
1 Introduction to artificial neural networks

2 Simple networks & approximation properties

3 Deep Learning

4 Training

3 / 49

Outline

Advanced Fault Detection in Condition Monitoring:
Combining Model-Based and Data-Driven Approaches
 Part 3

Motivation: biological neural networks

� Humans are able to process complex tasks efficiently (perception,
pattern recognition, reasoning, etc.).

� Learning from examples.

� Adaptivity and fault tolerance.

In engineering applications:

� Nonlinear approximation and classification.

� Learning and adaptation from data (black-box models).

� High dimensional inputs / outputs

4 / 49

Biological neuron

dendrites

soma

axon

synapse

5 / 49

Artificial neuron

..
.

x1

xp

x2

w1

wp

w2
z

v

xi : ith input of the neuron
wi : adaptive weight (synaptic strength) for xi
z : weighted sum of inputs: z = ∑p

i=1wixi = wTx
σ(z) : activation function
v : output of the neuron

6 / 49

Activation functions

Purpose: transformation of the input space (squeezing).
Two main types:

� Projection functions: threshold function, piece-wise linear
function, tangent hyperbolic, sigmoidal, rectified linear, ...
function:

σ(z) = 1/(1 + exp(−2z))

� Kernel functions (radial basis functions):

σ(x) = exp (−(x − c)2/s2)

7 / 49

Activation functions: some common choices

1

z

σ()z

0

-1

z

σ()z

0

1

z

σ()z

0

1

z

σ()z

0

-1

1

Sigmoid: σ(z) = 1
1+e−z

Tangent hyperbolic: σ(z) = 2
1+e−2z − 1

Rectified Linear Unit (ReLU): σ(z) =
⎧⎪⎪⎨⎪⎪⎩

0 if z < 0
z if z ≥ 0

Exponential Linear Unit (ELU): σ(z) =
⎧⎪⎪⎨⎪⎪⎩

z if z > 0
α(ez − 1) if z ≤ 0

8 / 49

Outline

1 Introduction to artificial neural networks

2 Simple networks & approximation properties

3 Deep Learning

4 Training

9 / 49

Neural Network: Interconnected Neurons

Multi-layer ANN

Single-layer recurrent ANN

10 / 49

Feedforward neural network example

x1

.

.

.

y1

xp

vm

yn

hidden layer output layerinput layer

wp

x2

v1

.

.

.

w
h

w11w
h

w11w
o

wmnw
o

m

11 / 49

Feedforward neural network example (cont’d)

1 Activation of hidden-layer neuron j :

zj =
p

∑
i=1

wh
ij xi + bhj

2 Output of hidden-layer neuron j :

vj = σ (zj)

3 Output of output-layer neuron l :

yl =
h

∑
j=1

wo
jl vj + b

o
l

12 / 49

Function approximation with neural nets: examples

y = wo
1 tanh (wh

1 x + bh1) +wo
2 tanh (wh

2 x + bh2)

Transformation
through tanh

x

v

0

v2v1

tanh(z1)tanh(z)2

Summation of

neuron outputs

Activation (weighted
summation)

z

x0

w1
hx b1

h+w2
h
x b2

h+

z1 z2

y

x0

w1
ov1 w2

ov2

w1
ov1 w2

ov2+

Warping space

Need for nonlinearities

13 / 49

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://tinyurl.com/y8lhdbtk

Input–Output Mapping

Matrix notation:

Z = XbW
h

V = σ(Z)
Y = VbW

o

with Xb = [X 1] and Vb = [V 1].

Compact formula (1-layer feedforward net):

Y = [σ([X 1]Wh) 1]Wo

14 / 49

Approximation properties of neural nets

[Cybenko, 1989]: A feedforward neural net with at least one hidden
layer can approximate any continuous nonlinear function Rp → Rn

arbitrarily well, provided that sufficient number of hidden neurons are
available (not constructive).

15 / 49

Approximation properties of neural nets

[Barron, 1993]: A feedforward neural net with one hidden layer with
sigmoidal activation functions can achieve an integrated squared error
of the order

J = O (1
h
)

independently of the dimension of the input space p, where h denotes
the number of hidden neurons.

