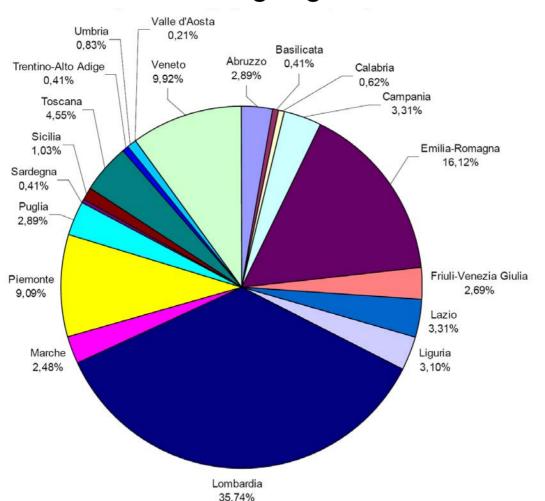
I tecnici di Automazione nel mondo del lavoro

Indagine sulla collocazione del tecnico/ingegnere di automazione nel mondo del lavoro

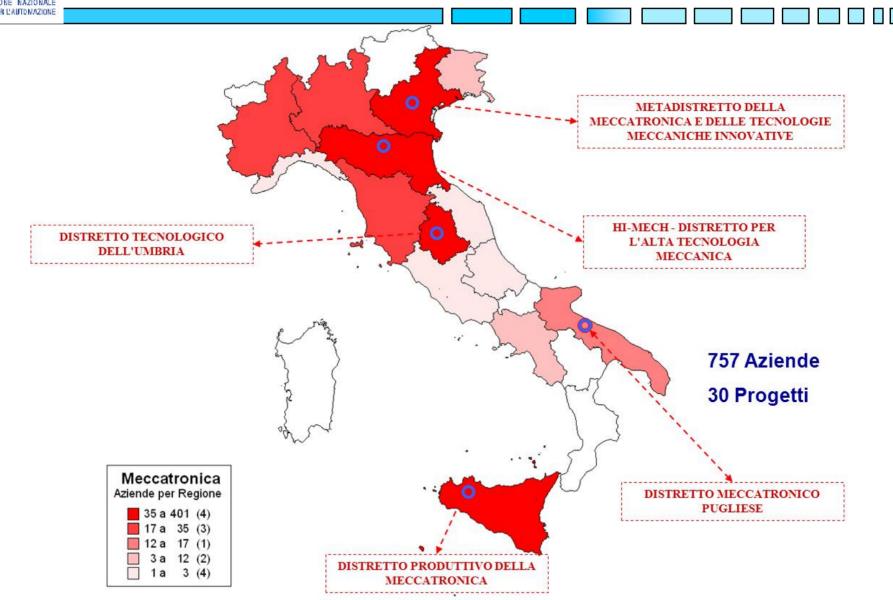

Motivazioni

- Un osservatorio per l'analisi dei bisogni di cultura di automazione nelle aziende
- Temi attinenti ai bisogni formativi dell'industria e del mondo produttivo in generale
- Risposte che l'Università, la Scuola e gli altri protagonisti della formazione danno a questi bisogni
- Possibili punti virtuosi di incontro tra la ricerca e l'industria

Dove Lavora il tecnico di Automazione?

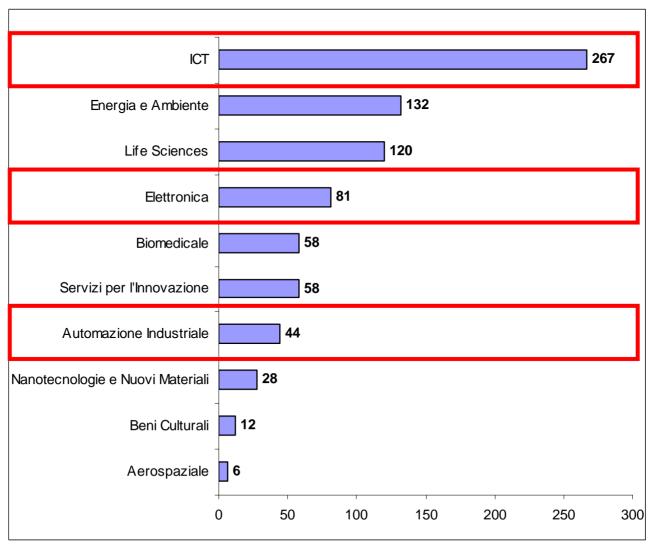
Distribuzione geografica

Forte prevalenza delle regioni più industrializzate, quali la Lombardia, il Veneto, l'Emilia Romagna, il Piemonte, ed una minore ma non nulla presenza nelle altre regioni

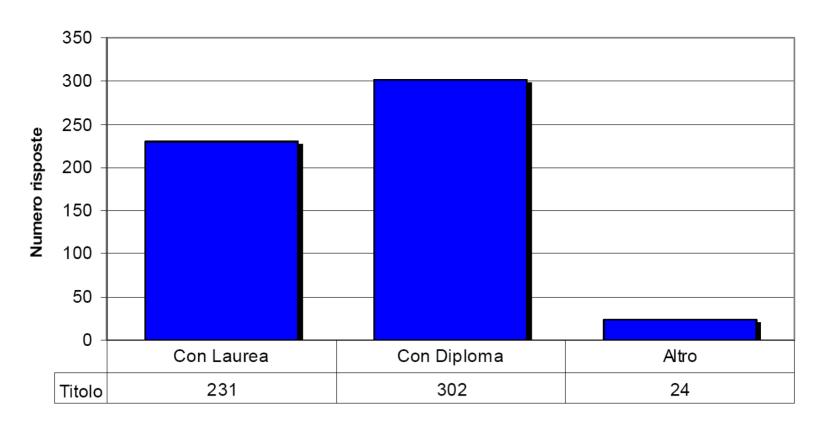


Quanto pesa l'Italia nel mondo?

