Recap artificial neural networks part 1

Foward pass:
¥, input\

input x — f
v, —output/y f(X, W)

weights
network structure




Recap artificial neural networks part 1

Backward pass: calculate Vi J and use it in an optimization
algorithm to iteratively update the weights of the network to minimize

the loss J.

Loss function target output

J(y,t)

network output




Outline

Last lecture:
@ Introduction to artificial neural networks
® Simple networks & approximation properties
® Deep Learning
O Optimization

This lecture:
@ Regularization & Validation
® Specialized network architectures
© Beyond supervised learning

@ Examples



Outline

@ Regularization & Validation




Approximation error vs. number of parameters

A

<

approximation error

training data

number of parameters




Approximation error vs. number of parameters

A

<

approximation error

training data

number of parameters




Underfitting

A




Good fit

A




Overfitting

A




Validation

System: y =f(x) or y(k+1)="r(x(k),u(k))
Model:  y=F(x;0) or y(k+1)=F(x(k),u(k);6)

True criterion:

1= [ 1Fx) - F(x)ax (1)

Usually cannot be computed as f(x) is not available,
use available data to numerically approximate (1)

e use a validation set

o cross-validation (randomize)



Validation Data Set

A

@ training data

+ validation data




Cross-Validation
* Regularity criterion (for two data sets):

RC -2 [i %’f(yf*m O %f(y’a(f) —?B<f>>2]
2| NaA B Ng i3 8

o v-fold cross-validation



Some Common Criteria

* Mean squared error (root mean square error):
Lh oy
MSE = =3 (v(1) - 9(0))
i=1
* Variance accounted for (VAF):

VAF = 100% - [1 _varly =) —y)]
var(y)

e Check the correlation of the residual y — y to u, y and itself.



Test set

The validation set is used to select the right hyper-parameters.
o Structure of the network
o Cost function
e Optimization parameters

What might go wrong?



Test set

The validation set is used to select the right hyper-parameters.
o Structure of the network
o Cost function
e Optimization parameters

What might go wrong?

Use a separate test set to verify the hyper-parameters have not been
over-fitted to the validation set.



Regularization

Regularization: Any strategy that attempts to improve the test
performance, but not the training performance

Limit model capacity (smaller network)

Early stopping of the optimization algorithm

Penalizing large weights (1 or 2 norm)

Ensembles (dropout)



Weight penalties

Cost function: J,(y, t,w) = J*(y,t) + A||wl5

w2

e p=1: L!': Leads to
O-weights (sparsity,
feature selection)

e p=2: [?: Leads to
small weights

w1
Demo - Overfitting

Demo - L1 regularization

Demo - L2 regularization


https://tinyurl.com/jbsdtro
https://tinyurl.com/zav85ql
https://tinyurl.com/zvsbodq

Model ensembles

What if we train multiple models instead of one?

For k models, where the errors made are zero mean, normally
distributed, with variance v = E[€?], covariance ¢ = E[e;¢;]. The
variance of the ensemble is:

[( Zﬂ)]—i]E[ZI:(e +,§€EJ)] L,k

When the errors are not fully correlated (¢ < v), the variance will reduce.




Dropout

Practical approximation of an automatic ensemble method. During
training, drop out units (neurons) with probability p. During testing use
all units, multiply weights by (1 - p).

yl y2 y3 yl

x1

randomly drop units during each training update, creating a To use the network, include all units
new network (with shared parameters) every time. but scale weights.




More data

The best regularization strategy is more real data

Spend time on getting a dataset and think about the biases it contains.




Data augmentation

Sometimes existing data can be transformed to get more data.
Noise can be added to inputs, weights, outputs (what do these do,
respectively?) Make noise realistic.

£ g\&’é“\% B c{ﬁ&

Overfitting 0N )
< o)
—>» O e

N =

" Overfitting " " Overfitting " " Overfitting "




Outline

@® Specialized structures
Recurrent Neural Networks
Convolutional Neural Networks



Prior knowledge for simplification

Use prior knowledge to limit the model search space

Sacrifice some potential accuracy to gain a lot of simplicity

Example from control theory
Reality: y(t)="f(x,u,t), x=g(x,u,t)

Usual LTI approximation: y=Cx+ Du, x=Ax+ Bu



Neural network analog

Predict y; given Yi_pny .oy Vi-1, Ur—py ..y Ut

Strategy so far:

Feedforward
network




Neural network analog

Lets assume y(t) = f(x(t),t) and x(t) = g(x(t-1),u(t),t):




Weight sharing: temporal invariance

Lets add temporal invariance:
y(t) = f(x(t)) and x(t) = g(x(t - 1), u(t));

W1 =W2 =W3 =Wy4 =Wz =W

Yia Yi3 Y2 Ye1 Yt Yt
Recurrent
Neural
A& Network
h  (RNN)

Significant reduction in the number of parameters w



RNN training: Back Propagation Through Time (BPTT)

@ Make n copies of the network, calculate yi,...,yn

@ Start at time step n and propagate the loss backwards through the
unrolled networks

® Update the weights based on the average gradient of the network
copies: VyJ=1%7, vy, J

+VV1 1) +V‘/t 1) +VYt 1) +Vy(J
Ya Yi3 Yi2 Y1 Yt




The exploding / vanishing gradients problem

Scalar case with no input: x, = w" - xg
For w < 1,x" - 0, for w>1,x" — co.
This makes it hard to learn long term dependencies.

some memory control?

RNN
e O Q@O @O
Hidden 5
1 2 3 4 5 1 2 3 4 5

Time




Gating

One more network component:
Element-wise multiplication of activations ®

Example: LSTM memory cell

L/ output gateT
/ S

><j>input gate

memory cell




Weight sharing: spatial equivariance

How to process grid like information (eg. images)? So far:

6 6

i

<<entirely different!>

30 / 49



Weight sharing: spatial equivariance

AN A

We want spatial invariance /
equivariance. |

e Share pieces of network
(eg our 6 feature detector). \ \

e Copy the part of the network \
across the input space, enforce
that the weights remain equal.