For a basis function expansion (polynomial, trigonometric expansion,
singleton fuzzy model, etc.) with h terms, in which only the parameters
of the linear combination are adjusted

J = O (1

h2/p
)

16 / 49

Approximation properties of neural nets

[Barron, 1993]: A feedforward neural net with one hidden layer with
sigmoidal activation functions can achieve an integrated squared error
of the order

J = O (1
h
)

independently of the dimension of the input space p, where h denotes
the number of hidden neurons.

For a basis function expansion (polynomial, trigonometric expansion,
singleton fuzzy model, etc.) with h terms, in which only the parameters
of the linear combination are adjusted

J = O (1

h2/p
)

16 / 49

Approximation properties: example

1) p = 2 (function of two variables):

polynomial J = O (1
h2/2
) = O (1h)

neural net J = O (1h)

Ð→ no difference

17 / 49

Approximation properties: example

2) p = 10 (function of ten variables) and h = 21:

polynomial J = O(1
212/10

) = 0.54

neural net J = O(1
21) = 0.048

To achieve the same accuracy:

O(1
hn
) = O(1

hb
)

hn = h2/pb ⇒ hb =
√
hpn =

√
2110 ≈ 4 ⋅ 106

18 / 49

Approximation properties: example

2) p = 10 (function of ten variables) and h = 21:

polynomial J = O(1
212/10

) = 0.54

neural net J = O(1
21) = 0.048

To achieve the same accuracy:

O(1
hn
) = O(1

hb
)

hn = h2/pb ⇒ hb =
√
hpn =

√
2110 ≈ 4 ⋅ 106

18 / 49

Approximation properties in practice

What does the fact that a neural network with one layer can
theoretically achieve a low approximation error independently of the
dimensionality of the input space mean in practice?

� Does mean neural networks are suitable for a range of problems
with high dimensional inputs.

� Does not mean it is always possible to get near the theoretical
limit.

� Does not mean adding more neurons per layer always results in a
lower approximation error.

� Does not mean one layer is optimal.

19 / 49

Outline

1 Introduction to artificial neural networks

2 Simple networks & approximation properties

3 Deep Learning

4 Training

20 / 49

Manifold hypothesis

For many problems defined in very high dimensional spaces, the data of
interest lie on low dimensional manifolds embedded in the high
dimensional space. Demo: moving over a faces manifold

21 / 49

https://youtu.be/PmC6ZOaCAOs

Deep Learning

Output

Input

Hand designed

mapping

Classic

Control

Hand designed

features

learned

mapping

Output

Input

Classic

machine learning

learned

mapping

Output

Input

learned

features

learned

features

...

Deep

learning

23 / 49

Outline

1 Introduction to artificial neural networks

2 Simple networks & approximation properties

3 Deep Learning

4 Training
Overview
Back-propagation
Cost functions
Stochastic Gradient Descent

25 / 49

Neural network training

Goal: find the weight vector W that minimizes some cost function
J(f (x ;W)) for all (especially unseen) inputs x .

Supervised learning example: Make a neural network approximate a
known function x → t by minimizing: J(W) = 1

2(f (x ;W) − t)
2

26 / 49

Neural network training

Goal: find the weight vector W that minimizes some cost function
J(f (x ;W)) for all (especially unseen) inputs x .

Supervised learning example: Make a neural network approximate a
known function x → t by minimizing: J(W) = 1

2(f (x ;W) − t)
2

26 / 49

Neural network training - general algorithm

1 Initialize W to small random values

2 Repeat until the performance (on a separate test-set) stops
improving:

1 Forward pass: Given an input x , calculate the neural network
output y = f (x ;W). Then calculate the cost J(y , t) of predicting y
instead of the target output t.

2 Backward pass: Calculate the gradient of the cost with respect to

the weights: ∇J(y(x ;W), t) = [∂J
∂w1

, . . . , ∂J
∂wn
]
T

3 Optimization step: Change the weights based on the gradient to
reduce the cost.

27 / 49

Supervised learning

Input Output

error

System

-

28 / 49

Learning in feedforward nets

1 Feedforward computation. From the inputs proceed through the
hidden layers to the output.

Z = XbW
h, Xb = [X 1]

V = σ(Z)

Y = VbW
o , Vb = [V 1]

29 / 49

Learning in feedforward nets

2 Weight adaptation. Compare the net output with the desired
output:

E = T −Y

Adjust the weights such that the following cost function is
minimized:

J(w) = 1

2

N

∑
k=1

l

∑
j=1

e2kj

w = [Wh Wo]

(This is the empirical loss: the loss over the examples in the dataset. We actually want to minimize the loss over the true
underlying distribution of examples. We come back to this difference in the next lecture.)