- Nel settore macchine per il confezionamento le statistiche sono analoghe, con un fattore in più: la concentrazione nella *Packaging Valley*, cioè... l'<u>Emilia-Romagna!</u>
- Nella sola Emilia-Romagna:
 - 170 imprese (80% del totale nazionale..)
 - 13.000 addetti
 - 3,1 miliardi € di fatturato
 - 90% del volume d'affari dall'esportazione!

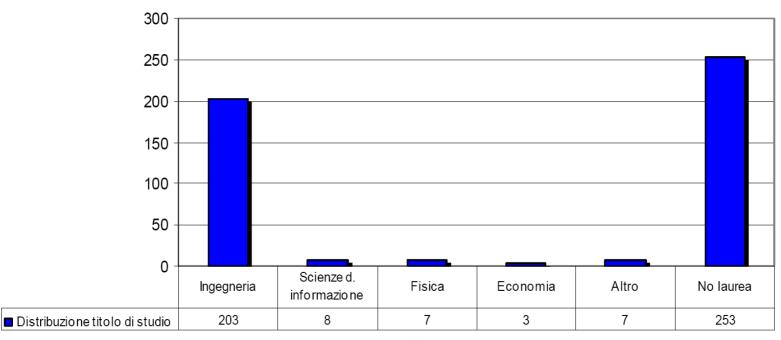

Altri numeri sul peso dell'Emilia-Romagna

Altri numeri sul peso dell'Emilia-Romagna


Settori di attività degli spin-off universitari

Cosa Studia il tecnico d'Automazione

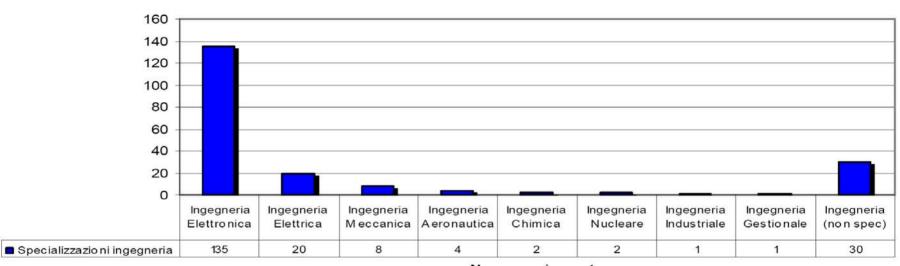
Distribuzione titolo di studio



L'automazione ha contenuti tecnologici elevati che richiedono conoscenze specifiche

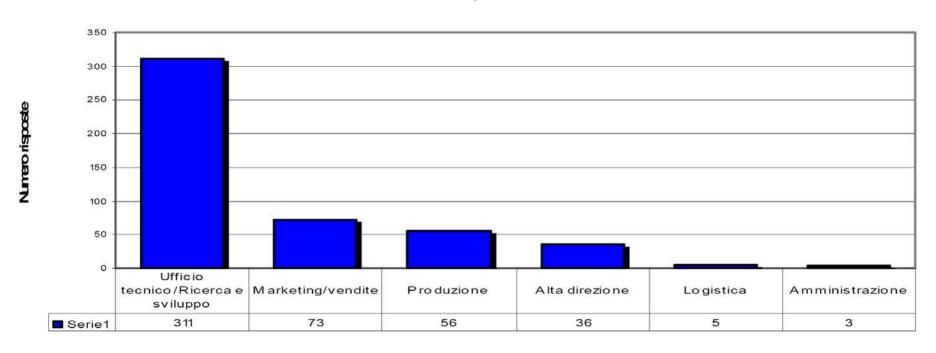
Cosa Studia il tecnico d'Automazione

Distribuzione titolo di studio


Numero risposte

Le lauree in ingegneria sono la nettissima maggioranza, raggiungendo la quasi totalità, soprattutto se considerate insieme alle altre lauree tecnico/scientifiche quali fisica e scienza dell'informazione

