(l) (l)jlvk, Zy = [_g _fﬂxk + v

is an innovations representation with formal inverse that is unstable.

Problem 4.5. (Asymptotic Stability of Kalman Filter). Consider a stationary
signal model with innovations representation

Xiy1 = FXp + K0y Zry = H'X, + 9
Then the error covariance equation is
Tir1x = (F— K H)Zp 1 (F — K H'Y + nonnegative quantities

and X,,_; > T. Suppose first that [F, M] is completely reachable; show that T is
nonsingular, and consequently that the Kalman filter is asymptotically stable (but
not necessarily exponentially stable). Can you extend the result to the case of [F, M]
not completely reachable. (Hint; Use the ideas of Prob. 4.3.) When is the filter
exponentially stable?

Problem 4.6. (Suboptimal Filter). Consider a Kalman filtering problem in
which ®2(z) is singular for some | z| = 1. Design a filter on the assumption that
there is additional white measurement noise of covariance €I, independent of the
actual input and measurement noise processes. Show that the resulting filter will be
asymptotically stable and definable with infinitely remote initial time. Show also
that as € — 0, it approaches the quasi-optimal performance obtainable by taking
the Kalman filter for the original problem with very negative, but finite, initial time.
(Hint: Recall the material of Chap. 6 on modeling errors.)
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Problem 4.7. Model the ARMA process (4.20), with B, =1 and m<n
assumed, by

A, 1 -+ 0 0] B, — A;]
. . oo B; — 4,
Xk+1 = —;1.-2 I X + : vk
—A, - -+ 0 I
L—An -oen 0 0.4 _ -
Z=M 0 .- 0 Ok +u

Show that for {z,} to be stationary with infinitely remote initial time, one requires
det[Iz» + Ayz»t + --- + 4]0 in |z]>1
and that for the state-variable model [and therefore (4.20)] to be an innovations
representation,
det{Iz + Byz®' + -.- + B, ]+ 0
Show that a vector ARMA innovations representation with finite initial time has

the form of (4.23), with C; ;, — C;as k — oo, Discuss the situation of ®;z(z) non-
singular for all {z| = 1.

Problem 4.8. Consider the vector ARMA representation of (4.20) with
det[z"] + Az"' + -« + 4]0 for |z|>1
Let wi = z, + Ayziy + -+~ + A,zx_,; thus {w;} is a moving average process,
since
We =vr + Bivg_y + -+r + Bg,
Show that wy, — E[w,| Wi.1] = z; — Elz;| Zi_1}. (Hint: First form an innovations

representation for {z;} and argue that it is, in effect, an innovations representation
for {w}.)

Problem 4.9. Let ®;(z) be a rational power spectral matrix. Explain how to
find a linear time-invariant system with white noise input defined for £ > 0 such
that the output spectrum is $z2(z). (Random initial conditions are permitted.)

1

9.5 WIENER FILTERING

In this section, we state a basic Wiener filtering problem, we describe its
solution with the aid of some of the foregoing ideas, and we make the con-
nection with Kalman filtering ideas. In contrast to Wiener’s work [19], we
work in discrete time rather than in continuous time and we omit discussion
of many of the interesting facets of the Wiener theory. For fuller discussion,
see for example {19, 20). Our main purpose is simply to make contact between
the classical and more modern results.



Wiener Filtering Problem

Suppose that there is a signal process {y,} and noise process {n,} with
measurement process {z, = y, + n,}. Suppose that {y.} and {n,} are inde-
pendent, zero mean, and stationary, but that {n,} is not necessarily white. The
initial time is in the infinitely remote past.

Figure 9.5-1 depicts the situation. In the figure, W,(z) and W,(z) are real,
rational, transfer function matrices with all poles in |z| < 1, and {w,} and
{v,} are unit variance, zero mean, independent, white noise processes.

White Noise {v,}

{

W, (2)

v +yind

White Noise
— W, 2)

{Wkt’ * {z}

Fig. 9.6-1 Prototype situation for Wiener filtering.

We consider the problem of forming E[y,|Z,..] for zero, positive, and
negative integer m. (These are filtering, smoothing, and prediction problems
respectively.) We make the assumption that ®;,(z) is nonsingularon | z| = 1.
This means that there exists a W (z) which together with its inverse W~!(z) is
analytic in |z] > 1, with lim W(z) finite, and ®,,(z) = W(z)W~'(2). [Thus

Z—o0

W(z), to within a constant nonsingular matrix, is the transfer function matrix
of an innovations representation of {z,}.]

Solution Procedure for the Wiener Filtering Problem

The general strategy is to first convert the problem of estimating y, from
certain of the measurements {z,} to one of estimating y, from a scaled
version of the innovations, which we still label {Z,}. Then one computes the
optimal transfer function matrix for this task. In the derivation immediately
below, most calculations are done in the frequency domain; however, time
.domain ideas are introduced when we write down an expression for E[y, | Z,.].

Accordingly, to introduce the scaled innovations into the picture, we
calculate W(z) with the properties as described earlier, and consider the
arrangement depicted in Fig. 9.5-2. Let m, denote the vector [y: Z:]’. Viaan
easy calculation, we have

—1f = 1N]
Z{Elmmtl) = Gun) = | 5 Do W) ]

“H(2)Pri(2) 1
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fult

{

+ {nk}
W, — W' [—

b T al {zl

Fig. 9.5-2 Whitening filter added onto signal model.

]

and thus _

Z{E[y 2]} = On(W (271 (6.0
Equation (5.1) is the key to writing down the solution of the three problems
noted above. Suppose that the right side of (5.1) is kf D,z7%, which is a

=—00

Laurent series convergent on |z| = 1. (The determination of such a series is
discussed further in the following paragraphs.) The quantity D, has the
significance that E[y,Z;] = E[y,Z.:] = D;. Then since
E[J’olzo] = Ely,|Z)Z, + ElyolZ_,}2_, + ---
(using the orthogonality of the Z,), we have
Ely, IZO] =D+ DZ. + -

which shows that the transfer function from {Z,} to {E[y,| Z,}} is D, + D,z
4+ D,z7% + --- and that from {z,} to {E[y, | Z,]} is, accordingly,

[Do + Dyz7t + Dyz7% 4 - ]W7H(2)
Similarly, for p > 0 (corresponding to prediction)

E[yolz—p] = E[J’olz—p]2~p + E[}’o|2-¢p+n]2—(p+1) + -
and so the transfer function linking {z,} to E[y;.,|Z,]} is
[D, + Dpuyz™t + - IW1(2)

Smoothing is obviously tackled in the same way.

We noted above that we would comment on the determination gf the D,.
Basically, one simply does a partial fraction expansion of @, (2Z)[W~1(z"")])
to write this quantity as

A[ Ci
S 4B+ S

Tz —z —z;!

where | z,| < 1, |z,| > 1. Then one expands each term of the first summation
in powers of z~1 and each term of the second summation in powers of z. This
yields the desired Laurent series. When W,(z) or W,(2) in Fig. 9.5-1 are
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known, the process can be easier; that this is so will be exemplified below in
connecting the above ideas to the Kalman filter ideas.

Rapprochement with Kalman Filtering

Let us suppose that {y,}is the output of a linear system of transfer func-
tion matrix H'(zI — F)"'GQ'/% driven by white noise of unit variance. Sup-
pose that W,(z) in Fig. 9.5-2 is the constant R'/?, so that {n,} is a white noise
sequence of covariance RS,,. Then

®,,(z2) = R + H'(zI — F)"'GQG'(z"'] — F)'H
and the Kalman filter is given by
Rerie = (F — KH) iy + Kz,
Here
K= FSH(H'SH + R)™!
where I satisfies the steady-state covariance equation:
L =F[E —ZH(H'EH + R 'H'E)F' + GQG’
The transfer function matrix linking {z,} to {E[y,|Z,_,]} is
WAz) = H'[zI — (F — KH)]"'K (5.2
Let us check that the same result follows from the Wiener filtering approach.
With {n,} a white process, we have
®z2(2) = Oyy(z) + R = W(Z) Wl(z—l)
Therefore post-multiplying by [ ~!(z"")}’, we have
QDWW 1(z7 ) = —RIZ ()] + W(2) (5.3)
From the material of the previous section, we know that
W(z) = [I + H'(zI — F)"'K]J[H'EH 4 R]'?
Now W(z) has all its poles in | z| < 1. Also, it has all its zeros in | z| < 1

by its minimum phase character and the fact that @, ;(z) is positive definite on
|z] = 1. Therefore, V(z) = W~!(z~!) has all its poles in | z| > 1. This means

+oo

that when the left side of (5.3) is expanded as a Laurent series 3 D,z * con-
vergent on |z| = 1, we must have o
;2:1 D.z7% = W(z) — (H'EH + R)'/2
= H'(zI — F)"'K(H'$H + R)'/
Accordingly, the transfer function linking {z,} to E[y,|Z._,]is
El Dz *W~(2) = H'(zI — F)"'K[I 4+ H'(zI — F)"'K]!
= H'[zI — (F — KH)]"'K
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This is identical with the transfer function matrix computed in (5.2) via the
Kalman theory.
In a similar way, we can recover prediction and smoothing results.

Review of Some Differences between the Kalman
and Wiener Theories

Having considered the common ground between Kalman and Wiener
filtering, let us consider ways in which they are dissimilar. The obvious
differences between the Kalman and Wiener theories are listed below.

1. The Kalman theory allows consideration of nonstationary processes,
including a finite initial time; the Wiener theory does not.

2. The Wiener theory does not draw greatdistinction between colored and
white measurement noise. The Kalman theory in the first instance
demands white measurement noise, but extension of the theory to the
colored noise case is possible by modeling colored noise as the output
of a linear system driven by white noise. This point will be discussed
in a later chapter.

3. The Kalman theory is essentially concerned with finite-dimensional
systems. The Wiener theory permits infinite-dimensional systems,
although the task of spectral factorization becomes much more dif-
ficult, and is still central to application of the theory.

Main Points of the Section

Wiener and Kalman filtering theory make contact when the measure-
ment noise is white, the signal model is finite dimensional, and all processes
are stationary.

The two theories then (naturally) lead to the same result.

Problem 5.1. Relate the optimum prediction filters for prediction intervals
greater than 1 for the Wiener and Kalman theories.

Problem 5.2. Show that the rationality of W;(z) and W,(z) in Fig. 9.5-1 leads
to rationality of the transfer function matrix linking {2} to {E[yx | Zk+]} for arbi-
trary fixed m.

9.6 LEVINSON FILTERS

In this section, we look at another classical filtering problem associated
with stationary processes. The original ideas are due to Levinson [22]. In an
attempt to lighten the computational burden associated with Wiener filtering,
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Levinson (working in discrete time) suggested that prediction estimates should
be derived from a finite window of past data, rather than all past data. Since
that time, the ideas following from Levinson’s suggestion and the associated
theory have found wide applications by statisticians and in geophysical data
processing (See, €.g., [34].)

We begin by stating the Levinson problem Next we indicate its solution
first for scalar processes, then for vector processes.

The Levinson Problem

Let {z,} be a stationary time series, and suppose that one has available
the segment z,, z,, . . ., zy_; and wishes to estimate zy. Thus one seeks coef-
ficients Ay y-, such that

Buws = — 3 At 6.1
By the orthogonality principle,
E{lzy — Zyn-1]z)} =0 forj=0,1,...,N —1
so that
E[zy2)) = —I:Z; An n-1El2:2)] j=0,1,...,N —1

or
N-1
Cy-y=— 1-20 An,n-iCi-j (6.2)
where C, = E[z,z;]. The associated mean square error is

Oy = E{lzy — Zy/n-i1llzy — 2N/N—1]’} = E{[zy — Zan-1lzn}

N=1
= Elzyzy] + z‘_‘o AN.N—IE[ziz;V]

N-1
=Cs + mzo AN,N—( i-N (6-3)

Since the more measurements there are, the better our estimate will be,
II, is seen to be monotone decreasing with N. Its value can be successively
computed for N = 1,2, ... to decide whether or not more data should be
collected in order to predict values of the {z,} sequence, the idea being that
we would compare II, for each N with a preassigned desired value of mean
square estimation error. (Of course, it may be that the desired value could
not be achieved no matter how large we took N.) This means that we desire a
procedure for calculating successively for each N the quantities Ay y_, and
I1,. Finding such a procedure is the Levinson problem.



Solution to the Levinson Problem—Scalar {z,} Process

Levinson’s own solution to the problem just mentioned was for scalar
{z,}. The vector case is more complicated, essentially because it lacks a self-
duality inherent in the scalar case. Discussion of the vector case can be found
in [23, 34] and is dealt with a little later.

What we are concerned about is the following equation obtained by com-
bining (6.2) and (6.3) and by using the fact that, in the scalar case, E[z,z)]
= Elz,z,]:

Co € Cn
€y & CN-1

[1 aN,, e aN.N] : : : = [HN 0 v 0] (6-4)
€y Cn-1 *** Co

(We have switched to lower-case quantities to emphasise the scalar nature of
the problem.) Suppose the values a, , and II, have been found and we seek
the quantities ay.,, and Ily,,. Let us define a quantity a, by

Co N &

cl co s v CN .
[1 ay, - ayn 0] ) . =[My 0 --- 0 &)

Cner Cn " G

(6.5)
Note that if

N-1
Uy = Cyn4y + ‘Zl AN, CN+1-1

were zero, we should immediately have the desired quantities ay.,, , and I, .
In general, a,, is not zero.

Now observe that, essentially because of the Toeplitz structure of the
matrix on the left side of (6.5), we have from (6.5) that

Co €, 't Cnwa
Cy Co .o Cn

0 aynw --- ay: 1}}- ) : =fay 0 --- 0 II]
Cne1 Cn """ Cp

6.6)

Now add —a/IT, times (6.6) to (6.5). The effect is to obtain the row vector on
the right side to have all zero entries except for the first, while the row vector
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on the left side has leading entry 1:

Co €1t Cnr
¢, Co cee Oy
o, 2 o .
[1 aN,l—’ﬁI:‘vaN,N_"° aN,N—n_):'vaN,l —H_I:] .
Cnvet Ot G
ak
=[H""ﬁ7v 0 - o] 6.7

This equation is precisely an updated version of (6.4). In other words, we have

the following recursions:
N-1

Oy = Cy+1 + “_V.; AN, CN+1-1 (6.8a)
ANs1,1 = AN — %lj—vaN.N+l—l i=1,...,N (6.8b)

= I 6.8
AN+, N+ = I, (6.8¢c)
M. — I, — & 6.8d
N+1 — N ™ I_I)—v ( . )

Initialization is provided by
2

ay, = _f'_:’ T, = ¢, “ET: (6.8¢)

Notice from (6.8d) that IT,,, << IT,, as expected. Of course, if IT, = 0, the
algorithm stops. In that case, N measurements will predict the next value of
{z,} with no error.

Solution to the Levinson Problem—Vector {z,} Processes

If one attempts to mimic the above derivation for the case of vector {z,},
one runs into difficulty on account of the fact that E[z,z5] == E[z,21], i.e.,
C, %= C_,; rather C, = C”,. The cancellation used to obtain (6.7) cannot
be executed. Howeyver, it turns out that if we work with a Levinson algorithm
associated with a backward estimation problem as well, then we can obtain
the recursion. The backward estimation problem is to estimate z, given
measurements z,, ..., Zy.

Suppose that

N
E[zylzy), ..., 20) = _:-2:1 By,.z,

From the orthogonality principle, we obtain

N .
C_j= _‘Z_:lBNn‘C‘—/ j—'_—- 1,...,N (6-9)
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with the associated mean square error as

Ty=C,+ ﬁ; Bn..C, (6.10)
This means that from (6.2) and (6.3),
C, C, cer Cy
C—l Co e CN—I
I Ay, ---Awn] - =My 0 .- 0] (611)
C—N C—N+1 cte Co
and from (6.9) and (6.10),
C, C, N o
c., G, cer Cyot
[Bvvy Bww-i -+ 1) =[0 .-+ 0 Tyl
Cv Coyer - Co
(6.12)

We seek recursions simultaneously for the quantities 4 ~,00 Xy, By,y, and Ty,
and this time we are more successful in our attempt to mimic the scalar {z:}
process derivation. From (6.11) and (6.12‘), we have

C° Cl e CN+1
C_, C, -s Cy
[I AN,] .o AN,N 0] : : : = [HN o ... aN]
Cyt Cn - G
and
Co o te CN+I
C., C, cet Cy
[0 Byny --- By, I] .
C—N—l C—N cet Co
=[By 0 .-+ 0 T,

where oy, By are easily derived, the precise formulas being given below.
Premultiplying the second of these equations by ayI'5s' and subtracting it
from the first gives the equation for the Ay, ,,,, and premultiplying the first
equation by B,II5' and subtracting it from the second gives the equation for
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the By.,,;- The various equations are as follows:

N
oy = Cyyy + E_} AnCnir-t (6.13a)
. N

ﬂN =C_y-y + 'g BN.IC-N—I-H (6.13b)

[I AN+l,l tee AN+1.N+1] = [I AN,] et AN,N 0)
- GNFQX[O BN,N e BN,X I] (6-130)

[BN+I,N+1 e BN+1.I I] = [0 BN,N cte BN.I I]
' — BIF'I Aw,y -+ Ayn 0] (6.13d)
My, =y — ayl'5' By (6.13¢)
Fyyy =Ty — Ballz'ay : (6.13f)

Initialization of these equations is left to the reader. The last equations have
an apparent asymmetry about them. However, one can show that

oy = Py (6.14)

‘This is an identity attributed to Burg in [38]. A derivation is called for in the
problems,

A number of interesting interpretations and remarks relating to the
Levinson problem and its solution (6.13) can be found in [38].

Main Points of the Section

The coefficients yielding one-step prediction estimates in a stationary
random sequence using a finite window of data can be recursively determined
by considering windows of increasing length. For vector sequences, one must
also introduce “backward” prediction estimates to obtain the desired
JTecursions.

7
v

Problem 6.1. Why does it follow from (6.4) that ITy > 07

Problem 6.2. In the scalar {z;} case, how are the coefficients By,; related to
:the Ay,,?

Problem 6.3. Show that with &y defined by (6.13a), one has

E{lzy+1 — Elzne1|21, 22, . .+, 281120} = Oy

-and
: E{lzo — Elzo|21, 22, . . . , Z8llzhe1} = Bw
_Show then that '

oy = By = E{lzo — Elzo|21, ..., 2v][2h+1 — Elzns1l21, . .., 24]1}
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Problem 6.4. Consider the scalar problem and set

- 0 1 0 cee 0
0 0 1 vee 0
FN = . . 3 .
1
L'—amv —ay,N-1 —A4NN-2 ‘' T4y
[Fco cy “rr CN-1
Cy Co cet CN-2
PN = *
LCn-1 Cn-2 *** Co
Show that
0 0 0 0 T
00 0 O
PN bl FNPNFS/ = -
oo «-- 0 0
0 0 .- 0 Ily|

Conclude that if Py > 0 and ITy > 0, all roots of zV¥ 4 ay;zN-! 4 -.. ayy lie
inside | z| < 1. Can this be extended to the vector {z;} case?
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CHAPTER 10

PARAMETER IDENTIFICATION
AND ADAPTIVE ESTIMATION

10.1 ADAPTIVE ESTIMATION VIA
PARALLEL PROCESSING

When signal models and noise statistics are known, we have seen that
linear minimum variance estimation is easily obtainable. In some engineering
applications, however, the underlying processes are either too complex or too
obscure for scientific laws and analytical studies to yield a precise signal
model. Of course, when there are signal model uncertainties, the guidelines
arising from the error analysis of Chap. 6 may be helpful, but these do not
assist very much when there is little or no knowledge of the signal model.