30 / 49

Output-layer weights example

Neuron

ev2

y
-

d

J1/2 e2

vn

v1

wnwo

w2wo

w1wo t
Cost function

J = 1

2
e2, e = t − y , y =∑

j

wo
j vj

∂J

∂wo
j

= ∂J

∂e
⋅ ∂e
∂y
⋅ ∂y

∂wo
j

= −vje

31 / 49

Hidden-layer weights example

hidden layer

output layer

x
2

e
2vz

xp

e
l

x
1

e
1

wpw
h

w2w
h

w1w
h

w
l

w
o

w2w
o

w1w
o

∂J

∂wh
ij

= ∂J

∂vj
⋅
∂vj

∂zj
⋅
∂zj

∂wh
ij

= −xi ⋅ σ′j(zj) ⋅∑
l

elw
o
jl

∂J

∂vj
= ∑

l

−elwo
jl ,

∂vj

∂zj
= σ′j(zj),

∂zj

∂wh
ij

= xi

32 / 49

Back-propagating further

x1

x3
w32

x2

v1

w
h1

w11w
h1

ww11

o

w21w
o

h2

v2
h2

v1
h1

v2
h1

J(t,y)

t
ww11

o

w21w
o

∂J
∂wh1

11

= (∂J
∂vh2

1

∂vh2
1

∂vh1
1

+ ∂J
∂vh2

2

∂vh2
2

∂vh1
1

) ∂vh1
1

∂wh1
1 1

33 / 49

Cost functions

Cost function term types:

� Classification

� Regression

� Regularization (next lecture)

Two main criteria:

1 The minimum of the cost function w∗ = argminw J(f (w)) should
correspond to desirable behavior.
examples:

� J(y , t) = ∣∣y − t ∣∣2 : y = f (x ;w∗)→ mean t for each x
� J(y , t) = ∣∣y − t ∣∣1 : y = f (x ;w∗)→ median of t for each x

2 The error gradient should be informative.

34 / 49

(Stochastic) Gradient Descent

Update rule for the weights:

wn+1 = wn − αn∇J(wn)

with the gradient ∇J(wn)

∇J(w) = (∂J

∂w1
,
∂J

∂w2
, . . . ,

∂J

∂wM
)
T

� Gradient Descent: use ∇J(w) = 1
K ∑

K
i=1(

∂J(ti ,f (xi ;W))
∂W)

with K = the size of the database

� Stochastic Gradient Descent: use
∇̂J(w) = 1

k ∑
k
i=1(

∂J(ti ,f (xi ;W))
∂W) with k << K the batch size

39 / 49

Stochastic Gradient Descent

∇̂J(w) = 1
k ∑

k
i=1(

∂J(ti ,f (xi ;W))
∂W) with k << K

In practice: k ≈ 100 − 102, K ≈ 104 − 109.

The xi , ti data points in the batches should be independent and
identically distributed (i.i.d.).

What might go wrong when learning online?

40 / 49

What step size?

w(1)n+ w

J(w)

w()n

41 / 49

Second-order gradient methods

J(w) ≈ J(w0) +∇J(w0)T (w −w0) +
1

2
(w −w0)TH(w0)(w −w0)

where H(w0) is the Hessian in w0.

Update rule for the weights:

wn+1 = wn −H−1(wn)∇J(wn)

42 / 49

Second-order gradient methods

w(1)n+ w

J(w)

w()n

43 / 49

Step size per weight

H−1∇J computes a good
step for each weight, only
feasible for (very) small
networks.