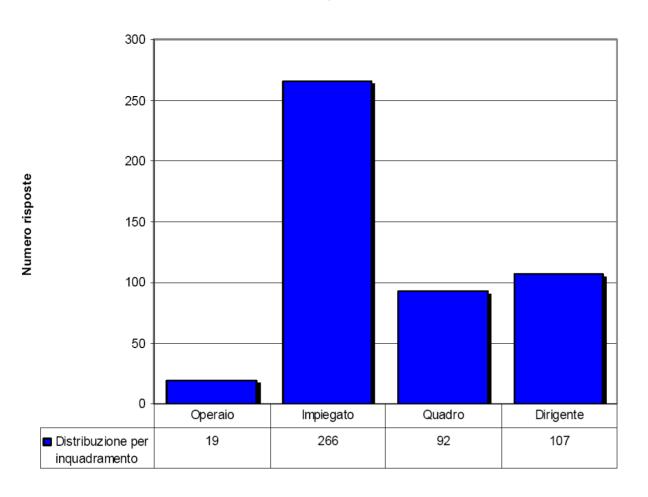
Distribuzione delle Specializzazioni


Numero risposte

N.B.: l'indagine (del 2006) è una fotografia influenzata dalle vecchie lauree <u>quinquennali</u>, nelle quali tipicamente l'orientamento in Automazione era inserito in corsi di laurea in Ingegneria Elettronica. Con l'ordinamento attuale si può fare riferimento alle classi di Ingegneria dell'Informazione!

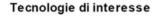
Mestiere del tecnico di Automazione

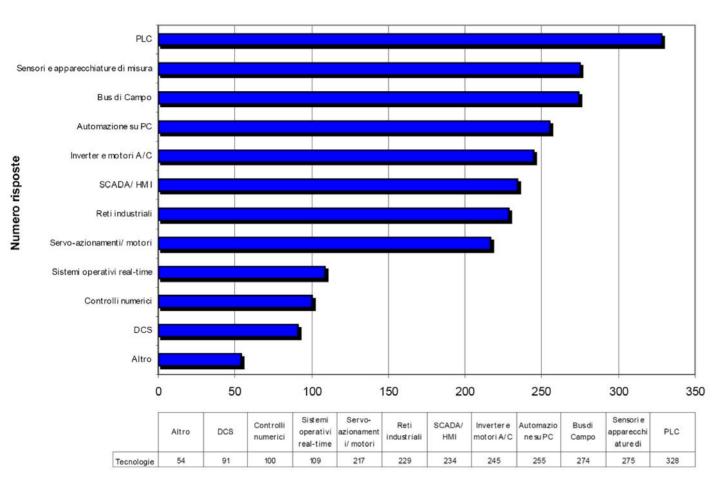
Distribuzione per incarico



Una quota assolutamente maggioritaria è rappresentata da incarichi di tipo tecnico e di Ricerca e sviluppo, come era naturale aspettarsi

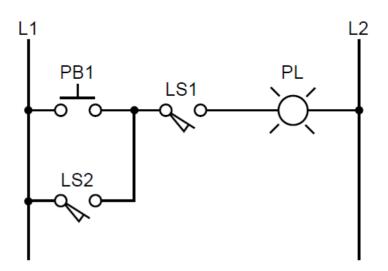
Valore del tecnico di Automazione


Distribuzione inquadramento

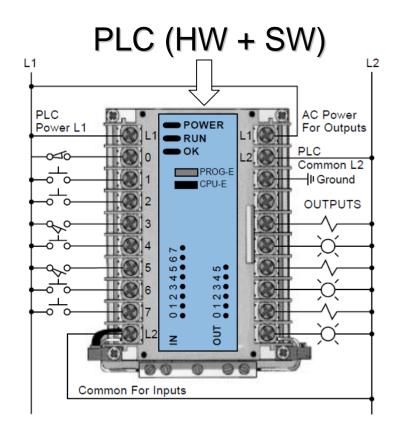


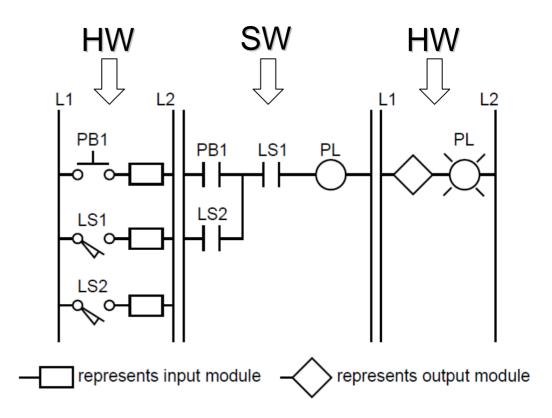
Retribuzioni e
inquadramenti
medio-alti,
a conferma del
valore
dell'uomo di
automazione

