Outline

@ Singleton and Takagi—Sugeno fuzzy system.
® Knowledge based fuzzy modeling.

©® Data-driven construction.

O Direct fuzzy control.

® Supervisory fuzzy control.



Singleton Fuzzy Model

If x is A; then y = b;

Inference/defuzzification:

_ Y pa(x)b

TSR ()

® well-understood approximation properties

® straightforward parameter estimation



Piece-wise Linear Approximation

y b y = f(x)




Linear Mapping with a Singleton Model

P
y:ka—i—q:ijxj-—i-q
=1

® Triangular partition:

® Consequent singletons are equal to:

P
b= kiaij+q
=1




Takagi—Sugeno (TS) Fuzzy Model

If x is A; then y; = ajx + b;

K K
> wa(x)yi > wa;(x)(aix + bi)
i=1 =1

y = —_— =

K K
Y nalx) S pax)




Input-Output Mapping of the TS Model

p Small Medium Large

Consequents are approximate local linear models of the system.



TS Model is a Quasi-Linear System

K
z“Ai(X)yi ZILA )(a] x + b;)

_ =1
y - K -

Z/J'Aj(x) Z/J'A_,-(x)




TS Model is a Quasi-Linear System

K
zNAf(X)Yi ZILA )(a] x + b;)
y = S0—— =

Z/J'Aj(x) Z/J'Aj(x)

K K
v = (S wmal ) xS vtote
i=1 i=1

a(x)T b(x)

linear in parameters a; and b;, pseudo-linear in x (LPV)



TS Model is a Polytopic System

Parameter space
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Parameters of a consequent
function: y = ax, + ax,




Construction of Fuzzy Models




Modeling Paradigms

¢ Mechanistic (white-box, physical)
¢ Qualitative (naive physics, knowledge-based)

e Data-driven (black-box, inductive)

Often combination of different approaches semi-mechanistic, gray-box
modeling.



Parameterization of nonlinear models

® polynomials, splines

® |look-up tables

e fuzzy systems

® neural networks

® (neuro-)fuzzy systems

e radial basis function networks

® wavelet networks



Modeling of Complex Systems

Data —» Model

- static
- dynamic



Modeling of Complex Systems

Data —» Model

- static

- dynamic T
Prior knowledge
- partial models
- stability

- gain, nonlinearity
- settling time



Modeling of Complex Systems

Data —>» Model —>» User
- static - accuracy
- dynamic T - interpretation
- mathematical form
Prior knowle dg e - reliability (extrapolation)
- partial models
- stability

- gain, nonlinearity
- settling time



Building Fuzzy Models

Knowledge-based approach:

e expert knowledge — rules & membership functions
¢ fuzzy model of human operator

¢ linguistic interpretation



Building Fuzzy Models

Knowledge-based approach:

e expert knowledge — rules & membership functions
¢ fuzzy model of human operator

¢ linguistic interpretation

Data-driven approach:

® nonlinear mapping, universal approximation

® extract rules & membership functions from data



Knowledge-Based Modeling

® Problems where little or no data are available.

® Similar to expert systems.

® Presence of both quantitative and qualitative variables or
parameters.

Typical applications: fuzzy control and decision support, but also
modeling of poorly understood processes



Wear Prediction for a Trencher

Trencher T-850 (Vermeer) Chain Detail

Goal: Given the terrain properties, predict bit wear and production rate
of trencher.



Why Knowledge-Based Modeling?

® |nteraction between tool and environment is complex, dynamic and
highly nonlinear, rigorous mathematical models are not available.

e Little data (15 data points) to develop statistical regression models.

* Input data are a mixture of numerical measurements (rock
strength, joint spacing, trench dimensions) and qualitative
information (joint orientation).

® Precise numerical output not needed, qualitative assessment is
sufficient.



Dimensionality Problem: Hierarchical Structure

Assume 5 membership functions for each input
625 rules in a flat rule base vs. 75 rules in a hierarchical one

x]
—_—
rule base
X, A
> Vi
rule base z
C

x, f
rule base
Xy B




Trencher: Fuzzy Rule Bases

Orientation R
Rock strength
Rule base 3 Feed Rule bas‘e 4 Production rate
(feed) (production) (linguistic output)
Rock dim. P
Defuzzification |—»
Joint set 1
. Block size Production rate
4>J0mt set2 ﬁ)lﬂ)ill:a:;el) e — (numerical output)
Joint set 3

If TRENCH-DIM is SMALL and STRENGTH is LOW Then FEED is VERY-HIGH;
If TRENCH-DIM is SMALL and STRENGTH is MEDIUM Then FEED is HIGH;