More often than not a signal model must be calculated off-line from test
input-output data or on-line from the measurement data itself. With test-data
and off-line calculations, it may be possible using time-series analysis tech-
niques [1] to estimate quantities such as the signal model output covariance.
Then the techniques of the previous chapter allow construction of a signal
model. These techniques are almost completely restricted to situations in
which the signal model parameters do not vary in any way with time. However,
a process usually has parameters which vary slowly in some random manner,
and for on-line filtering of such processes it is clearly preferable to employ
schemes for adapting the filter on-line to the signal model parameter variations.
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We now take up the question of how to carry out filtering when the
signal models (assumed linear) are unknown, or are known except for an
unknown parameter matrix § which may be slowly time varying. Estimation
for such models is termed adaptive estimation and is invariably carried out in
some suboptimal fashion, since the simultaneous optimal estimation of states
and parameters (also viewed as states) is usually a highly nonlinear filtering
problem too formidable to solve directly without the introduction of sim-
plifying assumptions.

In this chapter, we demonstrate for adaptive estimation a notion already
encountered earlier in discussing nonlinear filtering, namely that in situations
where optimal filtering is out of the question because of its complexity, optimal
linear filter results for modified models can still be applied to achieve useful
near optimal nonlinear filtering algorithms.

In this section, we first introduce the simplifying assumption that the
unknown parameters belong to a discrete set; we can then achieve optimal
parallel processing adaptive schemes. These schemes also extend to useful
near optimal filtering when the unknown parameters belong to a continuous
range. In the following section even simpler suboptimal schemes based on
extended Kalman filter ideas and least squares parameter identification are
studjed. These may work very well for some signal models, but for others
there could well be difficulties in preventing divergence. '

Parallel processing techniques have been applied by a number of authors
[2-4] to the adaptive estimation problem, and, in fact, adaptive estimators
requiring many Kalman filters can be implemented using minicomputers. In
essence, this approach to the adaptive estimation problem is as follows.
Assume that the unknown parameter vector @ is discrete or suitably quantized
to a finite number of grid points {#,, ..., 8y}, with known or assumed a
priori probability for each §,. The conditional mean estimator includes a
parallel bank of N Kalman filters, each driven by the noisy signal measure-
ment, and with the ith filter a standard Kalman filter designed on the assump-
tion that § = @, and yielding conditional state estimates %,/ .. The
conditional mean estimate £,,,_, is given by a weighted sum of the condi-
tional state estimates %, /.-, o, The ‘weighting coefficient of the state of the ith
Kalman filter is the a posteriori probability that § = 6,, which is updated recur-
sively using the noisy signal measurements and the state of the ith Kalman
filter. (Figure 10.1-1 on p. 274 illustrates the adaptive estimation scheme.)

We now derive a recursive method for updating a posteriori parameter
probabilities. The resulting recursions are crucial to the parallel processing
algorithm for state estimation next described. Certain analytical results con-
cerning such algorithms are then derived (see also [5-7].) ‘;

Suppose there is a signal model expressed in terms of an unknown
parameter vector 8. Further assume that @ is known to belong to the dlscrete
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set{8, 6, ... 6y}; then the application of Bayes’ rule yields the relation-
ships
(RVA4 _ p(Z,, 6)
— _P(Z10)p@)
=% (1.1)
1=21 p(Z,10)p(6))

Here, as in earlier chapters, Z, denotes the sequence of measurements z,, z,,
. Zx, wWhile p(0,]Z,) is shorthand for p(@ = 6,]Z,). A lower-case p is
used interchangeably to denote a probability or probability density. The
P0:1Z,) are termed a posteriori probabilities (or, less precisely, conditional
probabilities) and p(Z, | 8,) are termed likelihood functions. It is for the recur-
sive calculation of these quantities that the Kalman filter, or, more precisely,
a bank of conditional Kalman filters, comes into its own. We have, following
2],
0.1Z.) = P2 Z, 1, 6)
P02 = 2D
— Pz, 0,1Z,_)p(Z,_,)
P(zie| Zi_ )P(Zy- 1)
- Pz, 0,1 Z,_,)
Pz | Zy )

- Np(zklzk-h D) ICAYA) L2
3 p(|Zi, 8)50,1Z0) a2

Actually, the denominator of both (1.1) and (1.2) is just a normalizing con-
stant, and should 8, belong to a continuous range, (1.2) is still valid save that
the summation is replaced by an integral.

The calculation of p(z,1Z,_,, 8,) is crucial, but is readily implemented
for gaussian signal models; in this case, p(z; | Z,_,, 6,) is gaussian with mean
%45, and covariance E[Z, Zys], Which we denote by Q. That is, for a
p-vector zg,

Pzl Zy_ 1, 0)) = (2m) ™72 [ Qi '/ exp {— 4 Zi10, Qiclo, Zito) (1.3)
and clearly p(f,| Z,) can be calculated recursively from

p(0:1Z) = c|Dicp, ['* exp {—4 216, Ui, Ze103P(0:| Zsc- ;) (1.4)
- where ¢ is a normalizing constant independent of @,, chosen to ensure that

f} p(0,1Z,) = 1. The quantities Qs and Z,,, are of course available from
- =1

~ the conditional Kalman filter covariance equations and the filter equations,
- respectively.



Comments on the a Posteriori Probability
Update Equation (1.4)

The quantity Q; ,, can be computed in advance of filter operations, while
naturally Z,, can only be computed on-line; for each 7/, a Kalman filter
tuned to 8, is constructed, and the {z,} sequence drives all these Kalman
filters. The innovations sequence of the ith filter is denoted Z,,, even if the
signal model has @ == 8,. The sequence {Z, 5} will be white with covariance
Q16 50 long as the signal model parameter 6 is §,; otherwise, the sequence
{Zx16} Will in general not be white, and in general will not have covariance
Q16,

In a sense, the notation {Z;,,} is ambiguous; thus it can denote the
innovations sequence of the Kalman filter tuned to 8, only if the signal model
0 is 6,, while it can also denote the innovations sequence of the Kalman filter
tuned to 6, irrespective of the signal model . Evidently in Eq. (1.4), {Zx,6}
has this second meaning, while € ,, is the covariance of Z;, only when the
signal model 6 is 8,.

Two other minor points should also be made. First, it can be simpler to
update In p(6,| Z,) as opposed to p(8;|Z,), recursion formulas being imme-
diately derivable. (The convergence results following will illustrate this point.)
Second, if @5, = Qi (6, and Z 15, = Zyy4, (the second equality is equivalent to
the 6, and @, Kalman filters being the same), then p(f,) = p(6,) implies
p0.1Z,) = p(8,]Z,) for all k and there is no possible way of distinguishing
0, and 6, on the basis of the measurement data. More generally, even if p(6,)
s p(f,) but the Kalman filters tuned to , and 0, are the same and the inno-
vations sequences have the same covariance, the measurements will add
nothing to the a priori data which is useful for distinguishing between 8, and
0, as possible true values of .

A Convergence Result

One would hope that the use of (1.4) in a particular situation would
imply that if the true value of 8 were, say, 8,, then p(8,|Z,) — 1 as k — oo
and p(0,|Z,) — 0 as k — oo for j # 1. Indeed, results of this type hold. We
prove one such result below, assuming ergodicity. The proof depends on the
following lemma.

Lemma 1.1. Let A, B be two p X p positive definite matrices. Then
p+1n (!%{) —tr[B1A4] <0 (1.5)

with equality if and only if 4 = B.

Proof: We use the easily verified fact that for all x > 0,

l+Inx—x<0

270
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with equality only at x = 1. Let 4,,..., 4, be the eigenvalues of B~'4;
since this matrix is similar to B~'/24B~1/2, which is positive definite, the
1, are all positive. Therefore,

1+mni—-—4<0
with equality if and only if 4, = 1, and summing yields
p+Inlli, — 24, <0

Equation (1.5) is immediate, using standard matrix theory results. Equality
holds if and only if the eigenvalues of B~!A4 are all 1,i.e.,, B"'4 = I

The results to follow are all valid in case the sequences Z, o, are asymp-
totically wide sense stationary. However, we shall assume ergodicity in
order to keep the notation simpler. Thus Q,,,, the covariance of Z,,, when
the signal model @ is the same as 6, is constant: we shall write it as Q,.
Further, E{Z,s, Zk15] for 8, = @ will also be independent of .

Let us now fix i % 1 and set L, = [p(8,|Z)) p(0,!Z:)] *. From (1.4),

Q! 12 exp [—4Zkie, O ' 2] ‘
L, =% Zeio U el 1.6
T 1O exp [—3Zki6, Q1 216, ko (1.6)

~and so

k+n—1
—————LI’:::‘ = —n In ||g:l 1 l: jz‘ Z 16, 2510, O :'

k+n—1
tyt[ 3 Bzt 0D

Let us now assume that 8, is the true parameter and introduce what will
prove to be a convergence criterion.

In

CoNVERGENCE CONDITION. For 8, 8,, either Z, — Z;j, fails to
approach zero as k — oo, or Q, # Q,, or both.

Evidently, this is a sort of distinguishability criterion. If Z,4 — Z;, =0
(as k — o) and Q, = Q,, there can be no basis for deciding whether § = 6,
orf =40,
Now with 8, the true parameter, ergodicity yields, as n — oo,

I k+n—1 . N .

A e 20 Q7' —> 1
Further, since Q, is the error covariance in estimating z, using the optimal
filter, it underbounds the error covariance in estimating z, using any sub-
optimal filter. In particular, it underbounds the error covariance in using the
suboptimal filter designed under the assumption that § = ,, where 7 5 1.
Therefore

1 k+n—1

lim - E( 2”91 116 2 Q (1'8)

n—oo N
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Let us now observe that strict equality can only occur if Q, # Q,. For if
strict equality occurs, this implies that the limiting error covariance associ-
ated with use of both the 8, and 8, filters on the signal model with § = 6, are
the same; therefore, the 8, filter in the limit is optimal. Because of the unique-
ness of the linear minimum variance estimate, this means that Z,, — Z,,, as
Jj— oo. By the Convergence Condition, we then have a contradiction. [A situa-
tion such as this could occur if 8, corresponded to a signal model with param-
eters F, G, H, Q, and R, and @, to F, G, H,«Q, and «R, with & a constant.
The Kalman filter is the same for each, but the innovations covariances Q,
and Q, are different. If the true signal model is @ = 8,, then the filter will yield

E[Z)10, Z)10] = ElZ16, Z)t0] = Q
Of course, E[Z,5, Z}15] # Q. because the signal model driving the Kalman filter
producing Z,, is not that defined by 8 = 8,.]

Now use (1.8) in (1.6) to conclude that under the convergence condition,
asn — oo,

iln Leenss 1 U r10m0 ) 4 e T — [0 €
Ly, Tl

where (1.9

k+n-1
. 1
lim n~ 2;( 216, Z)16, —

n-s00

By Lemma 1.1, the first three terms on the right side yield a nonpositive
quantity, negative if Q, = Q,. By the remarks preceding (1.9), we see that tr
[Q! C] is nonnegative, and positive if Q, = Q,. Therefore the right side of
(1.9) is negative.

Thus for some positive a,

2n7 ' In Liwns —a

k-1
or

Lyyny —> Kexp (—"‘12‘—1) Ly
for some constant K. We conclude that
P(oi 1Z) — 50 i
# 1
P(e [Z,)
and thus p(6,1Z,) — 0, i % 1, and p(8,|Z,) — 1. Further, convergence is
exponentially fast. Several remarks should be made.

1. If one is not interested in the recursive values of the p(§,|Z,), but
simply in identifying the correct value of @, we see from (1.8) that

k+n—1

lim 3 2‘1‘ 20, z,w,g?m—— 2 216, Zy16, (1.10)

nsoo N

and if equality does not hold, 6 is immediately identified as @,. If
equality does hold, for i = 2 say, then @, is determined by the fact
that the two quantities in (1.10) equal Q,, while Q, # Q,.
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2. We have refrained from specifying the precise mode of convergence.
This can be linked to the ergodicity hypothesis; if the z, are gaussian,
the convergence is almost sure.

3. As noted earlier, the ergodicity assumptions can be relaxed to asymp-
totic stationarity, so that initial condition effects are not important.
Further relaxation again is, however, possible to consider some non-
stationary situations (see [7]).

4, The above convergence results are useful for fault detection. Each 6,
could represent a possible fault condition in a signal model [10].

5. For the nongaussian case, the algorithms are still useful, but the
interpretations in terms of probabilities breaks down. The schemes of
this section for the more general case are known as prediction error
schemes since they involve calculation with z, — Z,,,_,,4,, Where now
Zy/x-1.6, denotes a one step ahead prediction estimate, rather than a
conditional mean estimate. See also [7].

Parallel Processing State Estimation

Under the assumption that @ is in the set {8,,0,, ..., 8y}, the condi-
tional mean state estimate can be expressed in terms of the conditional
estimates £,,,_; o and the conditional probabilities p(,|Z,) as

N
Re-1 = ,Z; Lire-1, 0001 Z) (1.11a)
One can also form an estimate
XWATL = Xkt oyar (1.11b)

with 8,.,» chosen such that p(éMA;.lZ,,) >p@.\zZ) fori=1,2,...N;ie,
we use a maximum a posteriori estimate of 4.

Recall that the conditional estimates X,,., 5, are calculated using con-
ditional Kalman filters with @ set as 8,, while the conditional probabilities
p6:|Z,) are best calculated recursively as in (1.4) using the conditional
innovations quantities Z.,, with covariances Q,,, given from the condi-
tional Kalman filter equations. See Fig. 10.1-1 for a block diagram of the
adaptive estimator.

Time-varying Parameter Case

So far we have presented adaptive estimation schemes in which the
unknown parameters are constant (or asymptotically constant in the above
example). For the case when the unknown parameters are in fact time varying,
various modifications to the parallel processing scheme are possible. One
approach is to use exponential data weighting. This applies both to the
filters themselves and the update of p(8,|Z,) via (1.4). A second approach
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Fig. 10.1-1 Adaptive estimator for time-invariant 6.

requires reinitializing, which in effect amounts to throwing away old data.
More specifically, one should reset any p(6,| Z,) which are zero to a nonzero
value (implying that some which are nonzero must be reduced), and one also
resets the states of the Kalman filters in the filter bank. The logical state at
which to reset them all is the current conditional mean or MAP state estimate.
Obviously the choice of the weighting factor in the first approach and fre-
quency of reset in the second approach should be related to the rate of time
variation of the unknown parameters. Note that at one extreme, the filters in
the bank can be reinitialized at every time instant, in which case the algorithm
simplifies considerably. '

Unknown Parameter Drawn from an Infinite Set

To this point, the unknown parameter has been assumed to belong to a
finite set. But what if this is not the case, and instead @ is, say, contained in
some closed, bounded region ? One can proceed by selecting a discrete set of
points 8,, ..., By in the region and acting as if # = 8, for some unknown i,
Clearly an approximation is introduced thereby; intuitively, one can see that
the greater is the integer N, or the denser is the covering of the allowable
region by discrete points, the more accurate the approximation will be.

Let us leave aside for the moment the problem of how the @, might be
selected and consider what happens if one assigns some a priori value of
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p(@ = 6)), and then implements (1.4) to update p(6,|Z,). Of course, p(6 = 6,)
cannot really be the probability that § = @,, but we might think of it as a
pseudo-probability. A reasonable value for it would be

p(16 — 0,1 <160 —6,|, Vj=+#i)

However, these values are forgotten in the computation of a posteriori prob-
abilities, and so are not especially critical. As the following result shows,
under reasonable assumptions one of the quantities p(,|Z.)—say p(0, | Z,)
— converges to 1 and the remainder converge to 0. If @, is indeed picked out
in this way, one cannot of course conclude that the true value of @ is 8, ; but
one can conclude that, in a certain sense, the true value of 8 is closer to 6,
than to @, fori = 2, 3, .

THEOREM 1.1. With notation as above, let the true value of 8 be 8, and
let Z, 5, for i = 1,2, ..., N be the innovations sequence of the Kalman
filter tuned to @, and driven by the signal model output. Let Q, 5, denote
the design covariance of the filter innovations, i.e., the value of
E[Z,,62k16] should the signal model have @ = 8,. Suppose that Z,,, is
asymptotically ergodic in the autocorrelation function; suppose that
Qi10, — Q; as k — oo with , > 0; and denote the actual limiting cova-
riance of the filter innovations, viz.,

k+n-1

lim n~! IZ;‘ Z510, 2,

n—soo

by X,. Suppose that a priori pseudo-probabilities p(6,), ..., p(0y) are
assigned, with (1.4) providing the recursive update for these pseudo-
probabilities. Define

B, =In|Q|+ tr (O 'Z) (1.12)
and assume that for some i, say i = I, and all j +« 7, one has
B <8 (1.13)

» Then p(6,;]Z,) — 1 ask — oo and p(0,|Z,) — 0 as k — oo for j I,
A convergence being exponentially fast.

. Proof. Set L, = [p(6,1Z))p(651Z)]*. As in the derivation of (1.9),
£ we can conclude that as n — oo,

ntin Ly gy 1Dl ri0ris) 4 e
L [

so that

- Lisy Li
2n ‘ln( {(L{‘ IL“: 1)-’/31—/9/
ie.,
PO Zysn-s) —1In @, Zk)___) n(B: — ﬂj)
p(0:1Z;sn-y) p(ollzk) 2
for some constant K. The claimed result then follows easily.

In
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Let us examine further the inequality (1.13), which determines which
member of the set {#,, .. ., 8y} is picked out by the estimation procedure. We
shall indicate an interpretation via a classical idea of information theory and
give a spectral description of the condition.

The Kullback information function [8] is defined for a finite measurement
sequence as

1,6,,8,) = E{ln’p%}%:—)‘e,} (1.14)

and for an infinite measurement sequence, we have an asymptotic per sample
information function

J@,,0,) = lim - 17,(6,,6,) (1.15)

A little manipulation shows that

J@.,9,) = lim n-'E{lnlpj_ggvll_grfLr; 6.}
r +n-1

— —h -1 p(erlzk+n—l)p(0:lzk)
lim n~*E {'“ FICAVASBTICAVA)

With 8, = 8, we have shown in proving Theorem 1.1 that

n—soo

3

n—oo

-1 1p Lisn- iy PO Zysn-1) D(60| Zy)
nlln Skn=t — p-1p k+n-1 0l %k
L " b1 Zien) PO, 1Z,)

—> 4In|Q,| + tr I — B,]
Therefore,

J(8o,6,) = 4B, — In| Q| — tr 1]

Theorem 1.1 thus shows that convergence occurs to that member of the set
{@,, ..., 60y} which is closest to 8, in the sense of minimizing the Kullback
information measure. The Kullback information measure is, incidentally,
always nonnegative, and for ||#, — 8, || small, one has

J-(on 0!) = J-(en 0:) = i’(e: - ar),FO(ot - 07)

for some positive definite F,. Thus the measure is locally like a metric.