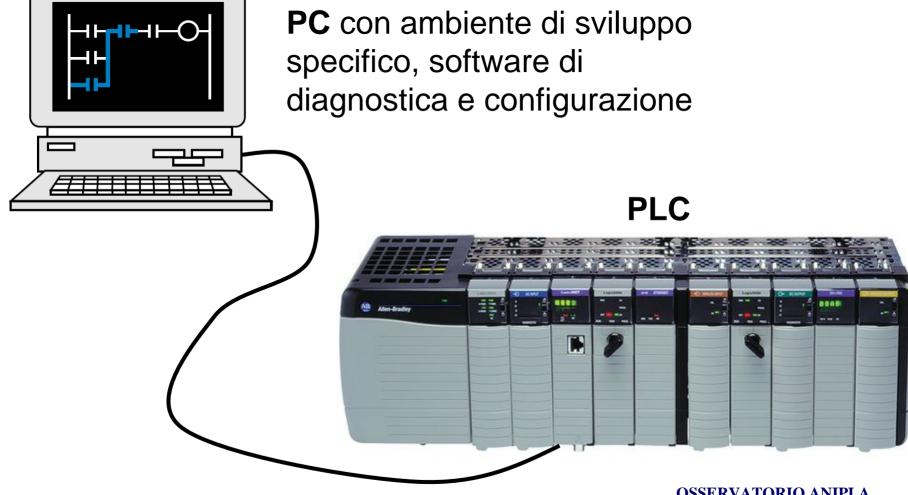
Tecnologie del tecnico di Automazione

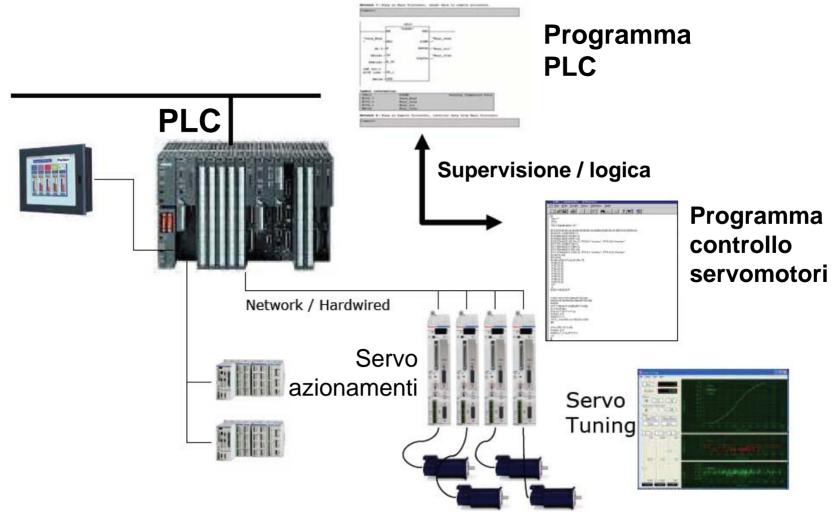


PLC, misure, azionamenti elettrici e bus di campo (comunicazioni industriali).. Ma che tipo di studi preparano ad affrontarli?

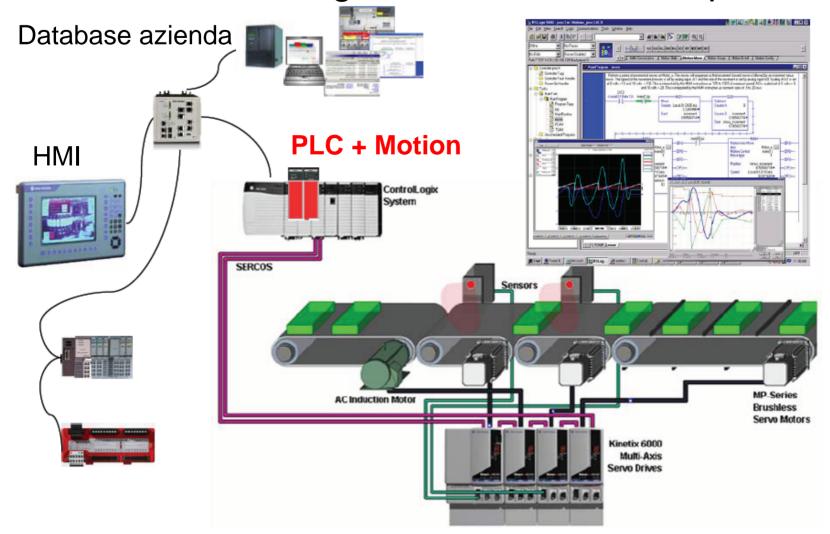



- PLC: Programmable Logic Controller
- ➡ Esegue le funzioni di supervisione e controllo logico di macchine e impianti, tipicamente basate su operazioni, ingressi e uscite booleane (on/off) e storicamente (prima dell'era digitale) realizzate con quadri elettromeccanici (contatti/relè) come:

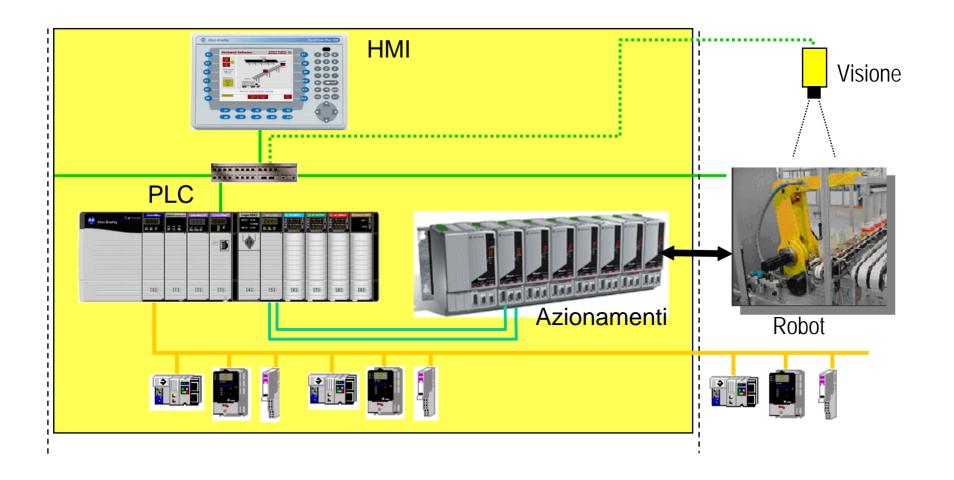

PLC: sistema di elaborazione che emula i quadri elettromeccanici



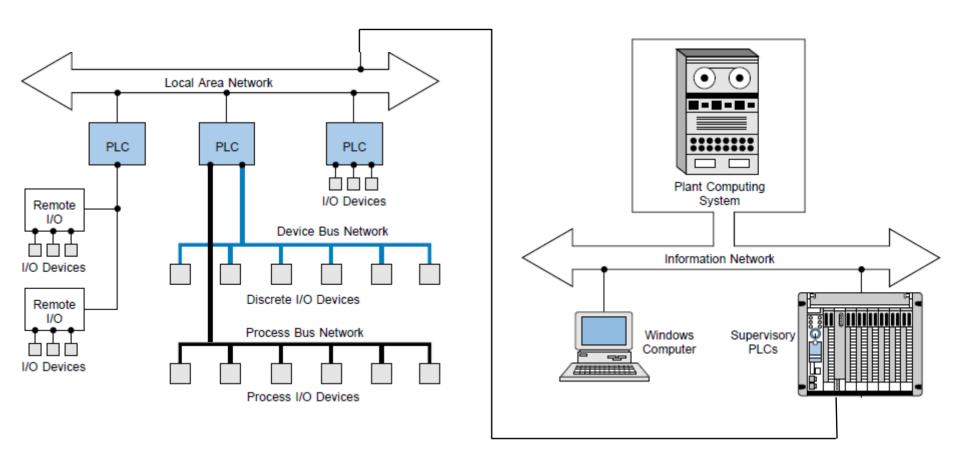
Programmazione del PLC



Evoluzione del PLC: da semplice supervisore...



.. a controllore integrato con funzioni complesse...



.. come controllo di robot e visione artificiale...

.. e con molteplici connessioni di rete!

Competenze del tecnico di Automazione

- □ Storicamente, prevalgono gli aspetti di <u>elettronica ed</u> <u>elettrotecnica</u>
- □ La crescente complessità di PLC, Human-Machine Interface (HMI) e reti di comunicazione industriali sta rendendo però dominanti gli aspetti informatici
- □ <u>Da non sottovalutare le competenze nel settore della</u> <u>Meccanica</u>
- □ Flessibilità, capacità di apprendimento e adattamento alle novità del settore Information Technology, applicate all'industria, sono quindi qualità essenziali per il tecnico di Automazione!

Ulteriori Sbocchi Professionali

- Esiste una significativa porzione di tecnici di automazione non impiegati direttamente da aziende, ma liberi professionisti
- ▶ Le attività professionali degli Ingegneri che richiedano vincoli di responsabilità CIVILE e PENALE sono, come noto, sottoposte alle regole per l'iscrizione negli Albi Professionali degli Ingegneri
- Secondo la riforma universitaria, i laureati con orientamento Informazione (Elettronica/Informatica) e quelli con orientamento Industriale (Meccanica/Meccatronica/Automazione) devono iscriversi a diversi settori dell'Albo degli Ingegneri
- Tuttavia, allo stato attuale l'iscrizione all'Albo non è in generale necessaria per l'esercizio delle professioni legate all'Automazione, né in ambito privato, né in ambito pubblico
- Ciò è dovuto alla forte necessità di sicurezza e affidabilità degli impianti automatizzati complessi, per i quali normalmente solo costruttori di macchine e impianti (non i singoli liberi professionisti) sono in grado di sostenere i costi legati alle certificazioni legali necessarie

Controls Curriculum Survey

Indagine della Control Systems Society della IEEE (Institute of Electrical and Electronic Engineers)

Motivazioni

- L'indagine è fatta dall'ente internazionale di riferimento per la comunità scientifica e industriale attiva sull'Automatica
- L'obiettivo è verificare se, a livello mondiale, le competenze in Automatica richieste dal settore industriale corrispondono a quelle fornite dalle Università
- L'indagine non ha finalità statistiche relative alla distribuzione occupazionale

Modalità dell' Indagine

- L' indagine è stata svolta intervistando:
 - Responsabili delle Risorse Umane (selezionatori delle assunzioni) in aziende multinazionali che normalmente richiedono conoscenza di Automatica
 - Docenti Universitari responsabili di corsi di laurea e insegnamenti fortemente caratterizzati dal settore dell'Automatica
 - Alcuni studenti Universitari associati alla IEEE CSS

Systems Society

Distribuzione degli intervistati

Industry		University		
United States of America	44	United States of America	43	
Canada	4	Italy	12	
Germany	3	Colombia	6	
Italy	2	Canada	5	
United Kingdom of Great Britain	2	China	5	
Other^a	12	Germany	4	
		Malaysia	3	
		Pakistan	3	
		Spain	3	
		Turkey	3	
		France	2	
		India	2	
		Iran	2	
		Romania	2	
		Other^b	25	
Total Responses:	67	Total Responses:	120	

Le aziende coinvolte

Company or Industry

A.I. Solutions, Inc.