If JOINT-SP is EXTRA-LARGE and FEED is VERY-HIGH Then PROD is VERY-HIGH



Example of Membership Functions
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Output: Prediction of Production Rate

data no. measured value predicted linguistic value(s)

1 2.07 VERY-LOW 1.00
2 5.56 HIGH 1.00
3 23.60 VERY-HIGH 0.50
4 11.90 HIGH 0.40 VERY-HIGH 0.60
5 7.71 MEDIUM 1.00
6 7.17 LOW 0.72
7 8.05 MEDIUM 0.80
8 7.39 LOwW 1.00
9 4.58 LOW 0.50
10 8.74 MEDIUM 1.00
11 134.84 EXTREMELY-HIGH 1.00



Data-Driven Construction




Structure and Parameters

Structure:

® Input and output variables. For dynamic systems also the
representation of the dynamics.

® Number of membership functions per variable, type of membership
functions, number of rules.

Parameters:

¢ Consequent parameters (least squares).
® Antecedent membership functions (various methods).



Least-Squares Estimation of Singletons

R;: If xis A; then y = b;

® Given A; and a set of input—output data:

{(xi yk) | k=1,2,..., N}

® Estimate optimal consequent parameters b;.



Least-Squares Estimation of Singletons

® Compute the membership degrees w4, (xx)
® Normalize

K
Vi = A (X)) D>_ ma; (%)
=1

(Output: yx = YK ykibi, in a matrix form: y = Tb)

-1
© Least-squares estimate: b = [I’TI'] My



Least-Square Estimation of TS Consequents

x{ n 1 O 0
L

X. y2 0 2 0
g 7% 0 0 - 7w



Least-Square Estimation of TS Consequents

* Global LS: ' = [(X")7X'] " (X")Ty

with X' = [[1Xe ToXe ... TcX.]

and 0= [0 o] ... o]



Least-Square Estimation of TS Consequents

* Global LS: ' = [(X")7X'] " (X")Ty

with X' = [[1Xe ToXe ... TcXd]
T
and ' = 6] 0] ... o]

—1
o Local LS: 6, = [xeT r,-xe] XITy



Antecedent Membership Functions

templates (grid partitioning),

nonlinear optimization (neuro-fuzzy methods),

® tree-construction

product space fuzzy clustering



Fuzzy Clustering: Data
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Fuzzy Clustering: Prototypes
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Fuzzy Clustering: Distance

Cluster centers (means):

V=[]




Fuzzy Clustering: Distance

Cluster centers (means):

V=[]



Fuzzy Clustering: Partition Matrix

Cluster centers (means):

v=[v ]

Fuzzy partition matrix:
[T I ERETOR N

U=
Hap Hao e Hoy



Fuzzy Clustering: Shapes

Cluster centers (means):

v=[v ]

RN Fuzzy partition matrix:
My Mg e M

U=
Hap Hao e Hoy



Fuzzy Clustering Problem

Given the data:
zk = |21k, 2ok, - Zok]T €ER?, k=1,...,N

Find:
the fuzzy partition matrix:

K11 .. M1k .- HIN
U: . . .

Mc1 ... HMck .- HcN
and the cluster centers:

V=A{vi,v,...,v.}, vieR"
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Fuzzy Clustering: an Optimization Approach

Objective function (least-squares criterion):

c

N
HZ; VU A= > n{{}df\,,(zj, vi)

i=1j=1
subject to constraints:
0<ui; <1, i=1,...,¢c,j=1,...,N membership degree
N
O<Z/.L,-,J-< N, i=1,...,¢c no cluster empty
Jj=1
Cc
Z'“"'J: 1, j=1....N total membership
i=1



Fuzzy c-Means Algorithm

Repeat:

N m
Zk:l Hi k2K

® Compute cluster prototypes (means): v; =

Zszl B




Fuzzy c-Means Algorithm

Repeat:

N m
Zk:l Hi k2K

® Compute cluster prototypes (means): v; =

Zszl B

® Calculate distances: djx = (zx — v;)T (zx — vj)




Fuzzy c-Means Algorithm

Repeat:

ZL%1 B2k
2 s M

® Calculate distances: djx = (zx — v;)T (zx — vj)

® Compute cluster prototypes (means): v; =

© Update partition matrix: pjx = 5 (d-k/ldjk)l/(m—l)
j=11

until ||AU|| < e



Distance Measures

® Euclidean norm:
d*(z,vi) = (z — vi)T (z — )
® Inner-product norm:
di(z,vi) = (21— vi)  Ai(z — vi)

® Many other possibilities ...
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Fuzzy Clustering — Demo

@ Fuzzy c-means



Extraction of Rules by Fuzzy Clustering

ol .M.