The evaluation of the quantities §, in (1.12) is not difficult. The quantity
%, can be found by standard procedures for computing the second order
statistics of signals arising in linear systems. It can also be evaluated in terms
of the power spectra ®@,(z) and ®,(z) of the signal model with § = §, and the
signal model with 6 = 8, respectively as follows. Let W (z) and W y(z) denote
the transfer function matrices of the associated innovations representation.
Then we have

Qo(2) = Wo(2)QWe(z™")

and similarly for ®,(z). The power spectrum of {Z,,} [which is the output
of a linear system driven by {z,} with transfer function matrix W;'(z)}is
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Wil @)Wz Also E, = E[Z44, Zi). Hence,

=~ § W (D0u()W 7 (2~ 21 d
and so

tr (QF'E) = j§ tr Oo()[W 7 (2= YR W (D)2 dz

1

27tj tr [Oy(2)D; '(2)]z7 d2 (1.16)

We foreshadowed earlier some comments on the selection of parameters
0,,..., 0y within an infinite set ® in which lies the true value of 8. Two
particular points should be made.

1. The 8, should be evenly distributed in the allowed region ©® where the
distribution is more according to the rough metric provided by the
Kullback per sample asymptotic information function. In particular,
one might attempt to choose the 6, to minimize n}in rr;?;( J@,, 9).

2. If one can choose the 8, such that the associated Kalman filter gains
are the same for subsets of the @, (the associated Q, must then be
different), there will be economy in a filter bank realization. Thus if N,
Kalman filter gains are used, and N, different Q, for each gain,
N = N,N, values of @, are covered, while only N, filters need be
implemented.

efined Parameater Estimates

s
;

For the case when the unknown parameter @ of our signal model is in a
osed bounded region, we have seen that it is possible to divide the parameter
ace into N decision regions and employ the detector algorithms so far
tdescribed to determine in which region of the parameter space the true

“parameter lies. Of course for large N, the detector algorithms yield an accu-

;rate estimate of the true parameter, but at the expense of complexity. Actually,
.2 refined parameter estimate can be obtained using a combined detection-
estimation approach; detection determines the right local region of the
parameter space, and linearization is used within it, as illustrated in Problem
1.3, to estimate the true parameter. Further details are omitted here.

“Model Approximation
” An entirely different application of Theorem 1.1 is to the approximation

of high order models by low order models. The actual signal model may be
?l'hlgh order, while 8,, ..., 8y correspond to low order-models; the algorithm
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will then identify that low order model closest (according to the Kullback
information measure) to the high order model.

Main Points of the Section

For signal models with unknown parameter § belonging to a discrete set
{6,,0,,...,0y}, a bank of conditional Kalman filters yielding conditional
innovation sequences Z,, can be employed to yield a posteriori parameter
probabilities p(8,]Z,) and, together with the conditional state estimates
Ri/k-1.0» the conditional mean or a type of maximum a posteriori state
estimate. Exponential convergence of the p(8,| Z,) yields the true parameter.

These ideas can be applied to the case when @ is time varying and when it
belongs to an infinite set ©. By choosing a finite set within ©, one can identify
that member of the finite set closest to the true value, with distance measured
by the Kullback information measure, and readily computable in terms of
various power spectra.

Problem 1.1. Let us consider the case of state estimation in the presence of
unknown measurement noise environments. For simplicity, suppose that the model
is time invariant. For the usual state-space model {F, G, H, O, R, S = 0}, we assume
that F, G, H, and Q are known but R is unknown. As a consequence, the Kalman
gain K is unknown, as is the one-step-ahead prediction error covariance Q. To
achieve estimation results, one approach is to introduce an assumption that the

gain matrix K = THR"! belongs to a discrete set {K, K3, . . . , Ka} and to obtain
innovations Zxx, for i = 1,2,..., M, and thereby estimates 2k~ or £x/t-1. For

this purpose, knowledge of Q is not needed. However, to obtain performance
characteristics, an estimate of R or Q must be obtained. Derive the maximum a
posteriori estimate of R under the assumption that K = K. [Hints: Note that
d1np(Z:| K;, R)

dR!
zero. This achieves a MAP estimate of R given that K = X of

R‘ =i'(A‘ +AD

Qx.z = [+ H’K,]"1R and derive an expression for and set it to

1 k 7 ’ ’

For the vector measurement case we need the matrix result that for matrices P and

vectors a, b i
dinjP| _ . da’Pb _ 1 .,
3P-T P’ and 9P 2(ab + ba’)]

Problem 1.2. Demonstrate that, in calculating p(8;| Z,) for the case of vector
measurements, there is a computational advantage in sequentially processing the
measurements (see also the relevant section of Chap. 6). This problem is solved in [9].

Problem 1.3. Consider the usual state-space signal model {F, G, H, Q, R, S}
with all matrices known except that the output matrix H’ is known to belong toa
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neighborhood of some nominal value H’. Apply extended Kalman filter algorithms
to estimate (H — H) as an augmented state variable. For simplicity, consider the
scalar measurement case only. (Illustrates refining of parameter estimates.)

10.2 ADAPTIVE ESTIMATION VIA EXTENDED
LEAST SQUARES

The parallel estimation schemes of the last section could well be too
complex for implementation. A very useful class of adaptive estimators can be
constructed using the following approach. Let us so restrict the signal models
that

(a) if the parameters § are assumed known, then state estimation,
possibly optimal, can be readily achieved.

(b) if the states x, are assumed measurable, then the unknown param-
eters can be estimated, perhaps in some optimal fashion.

Then simultaneous state and parameter estimation may be carried out if the
state and parameter estimators referred to in (a) and (b) above are employed,
but with the state estimator calculating £, using parameter estimates {ék} and
the parameter estimator calculating é,, using state estimates X = {%,}. Figure
10.2-1 (see next page) indicates this idea.

Let us now specialize the above approach to adaptive estimation via
extended least squares. First, we foreshadow that there are many useful
further specializations of the results, including schemes outlined in [11-15].
(These appear to compete favourably with other approaches, of which there
are many. See, e.g., [16-21].)

Consider now the signal model*

xk+l = ka + Gyk + Kvk + uk (2.13)
Ye=10'x, Zy =Yi + Vi (2.1b)

Here, v, is white noise of zero mean, x, is the state, § is an unknown par-
ameter, and u, is an external input which may be a function of z,.

Assume temporarily that x, as well as z, is measurable. Then certainly
least squares identification of 8 can be achieved simply by selecting § to mini-

k
mize the index Zo; (z, — 0'x,) (z, — @'x,) for each k. Denoting the minimiz-
i=

ing @ at time k by ék, we have, after simple calculations, that
a k -1 k
0, = (Z:o x,x;) :Z"& X,z .2)

, *The appearance of Gy in (2.1a) may seem strange. Applications will, however,
justify the possibility of G # 0 on occasions.
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(a) Signal Model
2y ——] . o
State Estimatorf—— X, ;o
Uk_._> %/
bo
*
Z, —>1 Parameter i
U, ] Estimator kX
(b} Conditional State and Parameter
Estimator - Possibly Optimal
State Estimator R 5
z, /
u, :
Parameter > B
Estimator > Puix {,

(c) A Useful Class of Suboptimal
Estimators

Fig. 10.2-1 A class of state and parameter estimators.

(assuming the inverse exists). This estimate may be calculated recursively
from

Pily = Pit 4 x,x; P;t =0 (2.33)
Civ1 = G + x22 (2.3b)
ék = Pk+1ck+4}1 (2.3¢)
or, by application of the matrix inversion lemma (see Chap. 6),
ék = ék—l + Prayxi(zi — x;:ék-l) (24a)
Piyy = Py — Ppxi(xiPix,)” ' X0 Py (2.4b)

where P, in (2.4) is usually chosen as some suitably large positive definite
matrix.

So with z, and x, measurable, there exist straightforward algorithms for
the recursive estimation of 6. These algorithms are well understood and give
almost sure convergence to the true parameter estimates under very reasonable
“persistently exciting” conditions [22-24].
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Actually, simpler algorithms based on stochastic approximation tech-
niques [2] can be employed fo yield consistent estimation of 8. In (2.3), Py,
can be replaced by some decreasing scalar gain sequence y, satisfying certain
conditions as discussed in [25]. Common choices of y, are

1 i Xix ]_1 and —l—(x'x )y!
k y = i~ k kv k.
These values for p, are certainly simpler to calculate than P, ., above, but
result in slower convergence rates. On the other hand, it is also possible to
use more complicated algorithms, viz., weighted least squares rather than the
unweighted version above. Such algorithms require knowledge of Q, though
if Q is unknown, one can even consider estimating Q and using the estimate in
the weighted least squares equations. To examine these variations here would
take us too far afield; we merely mention their existence for the sake of com-
pleteness.

Now if for the model (2.1) we assume knowledge of 8 and measurability
of z, and u,, but not x,, then state estimates are readily obtained from the
inverse of the signal model:

Reriee = FRik-1,0 + Gisi-1,0 + KPpso + 4
Pro = 2 — Irre-1,0 2.5)

Virk-1,6 = Ek/k—-l.o = 9'53k/k-1.a
[Of course, if Ri/k_1.0 = X, for some k = k,, then equality holds for all
k > ko; (2.1) is, after all, simply an innovations model, except possibly for the
conditions on the initial state.]

Now we see that the earlier noted requirements (a) and (b) for achieving
adaptive estimation are met. The idea of extended least squares is to employ
9,, instead of @ in (2.5) and %/, ¢ instead of x, in (2.2) through (2.4). With
an obvious simplification of subscripts, we have the adaptive estimator
equations

Sie1 = FR + GPi + KV + 4, (2.6a)
b =2, — i Ve = 0i%, (2.6b)

O =0y + Aeri Bz — £10,-0) (2.6c)
Apry = Ay — A2 (AR + 1)1 %04, (2.6d)

Convergence of extended least squares algorithms, Convergence theory
for the above adaptive estimator is developed in [14, 15}, but in essence the
‘convergence conditions consist of a persistently exciting condition identical
'to that for standard least squares but with x replaced by x,, noise conditions,
zand a condition that

W(z) = 1+ 6'{z1 — [F + (G — K)I']}"(G — K) @7
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be strictly positive real; equivalently, W(z) is real for real z, W(z) has no poles
in|z| > 1, and W(e’) + W'(e ’=) > 0 for all real w.

It is clear that this convergence theory is but a guideline, and in practice
simulations or trial application of the algorithms would be advised before full
implementation. It is known that when (2.7) fails to hold there could be
divergence or vacillation between convergence and divergence.

The available convergence theory of other schemes as in [16-21] is not so
well developed as for the schemes described here, and so there is less insight
into when the schemes fail.

Let us now turn to an application of these ideas.

Adaptive Kalman Filtering

A common situation in which an adaptive filter is called for is that
arising when the input and measurement noise covariances are unknown or
slowly varying, while the signal model itself is known. To analyze the situa-
tion, we shall, for convenience, consider the signal model with scalar input and
output

Xgspy) = ka + ka Z) = Yi + Ve = H’xk + 7% (2-8)

Wy _ o S Wi |
R R

Here F, G, and H' are known, while Q, S, and R are unknown. We shall be
interested in obtaining a one-step predictor for {y,}.

Now the associated innovations model will have a transfer function
H'(zI — F)~'K for some K and an input noise covariance Q. Both X and Q
depend not only on F, G, and H, but also on Q, R, and S. From the point of
view of producing a one-step prediction of y,, the signal model might as well
be the innovations model. Moreover, in view of the scalar nature of the inno-
vations model, we can regard it as having transfer function X'(z — F')"'H.
Thus the adaptive filtering problem becomes one of the same form as (2.1),
where the quantities F, G, K, and & of (2.1) are replaced by F’, 0, H, and K;
also u, in (2.1a) is zero. [The fact that Q is not known makes no difference to
the adaptive equations corresponding to (2.6).]

Now the adaptive algorithms derivable from (2.6) by making the
appropriate replacements will converge given satisfaction of a persistently
exciting condition, a noise condition, and a positive real type condition. The
persistently exciting condition will hold if the state covariance in the innova-
tions model is nonsingular; this is normally the case. Also, the noise condi-
tion will normally hold. Corresponding to (2.7), we have the requirement that
the following function be positive real:

W(z) = % — K'[zI — (F' — HK)|"'H (2.10)

with
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Obviously, it is real for real z and has no poles in |z} > 1 should the filter be
asymptotically stable, as is normal. It is a remarkable fact that in the impor-
tant situations when S is known to be zero, we have W(e’*) + W(e™*) > 0
for all real @ in a great many instances; for virtually any F, G, H, Q, for
example, there exists R, such that with R > R, the positive real condition
holds. Such R, may not have to be very large. (See Prob. 2.2.)

What now if the signal model of (2.8) and (2.9) has a vector output? One
may still replace the signal model by the innovations model with transfer
function H'(z] — F)~'K and input noise covariance Q. However, no longer do
we have H'(zI — F)"'K = K'(zI — F)"'H. We can, however, shift the
“unknownness” K from the input of the innovations model to the output of
another model (thus allowing use of the adaptive filtering ideas) by a technical
device. We illustrate this for a 2 x 2 H'(zI — F) 'K. Write

) ] K=k k]
wa(2)
where w,(2), w,(2), k,, and k, are all vectors. Then

wi(2)k, W’.(Z)kz]
wi(2)k, wi(2k,

H@I —F)!' = l:

H'(zI — F) 'K = [

w, 0

K, 0 ky 07w, ©
=[0 K, 0 k;] 0w,
0 w,

Now the matrix 8 becomes
9 — [k’, 0 k3 O il
0 ki O K5
Because the entries of 8 are constrained—some being zero, others fulfilling
equality conditions—variation on (2.6) is desirable to reflect the constraints,
A complication also arises (which is not present in the scalar measurement
case) from the fact that Q is a matrix and is unknown.

The interested reader is referred to [14] for techniques to handle these
aspects of the problem.

Treating the Prediction Error as the Measurements

A mildly more sophisticated extended least squares algorithm with
improved convergence properties can be achieved by treating the prediction
error as the measurements.

The model (2.1) for the actual measurements z, followed by the approxi-
mate whitening filter (2.6a, b) with output ¥, is not convenient. Let us con-
sider the scalar measurement case with zero input w, so as to simply derive
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an alternative and more convenient model. Interchanging the order of the
measurement model and whitening filter, the alternative model generating
9, is, after simplifications,

Vis1 = Fyi + K, — G, + GOy, (2.11a)
9, = 0w, + (v — o) (2.11b)

For the model (2.11), the extended least squares ideas of this section can
now be applied to yield an adaptive estimator driven from the measurements

Virr = FPr + K, — é;cv?k) + Gélka (2.122)
fe1 = F%, + GOL%, + K9, (2.12b)
0, =z, — 0,2, (2.120)
O =0,y + ApurWi(zi — 9i6i-0) (2.12d)
Apry = Ay — AL TAY + 1D)7HW0A, (2.12¢)

This algorithm involves an additional state update equation and thus
requires more computational effort, but experience shows that when it con-
verges its convergence is more rapid than that for the standard extended least
squares algorithm. To ensure convergence, it is usnally necessary to test that
AIF+ (G — K)é‘;] < 1 for all i at each k, and if this is not the case, then
the step size must be reduced by replacing A, Wi by $Ac+ Wi, A%+ 1V, €t
cetera, until the condition is satisfied.

The algorithm is essentially equivalent to the recursive maximum likeli-
hood recursions of [26, 27]. The convergence analysis reported in [27] does not
require a positive real condition on the model to be satisfied. It is also asymp-
totically equivalent to schemes achieved by application of extended Kalman
filtering theory as now described.

Adaptive Estimation via Extended Kalman Filtering

Another approach to recursive state and parameter estimation, requiring
additional computational effort, is to view the parameters as additional
states of the signal model, and apply extended Kalman filtering algorithms to
the augmented nonlinear model. The details of such an approach are a
straightforward application of the extended Kalman filter theory of Sec. 8.2,
and are left to the reader as an exercise.

Although this extended Kalman filter approach appears perfectly straight-
forward, experience has shown that with the usual state space model, it does
not work well in practice. For an augmented innovations model, however, in
which

0k+1 = 0,

Xprr = F(0)x, + Ki(@)v,
2, = Hi(@)x, + vy
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for an innovations process v,, the linearization very naturally involves the
term

3K(6),

) k = 24, 00y, vam 9y

For a convergence analysis, [28] has shown that the presence of this term is
crucial. A simple way to make sure that %%1‘ (0) can be readily calculated is to
include all the elements of K in 8. To ensure convergence in practice, the
algorithm may require step-size reductions or other heuristics to force the
poles of the filter to lie within the unit circle at each time instant as k — oo.

Main Points of the Section

For a broad class of state-space signal models with unknown parameters,
the parameters can be estimated via least squares algorithms conditioned on
the states being measurable and the states can be estimated conditioned on
knowledge of the parameters. By a simultaneous state and parameter estima-
tion, but with the parameter [state] estimator using state [parameter] estimates
rather than the true estimates, very useful adaptive estimators can be con-
structed. A crucial condition for convergence of the adaptive estimator to the
true optimal filter, designed given knowledge of the signal model parameters,
is that a certain system derived from the signal model be positive real. The
ideas can be applied to yield an adaptive Kalman filter when the noise covari-
ance matrices are unknown but the remainder of the signal model is known.
The ideas can be applied to signal models in which the prediction errors are
taken as the measurements. Algorithms with improved convergence proper-
ties result at the cost of additional computational effort. Related to these
algorithms are those achieved using extended Kalman filtering for an
innovations signal model. For these, the unknown parameters are treated
as states.

Problem 2.1. Derive the least squares identification algorithms (2.2) through
(2.4). Treat also the case when
Zy =X ;;0 + Vi

where X, is a Z,-measurable matrix, § is an unknown parameter vector, and the
index is
L3 INOY~ 1 7,
2, (z — X0y0z' @ — xi6)
where €, is an estimate of Q = E[v;v]. Show that
k Py k
O = (3, x0i'xy 3 X0tz
ék = ék—l + PIH-leﬁl:l(zk - Xiékq)
Piyt = Pp — PeXu(XiPi X, + Q)1 X3Py
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[In practice, ﬁ,, can be set to I or an estimate of Q derived from the residuals
¥ = (zx — X%0;). Such an estimate might be

A 1 k ,
Q =4 29101
k =0

The advantages of employing different estimates Qisa separate study which we do
not explore here.]