Aramco Services Company

ATCO Power Ltd

Boeing

Corning Inc. (2)

Danieli Automation SpA (2)

Ericsson AB

Evan's and Sutherland

General Motors Research & Development

Goodrich Corp.

Hitachi

HYDRO-QUEBEC

L-3 Communications (2)

Le aziende coinvolte (cont'd)

Lockheed Martin

Mathworks

Ford Motor Company (2)

PsiL GmbH

SABIC (Saudi Basic Industries Corporation)

Scitor Corp.

Self-employed

SNC-Lavalin, Inc.

Toyota Technical Center

United Technologies Research Center

Westinghouse Electric Company

Qualità percepita dei giovani ingegneri

	Industry			
	All Industry	Hiring Authority		
	(65 Responses)	(37 Responses)		
Excellent	4.6%	8.1%		
Good	27.7%	21.6%		
Fair	52.3%	51.3%		
Poor	12.3%	13.5%		
No opinion	3.1%	5.4%		

	University			
	All Faculty	EE/CE	Non-EE/CE	
	(117 Responses)	(75 Responses)	(42 Responses)	
Excellent	6.0%	6.7%	4.8%	
Good	43.6%	44.0%	42.9%	
Fair	41.0%	40.0%	42.9%	
Poor	6.8%	8.0%	4.8%	
No opinion	2.6%	1.3%	4.8%	

Competenze che vanno rafforzate

Esperienze PRATICHE, Progettazione Industriale, Hw / Sw

Multiple responses permitted; totals may not sum to 100%

	Industry	University			
		All Faculty	EE/CE Faculty	Non-EE/CE Faculty	
	(64 Respondents)	(109 Respondents)	(73 Respondents)	(36 Respondents)	
Hands-on Experience	71.9%	60.6%	50.7%	80.6%	
Industry-focused Design	48.4%	49.5%	46.6%	55.6%	
Computer Hardware and	46.9%	39.5%	35.6%	47.2%	
Software					
Mathematical Modeling of	45.3%	45.0%	46.6%	41.7%	
Dynamic Systems					
Advanced Methods	28.1%	34.9%	34.3%	36.1%	
Basic Methods	28.1%	34.9%	27.4%	50.0%	
Other ^a	20.3%	11.0%	22.2%		

Competenze che vanno rafforzate (cont'd)

- ➡ In dettaglio, le <u>competenze essenziali</u> per le industrie, oltre ovviamente all'esperienza pratica, sono:
 - Metodi di taratura dei PID
 - Modellazione matematica di sistemi fisici, anche nonlineari, per simulazione e controllo
 - Modelli a stati finiti (Finite State Machines, FSM)
 - Caratteristiche di sensori e attuatori (tecnologia dei sistemi di controllo)
 - Sistemi operativi real-time
 - Sviluppo software per sistemi real-time
- Citare ultime proposte di tesi...

Riassumendo

➡ II <u>MONDO</u> richiede ingegneri in grado di tradurre in pratica, sviluppando hardware e software, complesse elaborazioni matematiche per controllare impianti, robot, velivoli,...

Torna il lavoro, mancano i profili (dic. 2017)

880,000 occupazioni per le quali le aziende faticano a trovare candidati

Un paese senza periti e ingegneri

- Entro il 2021 si sarà il bisogno di 272,000 addetti nei settori chiave (meccanica, chimica, tessile, alimentare e ICT)
 - ICT: Information and Communications
 Technology
- 60% laureati tecnico-scientifici
- 55% laureati ingeneria elettronica e dell'informazione
- Orientamento scuola-università

Osservazioni sul Piano degli Studi di un Laureato in Elettronica e Informatica con un "curriculum Automazione"

A Ferrara esiste un "curriculum Automazione" (inizia il prossimo A.A., III anno)

Motivazioni

- Confronto con altre Università
- LT e LM in Ingegneria "dell'Automazione"
 - -Ingegneria *Meccatronica*...
- Punti di forza
- Peculiarità

LT Terzo Anno Unife

- Struttura del TERZO ANNO di corso (attivo dal 2019/20)
- Insegnamenti obbligatori e quattro nuovi percorsi
 - □ curriculum INGEGNERIA ELETTRONICA E WIRELESS
 - □ curriculum INGEGNERIA INFORMATICA SISTEMI WEB (presso la sede di Cento)
 - □ curriculum INGEGNERIA INFORMATICA SISTEMI DI ELABORAZIONE
 - □ curriculum INGEGNERIA DELL'AUTOMAZIONE

LT Terzo Anno (immatricolati nell'a.a. 2016/17)

Semestre	Insegnamento	SSD	Attività	Crediti	Docente	Ore frontali
	Elettronica analogica	ING-INF/01	B2	9	G. Vannini	90
1	Reti di telecomunicazioni e internet	ING-INF/03	В4	9	A. Conti	90
1	Matematica discreta ⁽²⁾	MAT/05		6	C. Bisi	60
	oppure		A1			
II	Metodi matematici per l'ingegneria ⁽³⁾	MAT/05		6	L. Brasco	60