Extraction of Rules by Fuzzy Clustering

y Cluster 4

101

[ Cluster 1




Extraction of Rules by Fuzzy Clustering

Takagi-Sugeno model

101

Cluster 4

projection

Rule-based description:

If xisA,theny =ax +b,
If xisA,theny =ax +b,

etc...




Extraction of Rules by Fuzzy Clustering

<
o > y Cluster 4
°
10f
© projection
| ¢—mm—
- 8
m ©
sl
< al
mN
N L
_ Cluster 1
o
P 2 4 6 8 X
=

Rule-based description:

Ifyis B,thenx=a,y +b 1-
Ity 19 B, then x = ay + b, Inverse Takagi-Sugeno model

etc...




Rule Extraction — Demo

e Extraction of Takagi—Sugeno rules



Fuzzy Control



Fuzzy Control: Background

controller designed by using If-Then rules instead of mathematical
formulas (knowledge-based control),

® early motivation: mimic experienced operators,

fuzzy reasoning: interpolation between discrete outputs,

® currently: also controllers designed on the basis of a fuzzy model
(model-based fuzzy control),

® a fuzzy controller represents a nonlinear mapping
(but completely deterministic!).
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Parameterization of Nonlinear Controllers

Controller Process

XX '
?PL Ps | z _/—:/——:\'
—_—
Ps| z |Ns | |
zNs | n ! !
Sigmoidal Fuzzy Systems Radial Basis Wavelets Splines

Neural Networks Functions
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Fuzzy System is a Nonlinear Mapping

IF x IS 7F AND z IS PS THEN y IS NL
Fuzzy, Systerp z IS PL THEN y ISNS




Basic Fuzzy Control Schemes

¢ Direct (low-level, Mamdani) fuzzy control
® Fuzzy supervisory (high-level, Takagi-Sugeno) control

® Fuzzy model-based control



Process Controlled by Operators

Goal (reference) Disturbances
Human u Pr Yy
operator 0cess




Knowledge Acquisition

Goal (reference) Disturbances
Human u Pr Y
operator 0cess

Knowledge
acquisition



Direct Fuzzy Control

Goal (reference) Disturbances
Fuzzy u y
7 \controller Process ]

\

Implementation




Example of Operator Knowledge

Case Condition Action to be taken Reason
11 BZ OK a. Decrease fuel rate slightly To raise percentage of oxygen
OX low
BE OK
12 BZ OK a. Reduce fuel rate To increase percentage of oxygen
OX low for action b
BE high  b. Reduce fan speed To lower back-end temperature and
maintain burning zone temperature
13 BZ OK a. Increase fan speed To raise back-end temperature
OX OK b. Increase fuel rate To maintain burning zone
BE low temperature

Extract from Peray’s textbook for kiln operators (Oestergaard, 1999)



FLC Analogue to PID Control

d
u
s 20 % PID | — » Process Y >
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PID Control: Internal View

u(t) = Pe(t) + I [ e(r)dr + DD

;P—l

e u

——»j =14>®—>
d .

4,@ » D




PID Control: Internal View
u(t) = Pe(t) + I [ e(r)dr + DD

. P —l
e u
d .
T dr | D
dynamic filter static mapping



Fuzzy PID Control
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Fuzzy PID Control
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Example: Proportional Control

d
u
d > ¢ > P — »  Process Y >




Controller's Input—Output Mapping

A
u
u=~Pe

\/




Fuzzy Proportional Control: Rules

If error is Negative Big then control input is Negative Big
If error is Positive Big then control input is Positive Big

If error is Zero then control input is Zero



Controller's Input—Output Mapping

A A

u

PB

\J

NB

NB ZE PB

\



Example: Friction Compensation

@ DC motor with static friction.
@ Fuzzy rules to represent “normal” proportional control.

©® Additional rules to prevent undesirable states.



DC Motor: Model

voltage

Armature Load
Friction
K(s) | 1 S 1/ q
L.s+R - J.s+b gvaAl! g

angle



Proportional Controller

pl ]
Control u
oooo o | g
°° ™5 ’ Motor Mux|_p|[]

Angle




Linear Control
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Fuzzy Control Rule Base

If error is Positive Big then control input is Positive Big;
If error is Negative Big then control input is Negative Big;

If error is Zero then control input is Zero;



Membership Functions for Error

Negative Big Zero Positive Big




Additional Rules

If error is Positive Big then control input is Positive Big;
If error is Negative Big then control input is Negative Big;

If error is Zero then control input is Zero;

If error is Negative Small then control input is not Negative Small;

If error is Positive Small then control input is not Positive Small;