Problem 2.2. The usual state space signal model {F, G, H, Q, R} leads to a
model (2.5) with K = TH(H’LH + R)"!, conclude that if F, G, H, Q are held con-
stant and R increases, then K — 0. Thus show that if |4,(F)| < 1, the transfer
function W(z) in (2.10) will be positive real if F, G, H, Q are held constant and R is
large enough.
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CHAPTER 1 7

COLORED NOISE
AND SUBOPTIMAL
REDUCED ORDER FILTERS

11.1 GENERAL APPROACHES TO DEALING
WITH COLORED NOISE

In virtually all the Kalman filter theory that has gone before, we have
assumed that the measurement and input noise processes have been white.
We consider in this chapter what should be done when this assumption fails.
As it turns out, optimal handling of the situation is normally possible,
though this is generally at the expense of increased complexity of the filter.
Therefore, we become interested in replacing optimal filters by less complex,
suboptimal ones. Such a replacement may of course be of interest indepen-
dently of whether the noises are white, and so we consider the general ques-
tion of suboptimal filter design using reduced dimension filters in the last
section of the chapter.

Optimal Filter Design with Colored Noise

The material on covariance factorization of Chapter 9 provides the tool
for handling colored noise in an joptimal fashion, as we shall now argue.
Suppose that the usual signal model conditions apply, save that {v,} and
{w,}, the measurement and input noise, are not white. For convenience,



Sec. 11.1 GENERAL APPROACHES TO DEALING WITH COLORED NOISE 289

suppose they are independent with E[v,v;] and E{w,w;] known and given in the
“separable” form

Epw] = A4,B, k=1

and similarly for E[w,wj]. Then we can construct finite-dimensional systems
$; and §, with inputs white noise processes, {{,} and {7,} say, and outputs
which are realizations of {v,} and {w,}. To do this, we use the covariance
factorization ideas of Chap. 9; in case {v;} and {w,} are stationary, we can
ensure that the finite-dimensional systems just referred to are time invariant.
Alternatively, of course, models §, and §, may be part of the a priori data.

The composite of the original signal model § and the finite-dimensional
systems $, and §, together form a single linear system § with white noise
inputs {¢,} and {1,}. The usual Kalman filter can be obtained for §; part of
the state vector of the Kalman filter will comprise an estimate of the state of
S, and a submatrix of the filter error covariance matrix will be the error
covariance matrix associated with estimating the state of §. The estimate is
of course an optimal one.

In principle then, there is no difficulty about dealing with colored noise.
The practical difficulty is, however, that the filter dimension will be the sum
of the dimensions of §, §,, and §,, and may therefore be uncomfortably high.
Accordingly, we need to consider approaches to reduce the filter dimension.

In Secs. 11.2 and 11.3, we concentrate on using ideas stemming from
properties of the output noise. Specifically, we show in Sec. 11.2 that if the
output noise is Markov, then the optimal filter need be of no higher dimen-
sion than if the output noise is white. In Sec. 11.3, we show that if the mea-
surement noise covariance is singular, the optimal filter dimension can be
reduced below the usual dimension; it follows that if the measurement noise
covariance is nearly singular, a suboptimal filter follows by designing as if
the covariance was singular.

In Sec. 11.4, we discuss procedures for suboptimal filter design for
colored input or measurement noise (or both). The noise processes are not
assumed to be Markov, and the filters are of dimension equal to the dimen-
sion of the state vector of the basic signal model, i.c., the dimension which
would apply were the noise processes white.

Finally, Sec. 11.5 discusses procedures for lowering the filter dimension,
even when the noise processes are white.

A number of methods are heuristic, or only partly justified by the argu-
ments to be presented. Accordingly, it is imperative that any. suboptimal filter
design should have its performance compared with that of the optimal filter. In
many of the suboptimal filters presented, the performance of the suboptimal
filter is evaluated as part of the design process. In virtually all of them, the
performance can be calculated; it can also be determined via simulations.
Incidentally, the reader should be reassured that examples as outlined in the
references do verify the utility of the methods.
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Filter design with Markov measurement noise is discussed in [1], whose
authors refer to an original treatment in [2]. Filter design with singular
measurement noise covariance is discussed in [3-7], with [5-7] emphasizing
the notion that the design procedure is also a valid technique for obtaining
reduced order filters when the measurement noise covariance is not singular.
The ideas of Sec. 11.4 are an amalgam of various ideas scattered through
[3-7], sometimes in an underdeveloped fashion; in Sec. 11.5, we carry the
ideas of Sec. 11.4 forward with the aid of an approach suggested in [8].

Main Points of the Section

If the input or measurement noises are colored, one models them as the
output of a linear finite-dimensional system excited by white noise. One
builds a Kalman filter for the linear system comprising the original signal
model and the noise models. Suboptimal filter design may be needed to reduce
the dimension of this filter. ‘

Problem 1.1 Will the ideas of this section carry through if {v.}, [w:} are
colored and dependent?

11.2 FILTER DESIGN WITH MARKOV OUTPUT NOISE

It turns out that when the output noise {»,} is Markov, there is no need
to increase the dimension of the optimal filter. In this section, we shall
illustrate how the filter may be found in this instance. Thus we suppose that

Xy = Fkxk + kak k 2 0 (2.18.)
2, = Hix, + 0, (2.1b)
Veyy = Ak'v,, + N k 2 0 (2.2) .

Here, x,, vy, {#:}, and {w,} are independent and gaussian. We have x, as
N(x,, P,), v, as N(0, R,), {n,} as white with 5, as N[0, E,], and {w,} as white
with w, as N[0, Q,].

Observe now that

Zeor — Axzi = Hio1 Xy — AH Xy + Vs — A,
= (His1Fy — AH)x, + 1y + Hy o \Gow,
Define this quantity as Z,,, for k > 0, and think of (2.1b) as being replaced by
e =Hixe 4+ +Gw, k>0 (2.3a)
where Hy = H,,\F, — A,H} and G, = H},,G,. Also set Z, = z,, so that
Zo=Hyxy + vy = 2z, (2.3b)
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Standard Kalman filter theory then allows us to compute E[x,|Z,] for each
k, using a filter of dimension equal to the dimension of x,. (Actually a minor
deviation from standard procedures is required at k = 0.)

The definition of {Z,} shows that Z, is computable from Z,, and Z, from
Z,. Therefore E{x, | Z,] = E[x, | Z,}. This means that true filtered estimates
(rather than one-step-ahead prediction estimates) of x, are produced by the
Kalman filter.

From (2.1a) and (2.3a), we see that the filter will have the form

Rirvner = Fielie + KilZiir — H;c)?k/k] (2.4a)
fork=0,1,2,...;from (2.3b) we see that one must take
Koo = PoH(HPH, + Ry) 'z, (2.4b)

to initialize the filter. The precise sequence {K,} can be found by standard
procedures, with a derivation being called for in the problems. What is of
interest here is how one should implement (2.4a) once K, has been found.
Rewriting (2.4a) as

Xivrimer = Falppe — KAz — Kkﬁ;)?k/k + KiZian (24¢)

allows us to see that the arrangement of Fig. 11.2-1 illustrates an implemen-
~ tation of (2.4c). The dimension of the linear system of Fig. 11.2-1 is the same
as that of x,; in the figure, the various quantities are those present at time k.
The input to the delay is easily checked to be

Fifin — Kidizy — K H Sy
at time k, so its output at time k is
-~ -I -~
Foo i Xeorm-r — K Agos 2oy — K\ Ho Ry iy

Examination of the summing node at the delay output then allows recovery
of (2.4c) with k replaced by k£ — 1.

O LI

Fig. 11.2-1 Filter structure when measurement noise is Markov.

Two other minor points should be noted.

1. If v, were the output of a linear finite-dimensional system excited by
white noise, one could not carry through the above derivation unless



292 COLORED NOISE AND SUBOPTIMAL REDUCED ORDER FILTERS Ch. 11

v, was the same as the state of this system, and therefore possessed
the Markov property.

2. The measurement noise in (2.3a) is 77, + G, w;, and is not independent
of the input noise in (2.1a). Therefore, the somewhat more complex
formulas for the filter gain and error covariance applicable for
dependent noises must be used.

Main Points of the Section

When the output noise is Markov, one can redefine the measurement
equation to make the new measurement noise white. The Kalman filter
dimension is, therefore, not increased.

Problem 2.1 Develop formulas for the gain matrix K, and the associated
error covariance of the filter of this section. Check what happens when 4, = 0.

Problem 2.2 Let {v,} be an autoregressive process. Show that the ideas of this
section can be extended to yield a Kalman filter driven by a linear combination of
z; and past measurements,

11.3 FILTER DESIGN WITH SINGULAR
OR NEAR-SINGULAR OUTPUT NOISE

In this section, we shall argue that when the output noise covariance
matrix R, has nullity m (i.e., has m zero eigenvalues) for all k, we can reduce
the dimension of the Kalman filter by m. The heuristic reasoning for this is
that when R, has nullity m, there are m linear functionals of x, known pre-
cisely once z, is known. There is then no need to estimate them.

When the output noise covariance is nearly singular, we can derive a
low order suboptimal Kalman filter by assuming that the noise is actually
singular. The low order Kalman filter which would be optimal were the noise
actually singular functions as a suboptimal filter for the nearly singular case.

To retain clarity of presentation, we shall assume that the various param-
eter matrices are time invariant. Thus we begin by assuming a signal model
of the form

Fisr = Fx%, + Gw, (3.1a)

Z, = H'% + 4, (3.1b)

We shall assume independence and the gaussian property for %o, {wi}, {6},
the usual whiteness and zero mean assumptions for {w,} and {7}, and

E[5,5,] = R, E[w,wi] = Q. We further assume that R has nullity m, that 7,
has dimension p, and that X, has dimension n > m.
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To derive the reduced order Kalman filter, we shall adopt the following
strategy: ’

1. We shall introduce coordinate basis changes of the output and state
spaces so that part of the new output vector becomes identical with
part of the new state vector.

2. We shall show how the remainder of the state vector can be estimated
via a dynamical system of dimension m less than the usual Kalman
filter dimension.

Coordinate basis changes. First, we set up a new output {z,} such that
the first m entries of {z,} contain perfect measurements. Let T be a non-
singular matrix such that

TRT = [0'" 0 } 3.2)
0 -
Such T can be found by standard devices of linear algebra. Then set
z, = Tz, v, = T7, (3.3)
_ The first m X m entries of {v,} will be zero, by virtue of (3.2). Thus with
7, = TH'%, + v, 3.9

the first m entries of TH'%, will be known exactly.

Next, we shall arrange for the first m entries of z, to be the first m
entries of the state vector. We must make the assumption that A’ has rank
equal to the number of its rows p. (This is inessential; if it were not the case,
certain linear combinations of measurement vector components would be
independent of x, and could be thrown away.) Accordingly, let H’ have rank
equal to p. Define a nonsingular matrix S of dimension n X n by

S= [TH } 3.5)
Sz
where S, is any matrix chosen to make S nonsingular. Then set
Xe = S%; (3.6)
There results, with F = SFS™, G = SG,
Xy = Fx, + Gw, (3.73)
1
= [FI ot * Lt @70

The effect of the coordinate basis change is to allow the first m entries of x;,
namely x}, to be estimated without error from the first 7 entries, call them
zi, of z;. The remaining (p — m) entries of z, are noisy measurements of the
first (p — m) entries of x}, with x denoting the last (n — m) entries of x,.
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Estimation of x;. We could write down the usual Kalman filter equation
associated with (3.7). It has the form (using true filtered estimates)

Zisrmer = (I — LH')FRy + Lz, (3.8)

Here H’ = [I, : 0]. The first m rows of this equation must yield £}, /4., =
z}.1. Therefore, for some L,,

m p—m
[I,,, 0}}m
L=
L, In—m
p

The last (n — m) rows of (3.8) yield, on identifying 2},, with z}, an equation
of the form

Re1mer = ASipe + BiZyyy + Byzi (3.9)
This is implementable with an (n — m)-dimensional linear system, as shown
in Fig. 11.3-1.

7—>| 8, J@-» Delay [-(Z Sk

Fig. 11.3-1 Implementation of filter of equation (3.9).

Estimation of {x,} from {Z,}. It simply remains to undo the effect of the
coordinate basis changes. This is best shown diagrammatically, see Fig. 11.3-2.

Before discussing the application of these ideas to suboptimal filter
design problems, let us make several comments.

1. If the signal model is time varying or the noise processes non-
stationary, the calculation of the basis change matrices 7and S can be

LS I TR |
X T K T
- - Eicl3
) Split off ¢l x| Z]
% Kalman filter
— T a2 o
z, for X, %2

k/k

Fig. 11.3-2 Reduced order Kalman filter with singular output noise
covariance.
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tedious; by following more precisely the procedure of, say, [3], some
of the computational burden can be cut down.

2. Some of the calculations are very reminiscent of those used in Luen-
berger estimator design [9], where one assumes no noise is present
and accordingly can obtain an observer of dimension equal to
dim x — dim z = n — p. The Luenberger observer equations are of
the form (in the absence of external inputs)

di+1 = Agy + Bz, (3.10a)
2’,/]‘ = qu + DZk (3.10b)

and g, has dimension equal to n — p. If we allow g, to have dimen-
sion n — m, then one can check that (3.9) and (3.10a) have the same
form after manipulation.

3. The results of this section also give new perspective on the treatment
of Markov measurement noise of the last section. Suppose that in
(3.1), ¥, is neither white nor has a singular covariance matrix but
rather is described by

Tpsr = AV, + §i (3.11)

for some white noise process &;. Then we may regard [x; 7] as a
new state vector [evolving according to (3.1) and (3.11)]; also, we
may regard (3.1b) as stating that we have perfect measurements of a
number of linear functionals of the state vector. By taking advantage
of the fact that these measurements are perfect, we can derive an
optimal filter of dimension equal to dim x,. This is of course what we
found in the preceding section, by a different argument.

Suboptimal Filter with Nonsingular Measurement Noise Covariance

Suppose now that E[7,7;] is no longer singular. Let us suppose that the
first m entries of TZ, are much more accurately known than the remaining
entries. Then we can modify the previous ideas to obtain a suboptimal esti-
mator of dimension equal to n — m. We follow the coordinate basis change
ideas as before, but now obtain in lieu of (3.7b) the measurement equation:

xi vi
B [u,-m O]xz] * [vz} @70

Here, {v}} has a smaller covariance matrix than {v}} and is independent of
{vi}.

Using (3.1) and (3.7¢), it is easy to compute a joint probability density for
x} and z,, and thence to derive E[x} |z,] = L,z, for some matrix L, comput-
able from the covariance data. (Minor modification is necessary in case E[x,]
# 0.) We take L, z, as a suboptimal estimate of x}, in lieu of £}, = E[x}|Z,].
The error covariance of the suboptimal estimate is easily found.
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Now in order to estimate %, optimally, one would write down the
Kalman filter equation and examine its last (n — m) rows, This would yield

Xkrimer = AR + BSL + Czyy (3.12)

We implement instead of this optimal equation the following suboptimal
equation:
Rkv1mer = AR + BLy 2z, + Czyy (3.13)

Conversion to the original coordinate basis proceeds as before. The arrange-
ment of Fig. 11.3-2 still applies, save that the filter and estimates are sub-
optimal.

Main Points of the Section

When the measurement noise covariance matrix has nullity m, m linear
functionals of the state are known exactly and the filter dimension can be
reduced by an amount m. When the covariance matrix is nonsingular, the
same ideas apply to yield suboptimal reduced dimension filters.

Problem 3.1 Suppose that in (3.1b), the noise process v, is the output of the
following system:

$esr = Ak + By
v = C¢x

Show that one can obtain an optimal filter of dimension equal to dim x 4 dim ¢
— dim .

Problem 3.2 Suppose that (3.1a) is replaced by %xi, = Fie + Gwi + L
with {u,} a known sequence. Discuss the changes to the preceding theory.

11.4 SUBOPTIMAL DESIGN GIVEN COLORED INPUT
OR MEASUREMENT NOISE.

In this section, we shall show that an idea developed originally in Chap.
3 can be used to generate a suboptimal filter design when either the input or
measurement noise is colored. We demand a priori that the filter have the
structure the optimal estimator would have were the input and measurement
noise white. Thus the suboptimal filter is defined except for the filter gain
matrix sequence. Then we try to find an optimal gain sequence. The idea of
finding the best estimator within a class which is fixed a priori has been used
earlier. In Chap. 3, we adopted such an approach in studying estimation with
nongaussian noises andjor initial state.



Colored Input Noise

We now fill out the above idea. Suppose the signal model is
Xee1 = Fyx, +w, k>0 (4.1a)
z, = Hix, + v, (4.1b)
with {,}, {w,}, and x, independent and gaussian. The process {v,} has zero

mean and Efvv]] = R,6,,; the process {w,} is not white, but rather is the
output of the following system:

$isr = Ak + Buny k>0 (4.2

we = Cily 4.3)

with E[n,n1] = 16, and E[n,] = 0. (The matrix B, can be used to accommo-

date changes in the covariance of 7,.) The initial state {, is N(0, IT,) and is

independent of {#,}. The initial state x, of (4.1) is N(%,, P,). The reason why
no G, appears in (4.1a) is that it can be taken up in C}, in (4.3).

An optimal estimator would have dimension equal to the sum of the

dimension of x, and {,. We shall, however, assume an estimator of dimen-

sion equal to the dimension of x,.

Guided by the situation applicable when {w,} is white, we postulate that
the estimator structure is to be of the form

Koo = Xor-y + Ko(zo — Ho%g)-1)
Zirrmer = Falie + Kiii(Zeay — H;:+1Fk2k/k) k>0 4.4

We seek K, for each k to give the smallest possibleﬂ value for the error cov-
ariance X, .4, for a given value of X, . More precisely, for given %,,_, we
seek K¥ such that

Z0/0(K3) < Zoo(Ky) for all X, (4.5a)
Then with K¥ fixed, we seek KT to minimize the resulting X,,, :
(K3, KT < Z,(K5,K,)  forall K, (4.5b)

More generally, we determine K} such that
Ek/k(K:r Kalk, sevy Kt—la Klt) S Zk/k(K:, KT, ey Kt-,, Kk) fOI' all Kk
(4.5¢)

Digression. 1t is important to note that when {w,} is colored, contrary to
intuition the sequence K¥, . .., K¥ may not minimize X, in the sense that
T KEKY, .. KE LK) < Zu(Ko, Kyy oo, Ky (4.6)
for all X,, ..., K,. When the noise is white, however, then it is true that
(4.5) implies (4.6). For when the noise {w,} is white, ordering properties on
Z./x propagate, in the sense that if for two sequences K3, ..., K, (i=1,
2), one has
Zeoam—o(Ke, oo KR )) 2 2R (KE, ., KEL)
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then for all K,
T, o oo Ky, K) = Bk -1, K3
2 Zinl(ZR-1/k-1, K)
=L n(KE, ..., Kioy, Ky)

(The calculation is not hard to check.) Then if K2, . .., K3_, is replaced by
Ky, ..., K¥_,, it follows that

Ek/k(KAs sy Kllt-h Kk) 2 zk/k(K:’ DRI Kl):—l’ Kk)
2 Ek/k(K?;a ceey K:-—h K:)

for arbitrary K§, ..., Ki_,, K. Thus the “propagation of ordering” property
and the definition of (4.5) combine to ensure (4.6). When {w,} is not white,
there is no guaranteed propagation of the ordering properties. This will be
clearer when the actual equation for Z,, is presented below. Of course,
though we are not achieving a global minimum for £, . by our procedure for
selecting K¥, K¥, ..., K¥_,, K¥, there is nevertheless some intuitive appeal
about the choice of K¥ sequence.