Convolution

e Instead of thinking of copying
parts of the network over the
inputs, we can think of the
same operation as sliding a
network part over the input.

o Step 1: Convolution:
S(3ig) = (I« K)(i,j) = | (input)
Zmznl(m,n)K(i—m,J’_n)

y <—K (Kernel)



Convolutional layer

e Step 1: Convolution:
53i,4) = (I« K)(i,j) =
Ym>eal(mn)K(i—=m,j—n)

e Step 2: Detector stage:
nonlinearities on top of the
feature map

What if we want /nvariance?

nonlinearities —> g

S (feature map) —>

I (nE
-<—K (Kernel)

33/49



Pooling

pooling —>

e Step 1: Convolution:
53i,4) = (I« K)(i,j) =
Zman(mvn)K(i_maj_n) i

o Step 2: Detector stage: S (feature map) —>,
nonlinearities on top of the |
feature map

nonlinearities —>

o Step 3 (optional) Pooling: I (Input)
Take some function (eg max)
of an area

<<—K (Kernel)



Outline

© (Semi) Unsupervised Learning & Reinforcement Learning



NN training: so far, we have seen supervised learning

Supervised Reinforcement Unsupervised
learning learning learning

<

“more informative feedback less informative feedback

36 / 49



From SL to RL

So far: get a database of inputs x and target outputs t , minimize some
loss between network predictions y(x, ) and the targets t by adapting
the network parameters 6:

y € R™

x € R"



RL with function approximation

Didn't we do this last week?

Approximating Over the State Space

* Typically: basis functions

b1, dn: X —1[01]

* Usually normalized: 3 ; ¢;(x) =1

* E.g., fuzzy approximation, RBF network approximation

3
TUDelft 16/%0

Global function approximation makes things trickier but potentially
more useful, especially for high-dimensional state-spaces.



From SL to RL

DQN example: get a database of inputs x and target outputs t ,
minimize some loss between network predictions Q(x, ) and the targets
t by adapting the network parameters 6:

e Data {x, u, x', r} is collected on-line by following the exploration
policy and stored in a buffer.

Q e R®




From SL to RL

DQN example: get a database of inputs x and target outputs t ,
minimize some loss between network predictions Q(x, ) and the targets
t by adapting the network parameters 6:

o Data {x, u, x', r} is collected on-line by following the exploration
policy and stored in a buffer.

o t(x,a) =r+ymax, Q(x’,07): target network with parameters 6~
that slowly track 6 for stability.

QeRr®

x € RN

39 / 49



Additional training criteria

Inputs x are often much easier to
obtain than targets t.

MORE
o For deep networks, many of TASK
the earlier layers perform very SPECIFIC
general functions (e.g. edge
detection).
e These layers can be trained on MORE

different tasks for which there GENERAL

is data.




Additional training criteria

Previous lecture: data clustered around a (or some) low dimensional
manifold(s) embedded in the high dimensional input space.

AREEARRT
ﬁ@ﬁﬁtﬂﬂﬂﬁ_v B space of all

ARARARRAA

.l . images
. :;;;;;;933'9'9 ’/
23%- S ()]

faces
manifold

1

Can we learn a mapping to this manifold with only input data x?

p.p. Kingma and M. Welling (2013). “Auto-encoding variational bayes”. |n: arXiv preprint arXiv:1312.60114




Additional training criteria - auto encoders

x>

>| | [—>M

¢ Unsupervised Learning (UL): [
find some structure in input
data without extra
information(e.g. clustering). compressed > RM

representation
¢ Auto Encoders (AE) do this by %

reconstructing their input l ?

(t=x). : ]

x € RN

[




Additional training criteria: regularization and optimization

Auxiliary training objectives can be
added

¢ Because they are easier and
allow the optimization to make
faster initial progress.

e To force the network to keep

more generic features, as a
regularization technique.




Generative models

Auto-Encoders consist of

two parts: b GT RN
e Encoder: compresses \
. decoder T
the input, useful feature |
hierarchy for later IRAm Compressed
. representation

supervised tasks. ——

o Decoder: encoder ‘ T ]
decompresses the input, ‘ I ‘
can be used as a xERD

generative model.



Outline

@ Examples

45 / 49



Applications of neural nets

Black-box modeling of systems from input-output data.

Reconstruction (estimation) — soft sensors.

Classification.
o Neurocomputing.

e Neurocontrol.



Example: object recognition

v

DELFTROBOTICS

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

. water 0.91
pencil cup 1.00ct tape 0.62

’; dvd 0.96
TUDelft
i i duct tape 0.94 .
Robotics Institute Heah  doks 0.40
tghigt .87
toothbrush - 0.77 P
outlet plugs 0.60

[

-

- ;;S.u?t'le{ P ugs 1.00

c

winner 2016

Demo - movie


https://www.youtube.com/watch?v=W_sFDpq_zvs

Example: control from images

25, Levine, C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-end training of deep visuomotor policies”.




Summary

(Over-)fitting training data can be easy, we want to generalize to new
data.

o Use separate validation and test data-sets to measure
generalization performance.

o Use regularization strategies to prevent over-fitting.

e Use prior knowledge to make specific network structures that limit
the model search space and the number of weights needed (e.g.
RNN, CNN).

e Be aware of the biases and accidental regularities contained in the
dataset.



	Regularization & Validation
	Specialized structures
	Recurrent Neural Networks
	Convolutional Neural Networks

	(Semi) Unsupervised Learning & Reinforcement Learning
	Examples