Membership Functions for Error

Negative Big Zero Positive Big
1 Negative [P\ Positive
Small Small
0 ‘ ‘ ‘ ‘
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2



Fuzzy Control
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Input—Output Mapping of the Controller

u

1 .
local nonlinearity

-0.15 -0.1 -0.05 0 0.05 0.1 0.15




Another Solution: Sliding Mode Control
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Experimental Results

position [rad]

control input [V]




Experimental Results
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Membership Functions

1

o o
> %
T T

o
IS
T

membership degree

0 . . . . . . .
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3
Control error

membership degree

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Control error




Fuzzy PD Controller: Rule Table

error rate

NB ZE PB
NB | NB NB ZE
ZE | NB ZE PB
PB | ZE PB PB

error

R1>: If erroris NB and error rate is ZE then control is NB



Fuzzy PD Controller — cont'd




Supervisory Fuzzy Control

Classical

controller

Process




Supervisory Fuzzy Control

l external signals

Fuzzy Supervisor -
Classical Process .
controller
¥




Supervisory Control Rules: Example

If process output is High
then reduce proportional gain Slightly and
increase derivative gain Moderately.

(Supervised PD controller)
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Example: Inverted Pendulum




Cascade Control Scheme

Reference ———— psition

controller

Angle > Inverted
controller pendulum

3




Experimental Results
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Experimental Results

0.5
g
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g‘ —— Conventional PD controller - =Y
51 —— Fuzzy Supervised PD controller
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Takagi—Sugeno Control
Takagi—Sugeno PD controller:

Ry If ris Low then uyy, = Pe+ D, é
R> : If ris High then uy = Pye + Dyé

pi(r) o+ wh(r) ug
pi(r) + pu(r)

=y(r) v +yu(r) uy



Takagi—Sugeno Control
Takagi—Sugeno PD controller:

Ry If ris Low then uyy, = Pe+ D, é
R> : If ris High then uy = Pye + Dyé

O

{w ()P +m(r)Pu} e+ {v(r)DL +yu(r)Du} é



Takagi—Sugeno Control
Takagi—Sugeno PD controller:

Ry If ris Low then uyy, = Pe+ D, é
R> : If ris High then uy = Pye + Dyé

O

{w ()P +m(r)Pu} e+ {v(r)DL +yu(r)Du} é

= P(r)e+ D(r)é,



Takagi—Sugeno Control
Takagi—Sugeno PD controller:

Ry If ris Low then uyy, = Pe+ D, é
R> : If ris High then uy = Pye + Dyé

O

{w ()P +m(r)Pu} e+ {v(r)DL +yu(r)Du} é

= P(r)e+ D(r)é,  P(r)econv(P,Pa), ...



Takagi—Sugeno Control is Gain Scheduling

fuzzy scheduling

‘ Controller K |
Inputs . Outputs
E— Controller 2 >

Controller 1




TS Control: Input—Output Mapping
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TS Control: Example

@ Strongly nonlinear process (output-dependent gain).
® Fuzzy supervisor to adjust the gain of a proportional controller.

©® Comparison with linear (fixed-gain) proportional control.



TS Control: Example

Nonlinear process:
Py(t) | dy()  dy(t) _

dt3 dt? dt
Problems with linear control:

y3(t)u(t)

® stability and performance depend on process output
® re-tuning the controller does not help

® nonlinear control is the only solution



TS Control: Example

Goal: Design a controller to stabilize the process for a wide range of
operating points (y > 0):

TS (proportional) control rules:

If y is Small then u(k) = Psmai - e(k)
If y is Medium then u(k) = Puiedium - €(k)
If y is Large then u(k) = Plarge - e(k)



Comparison of Performance




Typical Applications

® Tune parameters of low-level controllers (auto-tuning).
* Improve performance of classical control (response-assisted PID).

¢ Adaptation, gain scheduling (aircraft control).



Typical Applications

® Tune parameters of low-level controllers (auto-tuning).
* Improve performance of classical control (response-assisted PID).

¢ Adaptation, gain scheduling (aircraft control).
+ Enhancement of classical controllers.

+ Interface between low-level and high-level control.

— Ad hoc approach, difficult analysis.



Fuzzy Control: Design Steps

control engineering approaches + heuristic knowledge

@ Determine inputs and outputs.

® Define membership functions.

© Design rule base.

@ Test (completeness, stability, performance).

©® Fine-tune the controller.
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Parameters in a Fuzzy Controller

Fuzzification module

Defuzzification module

—> Scaling | Fuzzifier —> Igt:grf;lg ¢ Defuzzifier | Scaling -->
Scaling Membership Membership Scaling
factors functions Rule base functions factors

Data base Data base

Knowledge base