Let us now turn to the details of the calculations. We shall see that the
calculations involve two steps: deriving the recursive equation for X, and
finding the minimizing K. The details are not particularly important, though
the method is.

The calculation of Z,,, proceeds by defining a linear system with white
noise input and with state covariance matrix containing X/, as a submatrix.
This is an important method of approaching error covariance calculation,
but its importance is often not emphasized in the literature. Thus, frequently
calculations of quantities like Z,/, appear to depend on the application of
much ingenuity, rather than the application of a basic technique.

Calculation of .. for Known Filter Gain Sequence

From (4.1) and (4.4), we have (with X,,; = X,0; — Zxv1/ks1)
Xo = (I — KeHX(xo — %4,-1) — Koo (4.7a)
Zeer = (I — K\ Hie X Z i + Wie) — Ky 104y k=0 (4.7)
On combining this with (4.2) and (4.3), we have, with D; = (I — K, H}..,)C;
[fkn] _ l:(I — Kis1Hi s )F, D;e:l liik:l + {0 _Kk+l}[ M J
{rsr 0 AL B, 0 7 flvens

This is a linear system with white noise excitation, and so the state cov-
ariance can be found recursively. Thus with

~ -’ = ’ =
El:xknxkn xk+le+l]_|:zk+l/k+l -:kﬂ:l

Ckﬂi;ﬂ Ck-t-lc;rﬂ S"k—f—l Hk+l



Sec. 11.4 SUBOPTIMAL DESIGN GIVEN COLORED NOISE 299

we have
[zm,m :~:,,+,}=[<1'— O ) A D;J[zk,k Ek}
Zir Ii,., 0 AJLE: IO,
y [F;('I— HyoiKic) 0 J N [K.MRMK;H 0 ] (4.82)
Dk A;: 0 BkB;
Also, from (4.7a) we have
Zo/o = — K, ’o)Po(I — K Hp) + KR K, (4-8b)
while also Z; = 0. When (4.8a) is written out term by term, there results
,,, = Al .4, + BB, (4.8¢)
Ek+1 =(- Kk+1H;¢+l)(FkEkA;: + C;cnkA;c) (4-8d)

Zk+l/k+l = - Kk+1H;¢+x)szk/kF;:(1 - Kk+1H;:+l)l
+ DELF(I ~ Ky Hyyr) + (I — Kio Hi o OFE Dy
+ Ko s Ry Ky + DD, (4.3¢)

Calculation of K} Sequence

Suppose that K¥, K¥, . .., Kf have been determined. Then we see from
(4.8) that IT,, E,, and X, are all determinable, Now with II,, E,, and X,
all known, (4.8e) shows that Z,,, /. can be determined after choice of K.
One may rewrite (4.8¢) as

Ek-n/k+1 = Kk+l(H;:+1®ka+l + Rk+1)K;(+l

- Kk+1H;¢+|®k - ®ka+XK;‘+l + ®k (4.9a)
Here,

O, = F,ZuFi + CEF, + F.E.C, + CIIC, (4.9b)
from which a simple completion of the square argument shows that ., /k+
will be minimized by taking

Kz+1 = ®ka+|(H/:+1®ka+‘ + Rk)_l (4.10a)
and one then has
Ziriker = Oy — O H (Hi o OH,,, + Ry, DH O, (4.113)
Of course, ®, in (4.9b) is independent of K, ,.
All the above calculations are for k > 0. We obtain K¥ using (4.8b):
K5 = PoH((HyPoHy + Ry)™! (4.10b)
This yields
Zon = Py — PoHy(HPoHy + Ry)"'Hy Py (4.11b)
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It is the presence of the nonzero quantity E, in (4.9) which causes the
failure of the order propagation property. In rough terms, one could con-
ceive of a sequence K,, . .., K, different to K%, ..., K¥, with

zk/k(K(h s vy Kk) 2 zk/k(K3=’ s ey Kz)
but also such that the difference between

Ek(KO’ L] Kk) and Ek(K‘g) ey K}:)
caused

zls'+l/k+1(K0’ ) Kln Kk+1) S Zlt'+1/k+1(K:i ey K:, Kk+l)

for some K,.,. With Z, zero, this difficulty cannot arise, and if {w,} is white
[which is obtained by taking 4, == 0 in (4.2)), one sees that =, = 0 for all k.

Colored Output Noise

We shall now examine the situation in which in (4.1a) one has E[w,w]] =
G, 0G0, and {v,} colored. That is, we shall assume that

fkn = Akfk + Bk}'k (4-123)
vk = C;{fk (4.12b)

Here, 1, is a zero mean, white gaussian process, independent of {w,}, with
E[AA}) = 16,,, and {, is N(0, IT,), being independent of {1,} and {w,].

Again, we seek an estimator of dimension equal to that of x,, postulating
that for some sequence {K}, the estimator is defined by (4.4). Again, we aim
to choose a sequence {K¥, K, . . .} such that the error covariance minimiza-
tion property (4.5¢) holds.

The procedure is similar to that which applies when there is colored input
noise. Thus with %, = x, — £,,, one has (4.7), and tying this with (4.12)
yields, with Evir=1— Ky Hyyy,

I:ka:] — [(1 - Kk+1H;¢+l)Fk —KkﬂC;en]l: ik :| + [ 0 Ek+1j][lk+1:]
Eisa 0 Ay Ersr By 0 Wy

Set
E{[ilﬁ-l} |:£k+l:l’} — [zk+l/k+l Ek+l :|
€k+2 Ek-!-z E;¢+l Hk+2

Then from this point on the calculations are the same in form as those
applying to the colored input noise case. The recursive equation for Z,,, /.
involves K, quadratically, and minimization for fixed Z,/, E,, and IT,,,
is easily achieved. We leave the details to the reader.

It should also be clear that, in principle, one could cope with colored

input and measurement noise simultaneously by the techniques of this
section.



Main Points of the Section

When the input or measurement noise is colored, one can achieve a
reduced order suboptimal filter of dimension equal to that of the signal
model state vector. The filter structure is the same as that of the standard
Kalman filter [see (4.4)] with the gain X, , being set equal to the value K}, |,
which minimizes X, /.., the gain sequence K%, ..., K¥ having been pre-
viously determined.

Problem 4.1 Discuss how one proceeds if in (4.1a) one has
Xke1 = Fexy + wie + Tattye
where {1} is a known input sequence and {I";} a known sequence of gain matrices.

Problem 4.2 Discuss how one could combine the ideas of this and the pre-
vious section to deal with systems with colored input noise and white measurement
noise, with the measurement noise covariance being singular.

11.56 SUBOPTIMAL FILTER DESIGN
BY MODEL ORDER REDUCTION

Suppose one has an n-dimensional signal model. One approach to sub-
optimal filter design is to replace the n-dimensional signal model by an
n,-dimensional model with n, < n; then design a Kalman filter for the n,-
dimensional model and use it on the n-dimensional model. The natural ques-
tion arises as to what sort of signal model replacements should be con-
sidered. The answer turns out to be a little different, depending on whether
we are interested in signal or state filtering. We shall look at these cases
separately, assuming for convenience throughout this section that all pro-
cesses are stationary.

Signal Filtering

Suppose that the input and measurement noises to the signal model are
independent. Then it is intuitively reasonable that if the signal model is
. replaced by one whose output power spectrum is close to the power spectrum
of the original model, then this replacement is not likely to introduce great
errors when used as a basis for filter design. (The intuition can actually be
checked quantitatively.) The question arises as to how one might go about
the approximation procedure. To do any more than indicate the ideas
behind valid approximation procedures would take us too far afield, and we
therefore make only three brief comments:
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1. For scalar signal processes, since the output power spectrum is the
square of the model transfer function amplitude, the task is one of
approximating a transfer function amplitude response by another
transfer function amplitude response, the second transfer function
being of lower degree. Techniques developed for network synthesis
can be applied to this problem. For vector processes, this idea is
harder to apply.

2. If the original physical situation giving rise to the signal model is
known, one may be in a position to obtain a reduced order model by
“neglect of the parasitics.” Thus in an electrical network, for example,
one can eliminate from consideration the stray capacitance and
inductance.

3. The ideas of Chap. 10 using the Kullback information function as a
measure of closeness of signal models are relevant here.

State Filtering

If one is to build a reduced order filter, one cannot necessarily expect to
be able to estimate the entire state vector of the given signal model. This
means that one should specify in advance of the filter design what particular
linear functionals of the signal model state vector one wishes to estimate.
Having done this, one then proceeds with the filter design.

The procedure we present below is an amalgam of ideas of the last sec-
tion and of [8]. Suppose that the signal model is

pey = F%, 4+ Gw, (5.1a)
2z = H'%, + v, (5.1b)
with {v,}, {w.]} zero mean, independent, white gaussian processes with
Elvvi] = R, Elw,w,] = Q. Suppose moreover that one wishes to estimate
the independent linear functionals t1%,, t3%,, . . ., t,,%,. The choice of these
linear functionals may be dictated by the need to use them in a control law
or by the fact that these are the “interesting” parts of the state vector, i.e.,
the parts that in some way contain useful information. Define a square
matrix T by
T'=t t, ... t, S]
where S is chosen to make T nonsingular, but is otherwise arbitrary. Then
(5.1) is equivalent, under the transformation x, = T%,, to
Xpey = Fx, + Gw, (5.2a)
zy = H'x; + v (5.2b)
where F = TFT"!,G = TG, H' = HT-'. Further, the first m entries of x,
are the quantities which we wish to estimate. These first m entries, denoted
by xi, satisfy
Xker = Fyxi + Fioxi + Gywy (5.3)
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We can regard x} in (5.3) as being an additive colored noise term and postulate
an estimator of the form*

fllcﬂ/kn =F %in + Kelzisr — H;anll:/k] (5-4)
In general, we should expect K, to be time invariant. Let us retain the time
variation for the moment, however. Note that (5.4) is not the only form of
estimator we might consider. One could, for example, attempt to get a
stochastic version of some of the ideas of [10], postulating an estimator
structure

Prsy = 4Apy + Bz, Zee = Cpy + Dz, (5-3)

We shall, however, consider only (5.4).
To obtain a gain-update equation, observe first from (5.3) and (5.4) that

Xeer = Rkrrmer = (I — Koy HDF, (x} — i)
+ (terms involving x2, x%,,, v,,, and w;) (5.6)

By proceeding as in the last section, one can obtain a recursive equatlop
for the error correlationt Z}1, .., associated with using £}, ,/x+1 as an esti-
mate of x!.,. In fact, one has

El‘zlx/kn = Kk+1XkK;t+l + K1 Y + Y;cK;en + Zx (5‘7)
for certain terms X,, Y,, and Z,, which are computable provided initial
state covariances are known and X, . . ., K, are known. It is then trivi.al to
select K., to minimize T}!,,,,. Proceeding in this way, one obtains a
sequence K, K¥, . .., K¥,, with the property that for all k and K,

Zetiea(KS KY, oo K S L (KS KE, L., K2 Kiewr) (5.8)
Should the K approach a steady-state value, one obtains in this manner a
time-invariant filter (5.4).

Of course, in principle one can combine this idea with those given pre-
viously for handling colored input and output noise and for reducing the
estimator dimension given a small noise covariance associated with part of

the measurements. In a sense, this may be equivalent to working with the
structure of (5.5).

Main Points of the Section

Reduced order signal estimators can be obtained by approximating the
signal model by one of reduced order and with approximately the same
amplitude response. Reduced order state estimators can be obtained by
treating part of the state vector as a colored noise process.

*Note that £}/ is not generally E[x} | Zx], being a suboptimal estimat_e of xk.

tIn order that £}), = El(xk — £kx)(x} — £L/x)] be an error covariance, we re-
quire E[x} — £}/x] = 0, which cannot always be guaranteed. For a discussion of bias,
see [11].



Summary of Chapter

For convenience, let us sum up the major approaches outlined in this
chapter to dealing with colored noise and/or implementing reduced order
filters.

1. When either noise or both noises are colored, model the input noise
and output noise by finite-dimensional systems driven by white noise.
Build an optimal filter. (Sec. 11.1)

2. When input noise is white and when output noise is Markov, define a
new measurement process and build a filter of the normal dimension.
(Sec. 11.2)

3. When both noises are white and when the measurement noise has a
singular covariance, reduce the filter dimension by the nullity of the
covariance matrix. (Sec. 11.3)

4. When both noises are white, extend 3 to yield a suboptimal filter when
the measurement noise covariance is nonsingular. (Sec. 11.3)

5. When either noise or both noises are colored, postulate the filter
structure which would apply in the white noise situation and choose
the gain to optimize “one step ahead.” (Sec. 11.4)

6. When both noises are white, treat part of the state vector as colored
noise and proceed as in 5. (Sec. 11.5)

In all situations where a suboptimal filter is used, it is wise to compare
its performance with that of the optimal filter.
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APPENDIX A

BRIEF REVIEW OF RESULTS
OF PROBABILITY THEORY

The purpose of this appendix is to provide a concise statement of the
results from probability theory which are used in this book. It is not intended
as a replacement for a formal course in probability theory, and would be
quite inadequate for this purpose. Nevertheless, it might serve to fill in a
limited number of gaps in the reader’s knowledge.

The appendix is divided into three sections, covering results from pure
probability theory, results on stochastic processes, and results involving
gaussian random variables and processes. For an introduction to these ideas
which is suited to engineers, see, for example, [1] and [2]. For a more advanced
treatment, relying on measure theory, see, for example, [3] and [4].

In our view, the material in [1] defines fairly precisely the material which
is needed as background for the understanding of this text. However, in the
summary that follows, we have occasionally gone beyond the level in [1] to
mention ideas which we feel are particularly important.

By and large, many qualifiers, particularly existence qualifiers, are
omitted in the following material.



A.1 PURE PROBABILITY THEORY

1. Sample Space, Events, Experiments, Probability

Consider an experiment with a number of possible outcomes. The totality
of such outcomes is a sample space Q. An event A is a subset of the sample
space. A probability measure P(+) is a mapping from events into the reals
satisfying the axioms

1. P(4)> 0.

2. PQ) = 1.

3. For a countable set {4,} of events, if 4, N 4, = ¢ for all j, j, then
P(UA) = Z P(A;). (Here, ¢ denotes the empty set, and the set {4,}

is termed mutually disjoint.)

Important consequences for an arbitrary countable set {4,} of events are

P(A)<1, P@)=0, P(A)=1—P4), and P(UA) <Y P(4)

[

with 4 denoting the event “not 4” or “complement of A.” Not all subsets of
the sample space need be events, but the events must form a sigma field; in
other words, if 4 is an event, A4 is an event, and if {4,} is a countable set of
events, U4, is an event. Finally, Q is an event. Frequently, it is also assumed

that if 4 is an event with P(4) = 0 and B is any subset of 4, then B is also
an event with P(B) = 0. The probability measure is then termed complete.

2. Joint Probability

The joint probability of two events 4 and Bis P(4 N B), written some-
times P(AB).
3. Conditional Probability

Suppose 4 and B are two events and an experiment is conducted with
the result that event B occurs. The probability that event 4 has also occurred,
or the conditional probability of A given B, is

P(A|B) = };S?BB;) assuming P(B) = 0

P(A|B) for fixed B and variable A satisfies the probability measure axioms.
(Note that the definition of P(4 | B) when P(B) = 0 is apparently of no inter-
est, precisely because the need to make this definition arises with zero prob-
ability.)
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4. Independence

Events A,, A,, . .., A, are mutually independent if and only if
PA, N A, - N A,)=P(A)P(A4,) -+ P(4,)

for all integers i, ..., selected from 1,2,...,n with no two the same.
It is possible for three events A4, B, C to have each pair mutually independent,
ie.,

P(AB) = P(A)P(B) P(BC) = P(B)P(C)

and P(€A4) = P(C)P(A4) but not P(ABC)= P(A)P(B)P(C). Two events 4 and
B are conditionally independent given an event C if

P(AB|C) = P(A|C)P(B|C)
IfA,i=1,2,...,nare mutually disjoint and UA4, = Q, then
P(B) = 2‘: P(B|A)P(A)
for arbitrary B.

5. Bayes’ Rule

If P(B) # 0,
_ P(B{A)P(A)
P(AlB) = P(B)
If 4,,i=1,2,...,n are mutually disjoint and U4, = Q,

_ P(B|4)P(4)
P(4,1B) = S~ p BT 4)P(A)

6. Random Variables

It is often appropriate to measure quantities associated with the outcome
of an experiment. Such a quantity is a random variable. More precisely, a
random variable X is a function from the outcomes w in a sample space Q to
the real numbers, with two properties as given below. A value of the random
variable X is the number X(w) when the outcome @ occurs. Most commonly,
X can take either discrete values (X is then a discrete random variable), or
continuous values in some interval [a, b] (X is then a continuous random
variable).

We adopt the convention that P(X = 2) means P({w| X(w) = 2}), i.e.,
the probability of the subset of Q consisting of those outcomes w for which
X(w) = 2. Likewise, P(X > 0) means P({ew ] X{(w) > 0}), etc.

For X to be a random variable, we require that:
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I. P(X = —00) =P(X = +00) =0.
2. For all real q, {| X(w) < a} is an event, i.e.,

P(lo]| X(w) < a}) = P(X < a)
is defined.

7. Distribution Function
Given a random variable X, the distribution function Fy is a mapping
from the reals to the interval [0, 1]:
Fy(x) = P(X < x)

The subscript X on Fidentifies the random variable; the argument x is simply
a typical value. The distribution function is monotonic increasing, lim Fy(x)

=1, lim Fx(x) = 0, and it is continuous from the right. o

Xx——00

8. Density Function

It is frequently the case that Fy(x) is differentiable everywhere. The prob-
ability density function p,(x) associated with the random variable X is
_ dFy(x)
Px(x) - dx

Then py(x)dx to first order is P{x < X < x + dx}. A discrete random vari-
able only has a density function in the sense that the density function consists
of a sum of delta functions.