Semestre	Insegnamento	SSD	Attività	Crediti	Docente	Ore frontali
II	Sistemi di controllo digitale	ING-INF/04	В3	9	S. Simani	90
11	Metodi matematici per II l'ingegneria ⁽³⁾ oppure			6	L.Brasco	60
ı	Linguaggi di descrizione dell'hardware ⁽⁴⁾	ING-INF/05	Al	6	M.Favalli	60
ı	oppure Matematica discreta ⁽²⁾					
		MAT/05		6	C.Bisi	60
	Internato/Tirocinio		F	3		

LT Terzo Anno (immatricolati nell'a.a. 2016/17)

Semestre	Insegnamento	SSD	Attività	Crediti	Docente	
	Corsi a libera scelta		D	12		
	Prova finale		E2	3		

Semestre	Insegnamento	SSD	SSD Crediti		Ore frontali	
1	Azionamenti elettrici	ING-INF/04	6	R.Mattioli	60	
П	Automazione industriale	ing-inf/04	6	E. Mainardi	60	
ı	Sistemi wireless	ING-INF/03	6	A. Conti	60	
II	Sistemi elettronici di misura	ING-INF/01	6	V.Vadalà	60	
II	Basi di dati +	ING-INF/05	6 +	E. Bellodi	60 +	
	Reti di calcolatori	ING-INF/05	6	M.Tortonesi	60	
	Sistemi wireless	ING-INF/03	6	A. Conti	60	
II	Laboratorio di segnali e sistemi	ING-INF/02	6	S. Bartoletti	60	

LM Primo e Secondo Anno UNIFE

- □ Il corso di studio prevede tre percorsi
 - ➤"Ingegneria Informatica"
 - ➤ "Tecnologie IT per Industria 4.0"
 - ➤ "Sistemi per l'Automazione"

Analisi di quest'ultimo percorso

LM Primo e Secondo Anno UNIFE (1)

	Insegnamenti obbligatori								
Anno	Semestre	Insegnamento	SSD	Attività	Crediti	Docente	Ore frontali		
Α	I	Sistemi di Supervisione Adattativi	ING-INF/04	В	6	S. Simani	60		
В		Tecniche di Controllo Multivariabile + Tecnologie dei sistemi di controllo	ING-INF/04	В	6 + 6		60 + 60		
ı	 - 	Basi di Dati + Reti di Calcolatori	ING-INF/05	В	6 + 6	E.Bellodi M.Tortonesi	60 + 60		
В		Programmazione Concorrente	ING-INF/05	В	6				
Α	II	Ricerca Operativa	MAT/09	C1	6	M. Nonato	60		
Α	I	Sistemi distribuiti e di intelligenza artificiale Corso Integrato: - Sistemi Distribuiti e Mobili - Fondamenti di intelligenza artificiale	ING-INF/05	В	6 + 6	C. Stefanelli + E. Lamma	60 + 60		

LM Primo e Secondo Anno UNIFE (2)

12 CFU di tipo B a scelta tra:									
А	II	Sistemi di Elaborazione	ING- INF/05	В	6	M. Ruggeri	60		
В		Sicurezza dei Sistemi Informatici in Internet	ING- INF/05	В	6		60		
1011	II	Progetto Automatico di Sistemi Digitali	ING- INF/05	В	6	M Favalli	60		

LM Primo e Secondo Anno UNIFE (3)

Insegnamenti consigliati a completamento del piano

Si consiglia un blocco di insegnamenti pari a 18 CFU di tipo C come suggerito sotto, secondo un orientamento verso l'area Meccanica o l'Elettronica.

(il totale complessivo di CFU di tipo C comprensivi dei CFU degli insegnamenti obbligatori

deve essere pari a 24 CFU).

qeve essere pari a 24 C.Fu)										
	18 CFU di tipo C dell'area Meccanica									
ı	I	Meccanica delle Macchine per l'Automazione	ING- IND/13	C3	6	R. di Gregorio	60			
II	I	Meccanica degli Azionamenti	ING- IND/13	C3	6	G. Dalpiaz	60			
=	II	Meccanica dei Robot	ING- IND/13	C3	6	R. Di Gregorio	60			
		18 CFU di tipo	C dell'area	Elettronic	a					
В		Architettura per Sistemi Embedded	ING- INF/01	C2	6	D. Bertozzi	60			
В		Elettronica per l'Efficienza Energetica	ING- INF/01	C2	6	G. Vannini	60			
Ioll	II	Sistemi Elettronici di Misura	ING- INF/01	C2	6	V.Vadalà	60			

LM Primo e Secondo Anno UNIFE (4)

	Esami a scelta autonoma	D	12	
П	Tirocinio o internato	 F	12	
II	Prova Finale Prova finale attività preparatoria alla tesi Prova finale discussione della dissertazione	E E	10	

LM Primo e Secondo Anno UNIFE (5)

	Insegnamenti a scelta libera consigliati come crediti di tipo D per il percorso "Sistemi per l'automazione"									
ı	I	Linguaggi di Descrizione dell'Hardware	ING-INF/05	В	6	M.Favalli	60			
Α	I	Compatibilità Elettromagnetica e certificazione di prodotto	ING-INF/02	C2	6	A.Giovannelli	60			
В		Metodi di Ottimizzazione	MAT/09	C1	6	M. Nonato	60			
Α	II	Data Mining and Analytics	INF/01	C1	6	F. Riguzzi	60			
Ioll	I	Economia e Organizzazione Aziendale	SECS-P/06	C4	6	L. Rubini	60			
1011	l	Strategia, Innovazione e Gestione Aziendale (solo per gli iscritti 2017/18)	ING-IND/35	C4	6	G.Cocchi	60			