Can we do better than
Gradient Descent without
using second order
derivatives?

low learning rate

high learning rate

Gradient Descent

44 / 49

Summary artificial neural networks part 1

..
.

x1

xp

x2

w1

wp

w2

z
v

y1

y2

1

z

σ()z

0

-1

z

σ()z

0

1

z

σ()z

0

1

Foward pass:

y = f(x; w)
output

network structure

input

input

weights

weights

nonlinearity

48 / 49

Summary artificial neural networks part 1

Backward pass: calculate ∇J and use it in an optimization algorithm
to iteratively update the weights of the network to minimize the loss J.

..
.

x1

xp

x2

w1

wp

w2

z
v

J(y,t)

target output

network output

Loss function
�J/�y1

�J/�y2

�J/�v
�J/�z

�J/�w

�J/�v1

49 / 49

Recap artificial neural networks part 1

..
.

x1

xp

x2

w1

wp

w2

z
v

y1

y2

1

z

σ()z

0

-1

z

σ()z

0

1

z

σ()z

0

1

Foward pass:

y = f(x; w)
output

network structure

input

input

weights

weights

nonlinearity

2 / 49

Recap artificial neural networks part 1

Backward pass: calculate ∇W J and use it in an optimization
algorithm to iteratively update the weights of the network to minimize
the loss J.

..
.

x1

xp

x2

w1

wp

w2

z
v

J(y,t)

target output

network output

Loss function
J/ y1

J/ y2

J/ v
J/ z

J/ w

J/ v1

3 / 49

Outline

1 Regularization & Validation

2 Specialized structures

3 (Semi) Unsupervised Learning & Reinforcement Learning

4 Examples

5 / 49

Approximation error vs. number of parameters

number of parameters

training data

a
p
p

ro
xi

m
a
ti

o
n

er
ro

r

J

6 / 49

Approximation error vs. number of parameters

number of parameters

training data

a
p
p

ro
xi

m
a
ti

o
n

er
ro

r

J

new data

7 / 49

Underfitting

x

y

8 / 49

Good fit

x

y

9 / 49

Overfitting

x

y

10 / 49

Validation

System: y = f (x) or y(k + 1) = f (x(k),u(k))
Model: ŷ = F (x; θ) or ŷ(k + 1) = F (x(k),u(k); θ)

True criterion:
I = ∫

X
∥f (x) − F (x)∥dx (1)

Usually cannot be computed as f (x) is not available,
use available data to numerically approximate (1)

� use a validation set

� cross-validation (randomize)

11 / 49

Validation Data Set

x

training data

y validation data

12 / 49

Cross-Validation

� Regularity criterion (for two data sets):

RC =
1

2

⎡
⎢
⎢
⎢
⎣

1

NA

NA

∑
i=1

(yA(i) − ŷAB (i))2
+

1

NB

NB

∑
i=1

(yB(i) − ŷBA (i))2
⎤
⎥
⎥
⎥
⎦

� v -fold cross-validation

13 / 49

Some Common Criteria

� Mean squared error (root mean square error):

MSE =
1

N

N

∑
i=1

(y(i) − ŷ(i))2

� Variance accounted for (VAF):

VAF = 100% ⋅ [1 −
var(y − ŷ)

var(y)
]

� Check the correlation of the residual y − ŷ to u, y and itself.

14 / 49

Test set

The validation set is used to select the right hyper-parameters.

� Structure of the network

� Cost function

� Optimization parameters

� ...

What might go wrong?

Use a separate test set to verify the hyper-parameters have not been
over-fitted to the validation set.

15 / 49

Test set

The validation set is used to select the right hyper-parameters.

� Structure of the network

� Cost function

� Optimization parameters

� ...

What might go wrong?

Use a separate test set to verify the hyper-parameters have not been
over-fitted to the validation set.

15 / 49

Outline

1 Regularization & Validation

2 Specialized structures

3 (Semi) Unsupervised Learning & Reinforcement Learning

4 Examples

45 / 49

Applications of neural nets

� Black-box modeling of systems from input-output data.

� Reconstruction (estimation) – soft sensors.

� Classification.

� Neurocomputing.

� Neurocontrol.

46 / 49

	Introduction to artificial neural networks
	Simple networks & approximation properties
	Deep Learning
	Training
	Overview
	Back-propagation
	Cost functions
	Stochastic Gradient Descent

	Regularization & Validation
	Examples