9. Pairs of Random Variables

Let X and Y be two random variables. Then Fy y(x, y) = P(X < x) N
(Y < y)} is the joint distribution function. If the derivative exists, the joint
probability density function is

2
Px.r(%.9) = 325 Fr.f(x,)
Given Fy, (x, y), it follows that Fy(x) = Fy y(x, o0) and

P =[xy dy

10. Conditional Distribution and Densities

If X and Y are discrete random variables,

qu'(x:|y,) = P(X = x,|¥= y,) — Pxpyf(f;,},;?,)
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If X is continuous and B any event,

Fyio(x) = P(X < x|B) = £M’_}$(§;r\_l?_1

and, if the derivative exists, one has the conditional density

p(x|B) = Fxpe(x)

If Y is continuous, by taking B as the event {y < Y < y + Ay} and letting
Ay — 0, we obtain [if py, (x, ¥) and py(y) # 0 exist]

— Px Y(xvy)
Pxix|y) = )

Of course, pxy(x]y) is termed the conditional probability density of X given
Y. Somewhat paradoxically, the conditioning here is on an event of zero
probability. One also has the important formula

Px(x) = fj:wa(le’)PY(J’) dy

11. Random Vectors, Marginal and Conditional Densities*

nrandom variables X, X,, ..., X, define a random n-vector X. One has

Fy(x) =P{(X, < x)N...N (X, < x,)}
and

px(x) = W%Fx(x)

Marginal densities, or densities of the form py, , x.(*;, X3, X;) can be obtained
by integration:

Pxixax (X1, X3, X3) = j;: J‘j: e I::Px(x) dx,dxs...dx,

'Conditional densities can be found as
| = Px

pX:,X:,...XJIXIQI,Xn!.---.X-
pxlohxld----yxl

‘Frequently in this book, the term random variable is used to cover random
vectors as well as random scalars.

12, Independent Random Variables

X and Y are independent random variables if the events {X < x} and

*Henceforth, we shall almost always omit mention of existence conditions for densi-
ties.
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{Y < y} are independent for all x and y; equivalently,

Fx (%, y) = Fx(x)F(y)
or

Pxx(%, ¥) = px(x)p(y)
or

Px1r(x|y) = px(x)
There is obvious extension to random vectors and conditional independence.

13. Function of One Random Variable

Let X be arandom variable and g(-) a reasonably behaved scalar function
of a scalar variable. Then Y = g(X) is a random variable, and if an experi-
ment results in an outcome w, Y takes the value y = g(X(®)). One has

FO)=PY<y)=Px¢€ l)

where I, = {x| g(x) < y}. In case X is continuous and g differentiable, it can
be shown that

Py = 3 2EE

where X, is a root of y = g(x). If an event 4 has occurred, then

Pyl 4) =3 —L"l’;(,f;l)’?

14. One Function of Two Random Variables

Let X and Y be two jointly distributed random variables and g(-, -} a
scalar function. Then Z = g(X, Y) is a random variable, and

Fo(d) = PZ<2)=P(X, Y € D) = [[ prulx,y)dxdy

where D, = {(x, y)|g(x,y) < z}. Incase Z = X 4+ Y with X and Y indepen-
dent, the convolution formuta holds:

pe@ = [ ez = 9pndy = [ pax)pelz — x) dx

15. Two Functions of Two Random Variables

In case U = g(X, Y) and V = h(X, Y), one has

- Px,r(xh Zl)
Port, ) = % T3yl
where

__9g(x,y)dh(x,y)  dg(x,y)dh(x,y)
T ) = = o ox



App. A.1 PURE PROBABILITY THEORY 313

and (x,, y,) is a solution of u = g(x, »), v = h(x, y). There is an obvious
extension to n functions of n random variables.

16. Functions of Independent Random Variables

If X and Y are independent random variables, so are g(X) and A(Y).

17. Mean, Variance, and Expectation

The mean or expectation of a random variable X, written E[X], is the
+oo
number f xpx(x)dx, where the integral is assumed absolutely convergent.

If absolute convergence does not hold, E[X]is not defined. The variance a2 is

E[(X — EIX) = | (x — E[XDpx(x) d
Chebyshev’s inequality states
PIX — EX)| > K} < 2,
One can also show that ¢ = E[X?] — (E[X])>. The definition of the mean

generalizes in an obvious way to a vector. For vector X, the variance is
replaced by the covariance matrix

E{(X — E[X](X — E[X])}
The variance is always nonnegative, and the covariance matrix nonnegative
definite symmetric. If ¥ = g(X) is a function of a random variable X, the
random variable Y has expected value

E[g(0] = [ g(ps(x) d
These notions generalize to the situation when the probability density does

not exist.

18 Proparties of Expectation Operator

The expectation operator is linear. Also, if X, denote mutually inde-
pendent random variables,
E[X,X,...X,]= E[X\)E[X)]... E[X,]
If they are also of zero mean,

E[(S X)) = 5 ELX7]

19. Moments and Central Moments

The kth moment of a random variable X is m, = E[X*]. The kth central
moment is u, = E[(X — E[X])*]. The joint moments of two random variables
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X and Y are given by the set of numbers E[X*Y’]. E[XY]is the correlation
of X and Y. The joint central moments are defined in an obvious manner and
E[(X — E[X](Y — E[Y])] is the covariance of X and Y.

If E{XY]=E[X]E[Y], X and Y are termed uncorrelated,and if E[XY]=
0, they are termed orthogonal. Independent random variables are always
uncorrelated.

20. Characteristic Function

With j = ./—1, the characteristic function of a random variable X is
defined by

$x(s) = Elexp jsX]
The variable s can take on complex values. Evidently ¢,(-) is the Fourier

transform of p,(+). If X, X, . .., X, are nrandom variables, the joint charac-
teristic function is

¢X(sl, Sy v ,S,,) = E[CXP ‘stle]

One has ¢,(0) = 1 and |x(s,, 53, - . ., 5,)| < 1 for all real 5,. From ¢,(s),
Px(x) can be recovered by an inverse Fourier transform. The moments m,
of X are related to ¢,(-) by

my = j* %"; $x(9) u0

If X and Y are jointly distributed, ¢,(s) = ¢ y(540). If they are independent,
Ox,x(815 53) = Px(5:)Py(s2)

and conversely. If {X}} is a set of independent random variables and Z =
X+ X,+ --- + X, then

$z(s) = Ix.(5)Px.(5) . - . ()

21. Conditional Expectation

The conditional expected value of a random variable X, assuming
occurrence of an event A, is

ELX|4) = | xpy (x| A)dx
Further,
Elg(0)| 4] = | g()px x| 4) dx

Suppose Y is a continuous random variable jointly distributed with X.
Although {w]| Y(w) = y} is an event of zero probability, by analogy with the
definition of py ,(x|y), one has

EX|Y=y1= | xpaplxly)ds
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This quantity is a number, depending on y. We can define a random variable
E[X| Y] as that which takes the value E[X| Y(w) = y] when the experimental
outcome  leads to Y(w) = y. Thus E[X| Y] is a function of the random vari-
able Y, determined by the equation above for E[{X|Y = y]. As a random
variable, it has an expectation. It is important to note that
E[E[X| Y]] = E[X]
- When X, Y, Z are jointly distributed, E[X| Y, Z] is defined in the obvious
manner. Then
E[X|Y,Z]= E[X|Y + Z, Z] = E[X|g\(Y, Z), g.(Y, Z)]

for any two functions g,, g, such that to each pair of values y,, w, of g, g,
there is only one pair of values y, z of Y and Z for which g,(y, z) = y,. The
intention is that the values taken by the g, convey precisely the same informa-
tion as the values taken by Y, Z. This idea obviously extends to conditioning
on more than two random variables. The conditional expectation operator
is linear. If X and Y are conditionally independent for a given Z, then

E[XY|Z] = E[X|Z]E[Y|Z]

. If X and Y are independent, E[X| Y] = E[X]. Infact, E[g(X)] Y)=E[g(X)]
for any function g(-).
The number E[g(X, Y)| X = x] can be evaluated as

lim Efg(X, V)|x < X < x + Ax]
and is i
Efg(X, )| X = 51 = ERg(x, )| X =x1= [ (5, Dprxly|n)dy
The random variable Efg(X, Y)| X]is a function of the random variable X.
If g(X, Y) = g,(X)g(Y), one has
Efg(X, Y)| X] = g:(X)E[g.(Y)| X]

E[E[g(X, V)| X]] = E[g(X, Y)]

Also,

22. Central Limit Theorem
If the random variables X, are independent, under general conditions
the distribution of
YJI = n-l E X[
is approximately gaussian, of mean n~! Y] 4, and variance n~! }; o2, where
[]

4, and o} are the mean and variance of X,. As n— oo, the approximation
becomes more accurate.
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23. Convergence

Let X, be a sequence of random variables. We say that X, — X every-
where as n — oo if X (0) — X(w) for all € Q. This is normally too
restrictive a definition, and the following three convergence concepts are the
most commonly used:

Cl X, — X almost surely, or with probability 1, if X,(w) — X(®)
for almost all w (that is, for all @ € 4 = Q where P(4) = 1.)

C2 X,— X in mean square if E[]| X, — X|]*)] — 0.

C3 X, — Xin probability if for all € > 0, P[j| X, — X|| > €] — 0.

It is known that:

(a) Cl implies C3.

(b) C2 implies C3.

(c) C3implies that a subsequence of {X,} satisfies CI.

(d) C3 and |X,| < ¢ for some ¢, all n > some n,, and almost all @
implies C2.

On occasions, the following idea is also helpful:

C4 X, — Xin yth mean if E[|| X, — X|'] — 0.

A.2 STOCHASTIC PROCESSES

1. Discrete-time Random Process (Random Sequence)

The idea of a random process is a generalization of the idea of a random
variable in the following sense. Instead of each experiment resulting in a
number (the value of a random variable) or an n-tuple of numbers (the value
of a random vector), the experiment results in a function mapping an underly-
ing time set (nonnegative integers, all integers, or the reals, commonly) into
the reals. A discrete-time random process has the time set comprising, usually,
nonnegative integers or all integers. One has a mapping from w € Q to a set
of values x, (k) fork=0,1,2,...0ork=...-2,—1,0,1,2,....Ascalar
discrete-time random process is like an infinite-dimensional random vector.
Each {x,(k)} can be a sequence of vectors rather than scalars, yielding a vector
random process. Normally, the notation {x,} will denote the process in gen-
eral, or a sample function, that is, a particular sequence of values taken as a
result of an experiment. Also, x; will denote the random variable obtained by
looking at the process at time k, as well as the value taken by that variable.
Though this is a somewhat unfortunate convention, it is standard. )
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2. Continuous-time Random Procass

The underlying time set is the interval [0, o) or (—o0, o0); x(-) denotes
the process, or a particular sample function, and x(¢) denotes the random vari-
able obtained by looking at the process at time ¢, or the value of that variable.
By examining the values of a continuous-time random process at certain in-
stants of time, e.g., ¢ = 1, 2, 3, . . ., one obtains a discrete-time process.

3. Probabilistic Description

Let m be arbitrary and &y, k,, . . ., k,, be arbitrary times in the underlying
time set. Then the set of all probability densities Py xxKieys Xiegs o+« 5 Xi)
(or the corresponding distribution functions) serves to define the probability
structure of the random process. From these densities, one can obtain condi-
tional densities in the usual way.

4. Mean, Autocorrelation. and Covariance of a Process

The mean m, of a process is the time function E[x,]. The autocorrelation
is the set of quantities E[x; x},]. The covariance is the set of quantities
E{[xy, — m )ix;, — m, )’} for all k, and k,. When k, = k,, the covariance is
nonnegative definite symmetric.

'8, First Order and Second Order Densities of a Process

The first order densities of a process are the set of densities py,(x,) for all
k, and the second order densities the set Pxy.x(Xx, Xi,) for all k, and k,.
The mean and covariance can be obtained entirely from the first and second
order densities.

6. Uncorrelated, Orthogonal,
and Independent Increment Processes

A process has uncorrelated, orthogonal, or independent increments if
Xy, — X,., is a sequence of uncorrelated, orthogonal, or independent random
variables, with [k, k,.,] a set of nonoverlapping but possibly touching inter-
vals in the time set.

‘7. Uncorrelated, Orthogonal,
and Independent Pairs of Processes

{x:} and {y,} are (2) uncorrelated, (b) orthogona],‘or (c) independent
processes according as (a) E[x,,vi,) = E[x; ]E[y;,] for all k, and k,, (b)
-E[xy,y%,) = 0 for all k, and k,, and (c) for any sets {k,} and {/}, the vector
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random variable [x}, ... x},]’ is independent of the vector random variable
.. pul.

8. Markov Processas

Loosely, a process is Markov if, given that the present is known, the past
has no influence on the future, ie., if k, > k, > .-+ > k,, then
Px,nlx,,. ..... Xk‘(xkl | xkn vy xku) == Px,,llxh(xh | xk:)
A Markov process is sometimes termed first order Markov. A second order
Markov process is one in which, roughly, the most recent two pieces of infor-
mation are all that affect the future; i.e., if k, > k, > --- > k,, then
_ thlx,,,,....x,,_(xk. [ Xk oo vy Xie) = Px,,‘lx,‘.,x,,'(xh | Xes Xi,)
Third and higher order Markov processes can be defined similarly.

9. Martingale Processes

A process is a martingale if, roughly, it is as likely to go up as go down at
each time instant; i.e., assuming {X,} is defined for k > 0,
E[Xk+1 lXo, X0, Xk] = Xi
If X, represents the stake at time k held by one of two gamblers, a game be-
tween the two gamblers is fair if and only if the martingale property holds. If
E[Xk+l|X09 le seey Xk] S Xk (2 Xk)

one has a supermartingale (a submartingale). Martingales are one of the sim-
plest kinds of stochastic processes for which a number of convergence results
are available. The above definitions are sometimes generalized to replace the
conditioning variables X,, . .., X, by a sigma field ¥, related to X,, ..., Xi,
with ¥, < F.,,.

10. Stationary Processes

A process {x,} is strict-sense stationary, or simply stationary, if its asso-
ciated probability densities are unaffected by time translation; i.e., for arbi-
trary integer m and times k,,..., k, and N,

Px,n...x,‘_(xkn Xiws o v o0 Xp) = Px,,l+N~--x,,_+N(xk,+N, voe s Xkutn)
It is asymptotically stationary if
Ilvi_glnpx,‘ﬁﬂ-nx,,_,,”(kam ‘e Xputn)
exists. Processes {x,} and {y,]} are jointly stationary if {{x}y:]'}is stationary.
If {x,} is stationary, then E[x,] = m, independent of k, and
R(ky, k3) = E{[xx, — m][xs, — m]'} = Rk, — k,)
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11. Widae-sense Stationary

A process is wide-sense stationary if its first and second order densities
are invariant under time translation. Then its mean is constant, and its
covariance R(k,, k,) is of the form R(k, — k,). Stationary processes are wide-
sense stationary. Both the covariance and autocorrelation C(k,, k,) =
C(k, — k,) are even in the scalar case; i.e. R(—k) = R(k), C(—k) = C(k),
and C(0) > | C(k)| for all k. In the vector process case,

R(—k) = R'(k), C'(—k) = C(k)

12. Ergodic Processes

Certain stationary processes are ergodic. The basic idea behind ergodicity
is that time averages can be replaced by an expectation, or averages over the
set of experiment outcomes. There are two approaches. One says that a
process {x,} is ergodic (without qualification) if for any suitable function
f(+), the following limit exists almost surely:

EUf (@bl = lim 5 3£ (x)

1If {x,} is gaussian with covariance sequence R,, the following condition is
sufficient for ergodicity:

400

k_Z_)wleI<°°

Alternatively, one seeks for a given f(.) conditions for the limit to exist as
a mean square limit. A sufficient condition is then that

S IRf| < o0

where R” denotes the covariance of f(x). Taking

Sdx) =x, and fl{x]] = xexias
leads to the concepts of ergodicity in the mean and in the covariance function;
these last two concepts have validity for processes which are wide-sense
stationary.

13. Power Spectrum
(Power Spectrum Density, Spectral Density)

If {x.} is a discrete-time random process that is wide-sense stationary,
the power spectrum is, assuming it exists for some z,

D(z) = ’;V‘: z7*R,



320 BRIEF REVIEW OF RESULTS OF PROBABILITY THEORY App. A

One has ®(z) nonnegative if a scalar, or nonnegative definite if a2 matrix, for
all z on |z| = 1. Also, ®(z) = ®'(z""). Finally,

Elxir] = o § 204

the integration being round the unit circle.

14. White Noise

White noise processes usually have zero mean, and when stationary, are
processes whose power spectrum is constant.
Constancy of the power spectrum is equivalent to

Efxyxj] = Coy,

for some constant matrix C. The discrete-time (Kronecker) delta function
OuisOfork#land 1 fork =1

15. Passage through a Linear System

If a random process of power spectrum @(z) passes through a time-
invariant, stable linear system of transfer function matrix W{(z), the power
spectrum of the output process is W(2)®(z)W'(z"1).

A.3 GAUSSIAN RANDOM VARIJBLES, VECTORS,
AND PROCESSES

1. Gaussian Random Variable

X is a gaussian or normal random variable if its probability density is of
the form
- (x— ﬂ)’:l
Px(x) - mexp[ 202
One can evaluate E[X] and E{(X — E[X])?} to be u and o2, respectively. In
this evaluation, one can make use of the integral o

(" etmads = /77 \

»‘1

The notation “ X is N(u, 6%)” is sometimes used to denote that X is gaussmn
with mean x4 and variance 2. The mode of p,(+), i.e., the value of x maximiz-
ing px(+), is u. So is the median [which is that value y for which Pr(x < x)
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2. Sum of Independent Gaussian Variables

If Xis N(uy, 0}) and Y is N(uy, 63), with X and Y independent, then
X+ Yis N(uy + py, 0% + o).

3. Characteristic Function
If X is N(u, 6%), then ¢.(s) = exp [jus — (a25%(2)], and conversely.

4. Gaussian Random Vector

Let X be a random n-vector. If X has a nonsingular covariance matrix,
we say that X is gaussian or normal if and only if its probability density is of
the form

px(x) = zz—;-);,;ﬁ;exp [—4(x — mYE-1(x — m)]

for some vector m and matrix . One can evaluate

ElX}=m E{X—m][X—m]}=2%
and also

$x(s) = exp [js'm — §s'Ls]

If the covariance of X is singular, then X with probability 1 lies in a proper
subspace of n-space; in fact, for any vector « in the null space of the covari-
ance matrix X, one has a'(X — m) = 0 for all X with probability 1. One
cannot define the gaussian property via the probability density, but one
can still define it via the characteristic function: X is gaussian if and only if
for some m and I, §x(s) = exp[js'm — }s'Zs]. As for scalar X, we write
“X is N(m, Z).” Again, m is the mode.

5. Joint Densities. Marginal Densities,
and Conditional Densities

To say that X, and X, are jointly gaussian random variables is the same
as saying that the random vector X = [X, X,]’is a gaussian random vector.
All marginal densities derived from a gaussian random vector are them-
selves gaussian; e.g., if X=[X, X, ... X.)J' is gaussian, then £ =

X, X; ... X.J is gaussian. All conditional densities formed by condition-

ing some entries of a gaussian random vector on other entries are gaussian.

X X=I[X, X,]J' is N(m,X), then X, conditioned on X, is gaussian with
mean m, — X,,Xzim, + Z,,%31x, and covariance X,, — Z,,Z;4X},. Here
the m, and Z,; are the obvious submatrices of m and X. Pseudo-inverses can
replace inverses if necessary.
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6. Linear Transformations

Let X be N(m,X) and let Y = Ax + b for a constant matrix 4 and
vector b. Then Y is N(Am + b, AZA’). This follows from

$v(s) = Efexp (js'Y)} = Efexp (js'Ax + js'b)}
= E{exp (js') exp (j(4s)'x)} = exp (js'b)px(4s)
= exp [js'Am 4 js'b — }s'AZA’s]
In particular, if X and Y are jointly gaussian, X 4+ Y is gaussian.

7. Uncorrelated Gaussian Variables

Suppose X and Y are uncorrelated and gaussian. Then they are indepen-
dent. This follows by showing that ¢ y(s,, 5;) = $x(5,)Py(s,).

8. Conditional Expectation

(This point is developed in the text.) Let X and Y be jointly gaussian.
Then E[X| Y], which is a function of Y, is of the form AY 4 b for a constant
matrix A and vector b, and is therefore gaussian. In fact, if [X": Y7} is
N(m, X) then E[X ]| Y] is given by

m,— X2, 2.'m + X 3'Y
and is N(m,, Z,,%,,'2} ). Pseudo-inverses can replace inverses if necessary.

9. Gaussian Random Process

A random process is a gaussian or normal random process if, for any
selection of points k,, . . . , k, in the time set, the random variables x,,, .. ., X,,
are jointly gaussian, i.e.,

Pxpp -3 X (K o oo X)) = any £|2|’ 7€xp [—Hx — m)Z7(x —m)]
where
x=[xg Xi ... %) mP=E[x]
and

20 = E{fxy, — mO][x,, — mV]

A complete probabilistic description of the process is provided by E[x,] and
cov [xg,, x;] for all k, and k,.

10. Linear Transformations

Suppose {x,} is a gaussian random process; define a process {y,} by
Vi = 2 a,;x,;, where {a,,} are constants. If {y,}is finite in a suitable sense,

it is gaussian.
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11. Wiener Processes

If {w,} is a white noise, discrete-time, gaussian process and w, is N[0, 1]
for each k, the process {x,} defined by x,, = x, + w,, k > 0, where x, is
Nim,, Z,], is a Wiener process.
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APPENDIX B

BRIEF REVIEW OF SOME RESULTS
OF MATRIX THEORY

The purpose of this appendix is to provide a brief statement of those
particular results of matrix theory used in this book. For more extenswe
treatments, standard textbooks (e.g., [1-4]) should be consulted.

1. Matrices and Vectors

An m X n matrix 4 consists of a collection of mn quantities*
aq, (i=142,....mj=12,...,n)
written in an array of m rows and n columns:

ayy Qi G

azy Gz; 0 Gy,
A=

Qm1 Oma ccr Ay

Sometimes, one simply writes
= (ay)
The quantity a,, is an entry (the ijth entry, in fact) of 4.

*The a;; will be assumed real in most of our discussions.
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An m-vector, or, more fully, a column m-vector, is a matrix with one
column and m rows; thus

Xy
X2

Xm

defines x as a column m-vector, whose ith entry is the quantity x,. A row
n-vector is a matrix with one row and » columns.

2. Addition, Subtraction, and Multiplication by a Scalar

Two matrices 4 and B with the same number of rows and also the same
number of columns may be added, subtracted, or individually multiplied by
a scalar. With k,, k, scalar, the matrix

C= klA + sz
is defined by
Cu = k‘au + kzbu

Thus, to add two matrices, one simply adds corresponding entries; to subtract
two matrices, one simply subtracts corresponding entries; etc. Of course,
- addition is commutative, i.e.,

A4+ B=B+ 4

3. Multiplication of Matrices

Consider two matrices 4 and B, with 4 an m X p matrix and B a
p X n matrix. Thus, the number of columns of 4 equals the number of rows
of B. The product AB is an m X n matrix defined by

C=AB

Coyy = ﬁl atkbkj

Notice that C has the same number of rows as 4 and the same number of
columns as B.

The product of three (or more) matrices can be defined by
D = ABC = (4AB)C = A(BC).

In other words, multiplication is associative. However, multiplication is not
commutative; i.e., it is not in general true that

AB = BA

with
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In fact, although AB can be formed, the product B4 may not be capable of
being formed.
For any integer p, the p X p matrix

10 - 0
01 0
I=
00 .- 1

possessing p rows and columns is termed the identity matrix of order p. It has
the property that, with 4 any m X p matrix,

AI= A
Likewise, the identity matrix of order m has the property that
IA=A4

Any matrix consisting entirely of entries that are zero is termed the zero
matrix. Its product with any matrix produces the zero matrix, whereas if it 1s
added to any matrix, it leaves that matrix unaltered.

Suppose A and B are both n X n matrices (4 and B are then termed
square matrices). Then AB is square. It can be proved then that

|AB|=|4||B|

where | 4| is the determinant of 4.

[The definition of the determinant of a square matrix is standard. One
way of recursively defining | 4| for 4 an n X n matrix is to expand 4 by 1tq
first row, thus |

Q1 Q3 Qa4 ~°° Q2
dy; - Gy
. A3y Q33 d3q *°° Ay,
|4 =a,,|- | a|”
anz al"l l
anl an3 an4 0 aml
Q31 G2 Qa4 ' Gy
Q31 Q33 QA3 " Gsy i
|
+ ag — ;
|
anl a,: an4 ot Qun

This expresses | 4| in terms of determinants of (n — 1) X (n — 1) matri
In turn, these determinants may be expressed using determinants of (n — 2,
X (n — 2) matrices, etc. For a scalar a4, |a| = a.]
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4. Direct Sum of Two Matrices

Let Abeann Xn matrix and B an m X m matrix. The direct sum of
4 and B, written A | B, is the (n + m) X (n + m) matrix

5

Suppose A is an m X n matrix. The transpose of A, written 4’, is an
n X m matrix defined by

5. Transposition

B=A
where
b[ ] = a I
Thus, if
1 3 2
A=
b1 s
then
1 2
A=(3 1
25
It is easy to establish the important result
(AB) = B'A’
which extends to
(ABCY = C'B'A’

and so on. Also, trivially, one has
(A+ B =4+ B

6. Singularity and Nonsingularity

Suppose 4 is an n X n matrix. Then A is said to be singular if| A | is zero.
Otherwise, A is termed nonsingular.

7. Rank of a Matrix

Let A be an m X n matrix. The rank of A is a positive integer g such that
some ¢ X g submatrix of 4, formed by deleting (m — ¢) rows and (n — q)
columns, is nonsingular, whereas no (g + 1) X (g - 1) submatrix is non-
singular. For example, consider ‘

2
A=l 3 0]
1 230
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The maximum size square submatrix that can be formed is 2 X 2. Therefore,
a priori, rank 4 < 2. Now the possible 2 x 2 submatrices are

R | P P 1]

These all have zero determinant. Therefore, rank 4 < 2. Of the 1 x 1
submatrices, two have zero determinant but six do not. Therefore, rank
A=1.

The rank of A is also the maximum number of linearly independent rows
of 4 and the maximum number of linearly independent columns of 4. In the
example, the second row equals the first row. Furthermore, the second, third,
and fourth columns are linear multiples of the first.

It can be shown that

rank (4B) < min [rank A4, rank B]

If rank A is equal to the number of columns or the number of rows of
A, A is often said to have full rank. If Aisn X n, the statement “rank 4 = n”
is equivalent to the statement “A is nonsingular.” If, for an arbitrary matrix
A, rank A = 0, then A is the zero matrix.

8. Range Space and Null Space of a Matrix

Let 4 be an m X n matrix. The range space of 4, written ®[A4]), is the set
of all vectors Ax, where x ranges over the set of all n-vectors. The range
space has dimension equal to the rank of A4; i.e., the maximal number of
linearly independent vectors in ®[A4] is rank A. The null space of A4, written
N A), is the set of vectors y for which Ay = 0.

An easily proved property is that ®[4'] and [A] are orthogonal; i.e.,
if y, = A’x for some x, and if y, is such that 4y, = 0, then y1y, = 0.

If A and B are two matrices with the same number of rows, then ®R[4] <
®[B] if and only if N[A4'] > N[B'].

9. Inverse of a Square Nonsingular Matrix

Let A be a square matrix. If, but only if, 4 is nonsingular, there exists a
unique matrix, call it B, termed the inverse of A, with the properties

BA=AB =1

The inverse of A is generally written 4-!. There are many computational -
procedures for passing from a prescribed A to its inverse A~!. A formula is,
in fact, available for the entries of B = A~!, obtainable as follows.

Define the cofactor of the ij entry of A as (—1)"*/ times the determinant
of the matrix obtained by deleting from A the ith row and jth column, i.e., *
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the row and column containing a,,. Then,

b, = L x cofactor of ay

|A]
It easily follows that

(A7) =)
If A, and A, are two n X n nonsingular matrices, it can be shown that
(4,4,)"" = A7'AT

10. The Pseudo-inverse of a Matrix

The pseudo-inverse A* of a square matrix A4 is a useful generalization of
the inverse of a matrix. There are actually a number of different pseudo-
inverses [3]; here, we shall describe the Moore-Penrose pseudo-inverse.
| The key is to make A*4 act as the identity matrix on as large a set of
~ vectors as is practicable.

DerFiNiTION. Let 4 be an n X n matrix. Its pseudo-inverse A* is uniquely
defined by the following equations:
A¥Ax = x Vx € R[A"] = A}
A*x =0 Vx € RIAF = JYA']
Observe that A¥A4 is the identity on ®[4'] = N[4]*.

PROPERTIES |
. R[A*] = R{A'], N[A4*] = MA'].
(A*)* = A.
A*AA* = A*,
AA*A = A.
. A*A is the orthogonal projection onto ®(A4’).
. AA#* is the orthogonal projection onto R(4).
. (A*)Y = (4)*.
. Let y be an arbitrary n-vector. Then
f4x, — yl| < || 4x — yli

for all x, with x, = 4¥)y.

COMPUTATION
1. For A = diag (a,, ..., a,),
A* = diag (&), ..., &,)

where o, = a7t ifa, % 0,2, = 0if ¢, = 0.
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2. For A symmetric, write 4 = T'AT, where A is diagonal and T is
nonsingular; then
A¥ = T—IA#(T’)—I
3. For arbitrary A4,
A* =|(A'A)*A’

11. Powers of a Square Matrix

For positive m, A™ for a square matrix 4 is defined as A4 ... 4, there
being m terms in the product. For negative m, let m = —n, where n is
positive; then A™ = (471)", It follows that 4A?A? = A**? for any integers p
and g, positive or negative, and likewise that (47)? = A

A polynomial in 4 is a matrix p(4) = ;'; a,A', where a, are scalars. Any

two polynomials in the same matrix commute, i.e., p(4)g(4) = q(4)p(4),
where p and g are polynomials. It follows that p(4)g~1(4) = ¢~ '(4)p(A), and
such rational functions of A also commute.

12. Exponential of a Square Matrix
Let 4 be a square matrix. Then it can be shown that the series
I+ 4 + A2 + 5 A3 + -

converges, in the sense that the ij entry of the partial sums of the series
converges for all 7 and j. The sum is defined as e“. It follows that

e =1+ At + g A% + -
Other properties are: p(4)e* = e*p(A) for any polynomial 4, and e # =
[e“]™".
13. Differentiation and Integration

Suppose A is a function of a scalar variable 7, in the sense that each
entry of A4 is a function of ¢. Then

dA da,,
@ = ( dt )
It follows that
(AB) = B +498 “B

Also, from the definition of et one has for Umc-xnvariant A

d 1y — ¢ I
L(e*) = de* = e*d
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The integral of a matrix is defined in a straightforward way as

[ad=(]a, dt)

Suppose ¢ is a scalar function of a vector x. Then

d¢ . o g_@
=2 vector whose ith entry is =

4

Suppose ¢ is a scalar function of a matrix 4. Then

d$ _ , y . 5%
Ti=2 matrix whose ij entry is 2,

Suppose z is a vector function of a vector x. Then

dz _ . " . 0z,
=2 matrix whose ij entry is x,

14. Eigenvalues and Eigenvectors of a Square Matrix

Let A be an n X n matrix. Construct the polynomial | s/ — A4|[. This is
termed the characteristic polynomial of A; the zeros of this polynomial are
the eigenvalues of A. If A, is an eigenvalue of A4, there always exXists at least
one vector x satisfying the equation

Ax = Ax

The vector x is termed an eigenvector of the matrix 4. If 4, is not a repeated
eigenvalue—i.e., if it is a simple zero of the characteristic polynomial—to
within a scalar multiple x is unique. If not, there may be more than one
eigenvector associated with 4,. If 4, is real, the entries of x are real, whereas
if 4, is complex, the entries of x are complex.

If A has zero entries everywhere off the main diagonal, i.e., if ¢, = 0
for all i, j, with i 5 j, then A is termed diagonal. (Note: Zero entries are still
permitted on the main diagonal.) It follows trivially from the definition of an
eigenvalue that the diagonal entries of the diagonal A are precisely the
eigenvalues of 4.

It is also true that for a general 4,

l41=11 4

If 4 is singular, 4 possesses at least one zero eigenvalue.

The eigenvalues of a rational function r(4) of A are the numbers r(4,),
where A, are the eigenvalues of A. The eigenvalues of e are &+

If 4isn X m and Bis m X n, with n = m, then the eigenvalues of 4B
are the same as those of BA together with (n — m) zero eigenvalues.
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15. Trace of a Square Matrix A
Let 4 be n X n. Then the trace of A, written tr [4], is defined as

tr[4] = 121 ay
An important property is that
trjd] =3 4,
=]
where the 4, are eigenvalues of 4. Other properties are
tr[4 + B] =tr[B + A] = tr [4] + tu[B]

' and, assuming the multiplications can be performed to yield square product
matrices,
: tr [AB] == tr [B'A’} = tr [BA] = tr [A'B’]

(A =33 a

=] j=1

16. Companion Matrix

A matrix A4 of the form

0 1 0 0 7]
0 0 1 0
0 0 0 .- 1
=8y —Gpy —Gpp - —a,_]

is termed a companion matrix. One has

Is] —Al=s"4a;s* '+ ..- +q,

17. Orthogonal, Symmetric, and Skew-Symmetric
Matrices and Their Eigenvalue Properties

If a square matrix A is such that A4’ = I, and thus A’A = I, A is termed
orthogonal. The eigenvalues of A then have a magnitude of unity. If 4 = A4, -
A is termed symmetric and the eigenvalues of A4 are all real. Moreover, if x,
is an eigenvector associated with 4,, x, with 4,, and if 4, % 4,, then x;x, = 0.
The vectors x, and x, are termed orthogonal. (Note: Distinguish between an
orthogonal matrix and an orthogonal pair of vectors.) If 4 = —4’, 4 is
termed skew, or skew symmetric, and the eigenvalues of 4 are pure imaginary.
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18. The Cayley-Hamilton Theorem

Let 4 be a square matrix, and let
IsI—Al=s"+ a5+ -+ +a,
Then
A" +oa 4+ oo al=0
The Cayley-Hamilton theorem is often stated, rather ambiguously, as “the
matrix A4 satisfies its characteristic equation.”

From the Cayley-Hamilton theorem, it follows that A™ for any m > n
and e are expressible as a linear combination of 1, 4, . .., A" 1.

19. Minimum Polynomial

For square A, the minimum polynomial is the unique monic polynomial
m(.) of least degree such that m(4) = 0. If p(.) is any polynomial for which
p(A) = 0, then m(-) divides p(-); in particular, m(-) divides the characteristic
polynomial.

20. Similar Matrices and Diagonalizability

Let A and B be n X n matrices. If there exists a nonsingular n X n
matrix 7 such that B = T !'AT, the matrices 4 and B are termed similar.
Similarity is an equivalence relation. Thus:

1. A is similar to A.
2. If A is similar to B, then B is similar to 4.
3. If A is similar to B and B is similar to C, then 4 is similar to C.

Similar matrices have the same eigenvalues. This may be verified by

observing that
SI—B=T"'5IT — T *AT = T"'(sI — A)T
Therefore,
{sI — B|=|T'|sl — A|T|=|s] — A|T'|T|

But T7'T = I so that | T-'||T] = 1. The result is then immediate.

If, for a given A4, a matrix 7 can be formed such that

A=TAT

is diagonal, then A is termed diagonalizable, the diagonal entries of A are
eigenvalues of 4, and the columns of T turn out to be eigenvector of 4. Both
A and T may be complex.

Not all square matrices are diagonalizable. If a matrix has no repeated
eigenvalues, it is diagonalizable; it may or may not be diagonalizable if it has
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repeated eigenvalues. If it is orthogonal, symmetric, or skew, it is diagonaliz-
able. It is diagonalizable if and only if its minimal polynomial has no repeated
roots.

21. Jordan Form

Though not all square matrices are diagonalizable, it is always possible
to get very close to a diagonal matrix via a similarity transformation. In fact,
there always exists a matrix T such that

2, 1 .
A
4,
2, 1

Ay
g7 —
T-'AT a1

or something similar. Here, all blank entries are zero, the eigenvalues of A
occur on the main diagonal, and there may or may not be entries of 1 above
and to the right of repeated eigenvalues, i.e., on the superdiagonal. For any
A, the distribution of 1’s and 0’s on the superdiagonal is fixed, but different 4
matrices yield different distributions. The preceding almost-diagonal matrix is
called the Jordan canonical form of A. The Jordan blocks of A are the matrices

Ay 10
A 1 1
[01 ) }9 [11]1 [32 2 ], 0 13 1 , etc.
' 1o o 4

In general, T and the A, are complex. By allowing diagonal blocks

el
B«
to replace diagonal elements & -+ jB, one obtains a “real Jordan form” for

a real A with T real. If 4 is skew, symmetric, or orthogonal, 7 may be chosen
orthogonal.

22. Positive and Nonnegative Definite Matrices

Suppose A4 is n X n and symmetrfc. Then A is termed positive definite,
if for all nonzero vectors x the scalar quantity x’Ax is positive. Also, 4 is
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termed nonnegative definite if x' Ax is simply nonnegative for all nonzero x.
Negative definite and nonpositive definite are defined similarly. The quantity
x'Ax is termed a quadratic form, because when written as
XAx = 3 a,xx,
ni=1

it is quadratic in the entries x; of x.

There are simple tests for positive and nonnegative definiteness. For 4
to be positive definite, all leading principal minors must be positive, i.e.,
@y G2 Gy
411 Gy
12 432

a,>0 >0 {a,, a;; a,;|>0,etc.

Qy3 G433 Gy
For A to be nonnegative definite, all minors whose diagonal entries are
diagonal entries of 4 must be nonnegative. That is, for a 3 X 3 matrix 4,

@y Ay |Gy Gy3) |Gy a3

Q3 Qi

’ ’ 20

841,823,833, >0

a,; Q3| |G13 4y

@y, 412 4y
a;; a3 ay|=>0
a3 Q33 Q3

A symmetric 4 is positive definite if and only if its eigenvalues are positive,
and it is nonnegative definite if and only if its eigenvalues are nonnegative.

If D is an n X m matrix, then 4 = DD’ is nonnegative definite; it is
positive definite if and only if D has rank n. An easy way to see this is to
define a vector y by y = D’x. Then x'Ax = xDD’'x = y'y = Ly} > 0. The
inequality becomes an equality if and only if y = 0 or D’x = 0, which is
impossible for nonzero x if D has rank n. One terms D a square root of 4.

If D is a square root with number of columns equal to rank A4, all other
square roots are defined by DT, where T is any matrix for which 77’ = I,

If A is nonnegative definite, there exists a matrix B that is a symmetric
square root of A; it is also nonnegative definite. It has the property that

B3=4
If A is nonsingular, so is B,

If A and B are nonnegative definite, so is 4 + B; and if one is positive
definite, so is A + B. If A is nonnegative definite and n X n,and Bism X n,
then BAB’ is nonnegative definite.

If A is a symmetric matrix and A,,, is the maximum eigenvalue of 4,
then A.,./ — A is nonnegative definite.

23. Norms of Vectors and Matrices

The norm of a vector x, written || x|, is 2 measure of the size or length of
x. There is no unique definition, but the following postulates must be satisfied.
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1. || x]| = O for all x, with equality if and only if x = 0.
2. ||ax|| = |a]|| x| for any scalar and for all x.
3. llx+ ¥l <llx|l + iyl for all x and y.

Ifx = (x,, x,, ..., x,), three common norms are

n 1/2 n
el =[5 %" lxll = max|x| and |lx]l= 3 1x]

The Schwartz inequality states that | x'y | < || x|| ||y || for arbitrary x and
y, with equality if and only if x = Ay for some scalar A.

The norm of an m X n matrix A is defined in terms of an associated
vector norm by

Il 4]| = max || Ax||
Ix1=1

The particular vector norm used must be settled to fix the matrix norm.
Corresponding to the three vector norms listed, the matrix norms become,
respectively

[lmax(AlA)]”z’ max (i l alj I)’ and max (2": I alj ')
t j=1 1 i=1
Important properties of matrix norms are

HAx|| <|[4llllxll 1|4+ BlI<||4]l + Bl
and
|AB|| < | Al[1I B]]

24. Linear Matrix Equations

Let 4, B, C be prescribed m X m, n X n, and m X n matrices. One can

form the following equation for an unknown m X n matrix X:
X —AXB=C

The equation has a unique solution if and only if 1,(4)A(B) = 1 for any
cigenvalues of 4, B. In this case, the solution may be found by rearranging
the equation as Dx = e, where D is a square matrix formed from 4 and B,
and x and e are vectors with entries consisting of the entries of X and C,
respectively.

If B= A’ and |1,(4)| < 1 for all i, the equation always has a solution
which is symmetric if and only if C is symmetric. The linear equation

AX+ XB+C=0
is also sometimes encountered and has a unique solution if and only if
AA)+A4,(B) =0

for any i and j. In case B = A4’ and Re 4,(4) < 0, X always exists; also if
C=C',then X=X, andif C=C’' >0, then X = X' > 0.
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25. Unitary and Hermitian Matrices

To this point, almost all results have been for real matrices, though many
ideas apply to matrices with complex entries with little or no change. For
example, a complex matrix 4 is unitary if A4"™* = 4'*4 = I, hermitian if
A = A'*, and skew hermitian if 4 = —A’*. Matrices with any of these
properties may be diagonalized with a unitary matrix. Hermitian matrices
have all eigenvalues real.

26. Common Differential Equations Involving Matrices

The equation
4 x) = ADx()  x(t) = xy

commonly occurs in system theory. Here, 4 is n X n and x is an n-vector, If
A is constant, the solution is
' x(f) = exp [A(t — 15)}x,

If 4 is not constant, the solution is expressible in terms of the solution of

dax(t)
Tdr

where now X is an n X n matrix. The solution of this equation cannot
normally be computed analytically, but is denoted by the transition matrix
(1, t,), which has the properties

‘D(to, to) =1 (D(tzv tx)(p(tn ’o) = (D(t,_, to)

= ANOX®) X)) =1

and
O, 1 )D(to, ) = I
The vector differential equation has solution
x() = ©(t, 15)x,
The solution of

B0 — Ax0) + BOUO  x(t) = x,

where u(¢) is a forcing term, is
X(0) = 0, t)xs + | O, VB@U() de
The matrix differential equation

s%’ = AX + XB+C(t)  X(t;) = X,

also occurs commonly. With 4 and B constant, the solution of this equation
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may be written as
X(1) = exp [A(t — 1,)]X, exp [B(t — 1,)]

+ J: exp [A(t — 7)]C(z) exp [B(t — 7)) d*

A similar result holds when 4 and B are not constant.

27. Several Manipulative Devices
Let f(A) be a function of 4 such that
f4) = f} a A (a, is constant)
=0

{In other words, f(z), where z is a scalar, is analytic.] Then,
T-f(A)T = f(T'4T)
This identity suggests one technique for computing f(4), if 4 is diagonaliza-
ble. Choose T so that T-! AT is diagonal. Then f(T ! AT)isreadily computed,
and f(A4) is given by Tf(T'AT)T-'. It also follows from this identity that
the eigenvalues of f(A4) are f(4,), where 4, are eigenvalues of 4 ; the eigenvec-
tors of A and f(A) are the same.
For n-vectors x and y and A any n X n matrix, the following trivial
identity is often useful:
X'Ay =y'A'x
If Aisn X m, Bis m X n, I, denotes the m X m unit matrix, and I,
the n X n unit matrix, then
|1, + AB| = |1, + BA|
If A is a column vector a and B a row vector &', then this implies
[I4+ab'|=1+ ba
Next, if A is nonsingular and a matrix function of time, then

d 4 4144
g4l =—4" 70 4

(This follows by differentiating 44" = 1.)
If Fisn X n, G and X are n X r, the following identity holds:
[+ K'(zI — F)''G]"* =I— K'(zI — F + GK')"'G
Finally, if P is an n X n symmetric matrix, we note the value of
grad (x'Px), often written just (8/dx)(x'Px), where the use of the partial

derivative occurs since P may depend on another variable, such as time.
As may be easily checked by writing each side in full,

ad; (x'Px) = 2Px
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APPENDIX C

BRIEF REVIEW OF SEVERAL
MAJOR RESULTS OF LINEAR
SYSTEM THEORY

This appendix provides a summary of several facts of linear system
theory. A basic familiarity is, however, assumed. Source material may be
found in, e.g., {1-3].

1. z-transforms
Given a sequence {g,}, define the z-transform G(z) as

G2) = 3. g™

Frequently, the lower limit of the summation is taken to be n = 0.

2. Convolution and z-transforms

Let {g,} be an impulse response, {u,} an input sequence, and {y,} an output
sequence. Then

oo

V= Z:J Eilhn-x

Y(z) = G@)U(z)
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3. Passage from State-space Equations to Impulse
Rasponse and Transfer Function Matrix

Suppose that -
Xpe1 = Fx, + Gu,
Vi = H'x, + Ju,
The associated impulse response is the sequence {g,} defined by g, = 0 for

k<0, go=J, go = H'F*~'G for k > 1. The transfer function matrix is
J+ H'(zI — F)~'G.

(C.D

4. Stability

With 4, = 0 in (C.1), the system is asymptotically stable if [ A(F)| < 1.
Then bounded input sequences produce bounded output sequences. If | 4,(F)|
< 1, then || F¥|| — 0 as k — oo,

5. Complete Reachability

The pair [F, G] is completely reachable with F an n X n matrix and G
an n X r matrix if any of the following equivalent conditions hold.

. Rank [G FG...F"'G]=n.

.WFG=0fori=0,1,...,n— 1impliesw = 0.

. w'G =0 and w'F = Aw' for some constant 4 implies w = 0.

. There exists an n X r matrix K such that the eigenvalues of F + GK’
can take on arbitrary values.

5. Given x, = 0 in (C.1), there exists {u,} fork € [0, n — 1] such that x,

takes an arbitrary value.

N -

If the pair [F, G] is not completely reachable, there exists a nonsingular

T such that
F 11 F 12 Gl}
TFT ! = TG =
[0 F,, 0
with [F,,, G,] completely reachable.

6. Complete Controllability

The pair [F, G] is completely controllable if any of the following equiva-
lent conditions hold:

1. Range [G FG ... F*'G] o range F"
2. wF'G=0fori=0,1,...n— 1 implies wF" = 0,
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3. w'G=0and wF = Aw implies A =0 or w = 0.
4. Given arbitrary x, in (C.1), there exists {u,} for k € [0, n — 1] such
that x, = 0.

7. Complete Stabilizability

The pair [F, G] is completely stabilizable if any of the following equiva-
lent conditions holds:

1. w'G =0 and w'F = Aw’ for some constant A implies |[1| <1 or w
=0.
2. There exists an n X r matrix K such that |A(F + GK’)| < 1 for all i.

3.If
Fy, szjl [G:}
TFT ' = s G =
[0 F,, 0

with [F,,, G,] completely controllable, then | 1,(F,,)| < 1.

8. Complete Observability, Constructibility,
and Detectability

One says that the pair [F, H) is completely observable, constructible, or
detectable according as [F’, H] is completely reachable, controllable, or
stabilizable, respectively. If (C.1) is completely observable [or completely
constructible], knowledge of {u,} and {y,} for k¥ € [0, n — 1] suffices to
determine x, [or x,].

8. Minimality

If a transfer function matrix W/(z) is related to a matrix triple F, G, H
by
W(z) = H'(zI — F)"'G
then Fhas minimal dimension if and only if [F, G] is completely reachable and
[F, H] is completely observable. The triple F, G, H is termed a minimal

realization of W(z). Given two minimal realizations of W(s)—call them F;,,
G,, H, and F,, G,, H,—there always exists a nonsingular T such that

TF,T'=F, TG, =G, (T"V%H, =H,
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10. Passage from Transfer Function
to State-Space Equations

The determination of state-space equations corresponding to a scalar
transfer function is straightforward. Given

b bt g e b,
W) = e T,

one may take

0 1 0 0
0 0 1 0
F=| : ,
1
—a, —Q,_, —a4,, ‘- —a&
0 b,
0 bn-—l
g= , h=|" , j=0 (C.2)
1 b,
or
0 0 —a, ]
a, bn 0
1 0. —a,_
b,_, 0
0 1. —a,_,
F: y g: N h= 5 ]—_—0
- . . - b 1
0 0---1 —a, | !

The first realization is always completely reachable, the second always
completely observable.
In case lim W(z) # 0, one takes W(oo) = j, and F, g, h as a realization

z—00

of W(z) — j.

11. Passage from Rational Transfer Function Matrix
to State-space Equations

A number of techniques are available (see the references). We describe a
technique in [4]. Suppose W(oo) = 0 [otherwise consider W(z) — W(c0)]. Write

_ 1(2) 2( ) q( )
Wo =25 G w,,é)]
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Here, with W(z) a p X ¢ matrix, w/(z) is a p-vector and d,(z) is the greatest
common denominator of entries of the ith column of W(z). Take as a pre-
liminary realization

F, 0 .. 0
0 £ - 0
F= . . . <
0 0 . £,

g 0 ... 0

0 g -+ 0

G=|" - L A=A, B, --- R)
00 -.- g

with £, the companion matrix associated with d,(z) [as F in (C.2) is associated
with z* 4 g,2""! + ... + g,], with § = g of (C.2), and with the rth row of
A, comprising the numerator coefficients of the rth entry of w(z)/d,(z). The
realization {£, G, H} is completely reachable. Then one eliminates the
unobservable states. This involves ﬁnding a nonsingular T such that

F, O ~ [G
TFT“=l: 1 ] TG=[ ‘}
FZI Fzz Gz

A'T =[H, 0]
with [F,,, H,] completely observable. The triple {F,,, G,, H,} is minimal.

12. Passage from Markov Parameters
to State-space Equations

Suppose the rational p X m matrix W(z) has W(oc) = 0 and is expanded
as
A4 4 4
W@ =24 2214y

when the 4, (termed Markov parameters) are known; then state-space equa-
tions for W(z) can be determined from the A4, using an algorithm due to Ho
and Kalman [5]. The 4, are arranged to form Hankel matrices Hy as follows:
A, A, -+ Ay

Az Aa e AN+1
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The next step requires the checking of the ranks of H, for different N to
determine the first integer r such that rank
'H, =rank H,,, =rank H,,, = ---

If W(z) is rational, there always exists such an r. Then nonsingular matrices
P and Q are found so that
I, 0
PH,Q = [ }

0 0

where # = rank H,. The following matrices “realize” W(z), in the sense that
W)= H'(zI — F)"'\G:

G = n X m top left corner of PH,
H’ = p x n top left corner of H,Q
F = n X n top left corner of P(cH,)Q

where
A, 45 - A,
A; A4 vt Ar+2
aH' — . . .
Ar+l Ar+2 o A2r

Moreover, [F, G] is completely reachable and [F, H] is completely observable.

13. Sampling of a Continuous-time Linear State Equation

Suppose that X = Fx -+ Guis a continuous-time, state-variable equation.
Then

——— —— k T PE—
*EFIT) = OEFFITAD>T) + [ OF T 1T, )G(0u(x) dr
or
Xevy = FiXxp -+ wy
with obvious definitions. If «(-) is vector white noise process in continuous

time, and E[u()u'(s)] = Q()d(tr — s) with §(-) the Dirac delta function, then

Elwiw)] = 6, j:m OF F 1T, )6@)Q()G ()" (& T 1T, 7) de

The relation between Efw,] and E[u(?)] is easy to obtain.
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14. Sampling of a Continuous-time Output Process

Suppose that z(f) = H’'x(f) + v(¢). A sampling process is usually defined
by

1 kT+4
Z, = KJ;T z(t) dt
The result is
z, = Hix, + v,
where

1 kT+A
Hy=— H'(t) dt
A kT

=t f e [H'(’) L O, T)GEu() dr + v(t)] dt

kT
If u(-) and v(-) are white noise processes, so is {v,}. The mean of v, is easily
obtained. If u(-) and »(.) are independent, then one finds as A — 0 that
{w.} and {v,} also approach independence, while

1 kT+A
Elvvi] — 15 R(z) de

=),
The fact that this quantity is infinite when A — 0 is the reason that instan-
taneous sampling of z(¢) is not postulated.

One takes E[x(r)|zy, z;,...,2,] to be £ for t =kT and to be

O(t, kT)% s for, kT < t < k + 1T, with the latter formula involving neglect
of the correlation between w, and v,.
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APPENDIX D

LYAPUNOV STABILITY

1. Stability Definitions

Lyapunov theory is a technique for studying the stability of free or
unforced equations. As references, we quote [1~3]. Consider

Xear = f(X, k) (D.1)
in which it is assumed that f(0) = 0, so that x, = 0 is an equilibrium state.

DermaTioN: The equilibrium state x, is called stable if for arbitrary &,
and € > 0, there exists a (€, k) such that {|x,, — x,|| < & implies
| x — x,|| < € forall k > k,.

(Provided the initial state deviation is kept small enough, the trajectory
deviation can be kept arbitrarily small.)

DerFintTioN: The equilibrium state x, is called asymptotically stable if it
is stable and if the following convergence condition holds: For arbitrary
ko, there exists a d,(k,) such that || x,, — x,|| < &, implies }‘im 1%, —

xc” = 0‘

DerINITION: The equilibrium state is called bounded or Lagrange stable
if there exists a §,(xy,, ko) such that || x, I} << §.(x. LV Fawonrtr-~ -
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An important specialization of the above definitions is when they hold
uniformly. This occurs when d, J,, and &, can be chosen independently
of k,. If (D.1) is specialized to the autonomous (undriven, time-invariant)
system

Xer1 = () (D.2)
the uniformity property naturally holds.

Global asymptotic stability arises when 8, can be taken arbitrarily large.
Uniform global asymptotic stability arises when there is uniform stability and
uniform boundedness, and when &, can be taken independent of k, and arbi-
trarily large.

Exponential asymptotic stability is a special case of uniform global
asymptotic stability, arising when

Fxe — x| < afxa,)p* "
for some ¢ > 0and p € (0, 1).

2. Lyapunov Theorems for Autonomous Systems

Let V(x) be a real scalar function of the n-vector x and § be a closed
bounded region in R” containing the origin.

DEFINITION: V(x) is positive definite (semidefinite) in §, written ¥ > 0
V=0if V(0) =0, V(x) > 0(V(x) = 0)forallx = 0in §.

Along motions or trajectories of (D.2), one can compute the change of
V. Thus
AV[x] = V(xysr) — Vixe)

= V[f(x)] — V(x) ‘ (D.3)

THEOREM 2.1 (Stability). If there exists in some $ containing the origin
a ¥V > 0 with AV < 0 along motions of (D.2), then x, = 0 s stable.

THEOREM 2.2 (Asymptotic Stability). If there exists in some § containing
the origin a ¥ > 0 with AV < 0, then x, = 0 is asymptotically stable.

THEOREM 2.3 (Asymptotic Stability). If there exists in some § containing
the origin a ¥ > 0 with AV < 0 and if AV is not identically zero along
any trajectory in § except the zero trajectory, then x, = 0 is asymp-
totically stable.

THEOREM 2.4 (Global AsymptoticFStability). If in Theorems 2.2 or 2.3
one has § = R" and if ¥(x) — oo as|jx|| — oo, then x, = 0 is globally
asymptotically stable.
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Because autonomous -systems are being considered, all these results
hold uniformly,

A function V(x) which allows proof of a stability result via one of these
theorems is termed a Lyapunov function.

3. Lyapunov Theory for Time-varying Systems

The definitions and theorems need to be modified slightly. We consider
real scalar functions W(x, k) of the n-vector x and time argument k defined
for x in a closed bounded region § containing the origin.

DEFINITION: W(x, k) is positive definite in §, written W > 0, if W(0)
= 0, and W(x, k) > V(x) for some positive definite ¥(.) and all xin §;
it is nonnegative definite in §, written W > 0, if W(0) = 0 and W{(x, k)
> 0forall xin §.

One varies (D-3) to
AWlxi, k] = W(f(x:, k), k + 1] — Wx,, k]
and one defines W as decrescent if W(x, k) < V,(x) for some positive definite
V..

Theorem 2.1 holds with ¥ replaced by W and (D.2) by (D.1). If Wis
decrescent, stability is uniform. Theorem 2.2 with the same replacements and
a decrescent assumption implies uniform asymptotic stability. Theorem 2.3
cannot be generalized easily. Theorem 2.4 is generalized in the following way.
If forall x, W > 0, AW < 0, W is decrescent and W(x, k) — oo uniformly in
k as || x[| — oo, (D.1) is globally, uniformly, asymptotically stable.
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