Conclusioni

- ☐ Prevalgono gli aspetti di Elettronica ed Informatica
- □ La crescente complessità di PLC, Human-Machine Interface (HMI) e reti di comunicazione industriali sta rendendo dominanti gli aspetti <u>informatici</u>
- ☐ Rafforzare le competenze nel settore della Meccanica
 - Meccatronica
- □ Flessibilità, capacità di apprendimento e adattamento alle novità del settore Information Technology, applicate all'industria, sono quindi qualità essenziali per il Tecnico di Automazione!

Laboratorio di AUTOMATICA

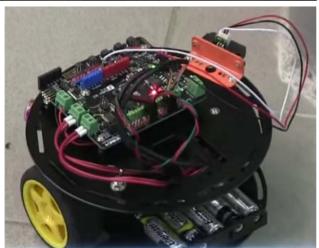
Dipartimento di Ingegneria Università di Ferrara

Attività di ricerca e tesi di laurea
Partnership industriali
Contatti internazionali

Il Laboratorio di Automatica o L.I.R.A.

- Lab. of Intelligent Robotics and Automation
 - (c/o Polo-Scientifico Tecnologico Blocco A)
- Laboratorio per attività di ricerca e per lo svolgimento di tesi di laurea
- Personale:
 - Un tecnico strutturato
 - Collaboratori a tempo determinato
- Supervisione:
 - Dott. Ingg. Bonfè Marcello e Silvio Simani
- www.youtube.com/user/AutomazioneUNIFE/


Attrezzature: robot commerciali, quadro con PLC



Attrezzature: robot commerciali hobbystici

Attrezzature: robot home-made

Tematiche per tesi di laurea: sezione A

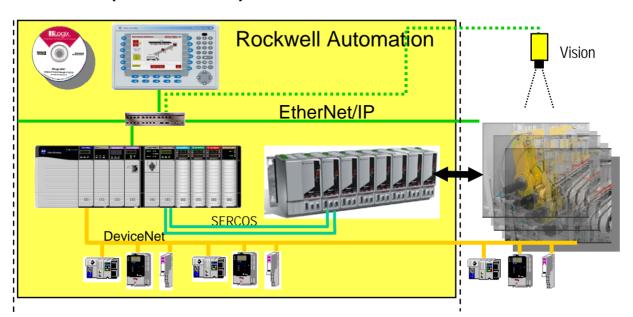
- Sviluppo hardware/software su microcontrollori per robotica hobbystica/prototipale:
 - Supervisione con Raspberry Pi di una cella robotica che emula un pick/place industriale con micromanipolatore uArm
 - Controllo a distanza di robot per entertainment come MiP e MiPosaur
 - Realizzazione di piccoli robot (manipolatori o mobili) con controllo basato su Arduino e simili

Tematiche per tesi di laurea: sezione B

- Sviluppo software per sistemi operativi real-time con tecnologie open-source (ROS, Orocos)
 - Autolocalizzazione e Navigazione di robot mobili, tramite sensori come Kinect, accelerometri, giroscopi
 - Teleoperazione di manipolatori tramite interfaccia con riflessione di forza (es. Novint Falcon)

— . . .

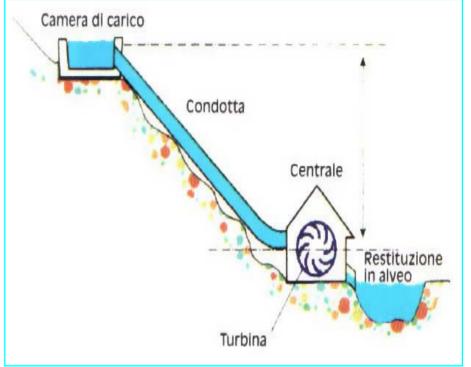
Vedi:


www.ros.org

www.orocos.org

Tematiche per tesi di laurea: sezione C

- Sviluppo software per automazione industriale in dotazione presso il laboratorio:
 - Rockwell Automation (CompactLogix)
 - Schneider Electric (ELAU PacDrive)
 - Siemens (S7-300)



Tematiche per tesi di laurea: sezione D

- Sviluppo di algoritmi di controllo tollerante ai guasti (Fault-Tolerant Control) per generatori elettrici ad energia eolica e idroelettrica:
 - Benchmark e challenge internazionale

Possibili partner per tirocini/stage

→ VM Motori SpA (Cento, FE) →

→ Tetra Pak (Modena) e Sidel (Mantova)

CT Pack Srl →
(Fossalta, FE)

➡ Unicom Srl (Casumaro, FE), ELE.TEC. (Occhiobello, RO), INAIL Centro Protesi (Budrio, BO)

Possibili partner per periodi all'estero

- ▶ ESO (European Organisation for Astronomical Research in the Southern Hemisphere): Garching
 - GERMANIA

Katholieke Universiteit Leuven – BELGIO

State Higher Vocational School in Glogow – POLONIA

… altri contatti con Università straniere…

