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‘L Lecture Main Topics

05/02/2026

General introduction

» State-of-the-art review

= Fault diagnosis nomenclature

Main methods for fault diagnosis

=« Parameter estimation methods

=« Observer and filter approaches

= Parity relations

= Neural networks and fuzzy systems

Application examples
Concluding remarks
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i Programme Details

= Introduction: Course Introduction
= Issues in Model-Based Fault Diagnosis

= Fault Detection and Isolation (FDI) Methods based
on Analytical Redundancy

= Model-based Fault Detection Methods

= The Robustness Problem in Fault Detection
= Fault Identification Methods

= Modelling of Faulty Systems
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i Programme Details (Cont'd)

= Residual Generation Techniques
= The Residual Generation Problem

= Fault Diagnosis Technique Integration

= Fuzzy Logic for Residual Generation
= Neural Networks in Fault Diagnosis
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i Programme Details (Cont'd)

s Observers for Robust Residual Generation

s Residual Robustness to Disturbances

= Application Examples
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Annual Meetings on FDI

s [FAC SAFEPROCESS Symposium

n Fault Detection Supervision & Safety for Technical Processes
=« 15t held in Baden—Baden, Germany in 1991
= 2" in Espo, Finland in 1994
= 3 at Hull, UK in 1997
= 4% held in Budapest, Hungary in 2000
= 5% at Washington DC, USA, July 2003
= 6% in Beijing, P.R. China, August 2006
= 7% in Barcelona, Spain, July 2009
= 8% in Mexico City, Mexico, August 2012
= 9t in Paris, France, 2015
= 10t in Warsaw, Poland, 2018
= 11%in Cyrpus, Greece, June 2022
= 12%in Ferrara, Italy, 4-7 June, 2024
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Nomenclature

05/02/2026

1. States and Signals

Fault
An unpermitted deviation of at least one characteristic property or
parameter of the system from the acceptable, usual or standard con-
dition.

Failure
A permanent interruption of a system’s ability to perform a required
function under specified operating conditions.

Malfunction
An intermittent irregularity in the fulfilment of a system’s desired

function.

Error
A deviation between a measured or computed value of an output
variable and its true or theoretically correct one.




Nomenclature (cont'd)

1. States and Signals

Disturbance
An unknown and uncontrolled input acting on a system.

Residual
A fault indicator, based on a deviation between measurements and
model-equation-based computations.

Symptom
A change of an observable quantity from normal behaviour.

05/02/2026



Nomenclature (Cont'd)

05/02/2026

2. Functions

Fault detection
Determination of faults present in a system and the time of detection.

Fault isolation
Determination of the kind, location and time of detection of a fault.
Follows fault detection.

Fault identification
Determination of the size and time-variant behaviour of a fault. Fol-
lows fault isolation.

Fault diagnosis
Determination of the kind, size, location and time of detection of a
fault. Follows fault detection. Includes fault detection and identifi-
catiorn.

Monitoring
A continuous real-time task of determining the conditions of a phys-

ical system. by recording information. recognising and indication
anomalies in the behaviour.

Supervision

Monitoring a physical and taking appropriate actions to maintain the
operation in the case of fault.
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Nomenclature (Cont'd)

3. Models

Quantitative model
Use of static and dynamic relations among system variables and pa-

rameters in order to describe a system’s behaviour in quantitative
mathematical terms.

Qualitative model

Use of static and dynamic relations among system variables in order
to describe a system’s behaviour in qualitative terms such as causal-

ities and [F-THEN rules.

Diagnostic model
A set of static or dynamic relations which link specific input variables,
the symptoms, to specific output variables, the faults.

Analytical redundancy

Use of more (not necessarily identical) ways to determine a variable,
where one way uses a mathematical process model in analytical form.

05/02/2026
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Nomenclature (Cont'd)

Reliability
Ability of a system to perform a required function under stated con-
ditions, within a given scope, during a given period of time.

Safety
Ability of a system not to cause danger to persons or equipment or
the environment.

Availability
Probability that a system or equipment will operate satisfactorily
and effectively at any point of time.

05/02/2026
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Nomenclature (Cont'd)

5. Twme dependency of faults

Abrupt fault
Fault modelled as stepwise function. It represents bias in the moni-
tored signal.

Incipient fault
Fault modelled by using ramp signals. It represents drift of the mon-
itored signal.

Intermittent fault
Combination of impulses with different amplitudes.

NOTE: Incipient fault (slowly developing fault)= hard to detect !!!

05/02/2026 I
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Nomenclature (Cont'd)

6. Fault terminology

Additive fault
Influences a variable by an addition of the fault itself. They may
represent, e.g., offsets of sensors.

Multiplicative fault
Are represented by the product of a variable with the fault itself.
They can appear as parameter changes within a process.

05/02/2026
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‘L Application Examples

s Simulated case studies

m Identification/FDI applications
m Real processes

m Research works

m Undergraduate theses topics

05/02/2026
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Simulated Application Examples

Simulated Gas Turbine

IGV [« PID
le LHV .
nor o
welCMpe; | HT™
Fm,_ . C Compressor
FN, _Bg__: n. FNpE‘} CC  Combustor (Combustion Chamber)
T, * Y v e _I;Ot CM  Compressor Map
T > > > ED  Exhaust Duct
I—J?'———' ID o C %C » CC Mf‘ T » ED > EG  Electric Generator
P oc Tot 1D Intake Duct
Ty, P, TZ* p2 T3’ p3 T, ]3:1 Ts’ ms IGV Inlet Guide Vanes
PID Proportional Integral Derivative Controller
T Turbine
» EG = TM  Turbine Map
B, C, P.C,
v

Figure 5.2: Block diagram of the single—shaft gas turbine.
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Simulated Application

Simulated Gas Turbine

IGV /= PID
M, LHV L
T]‘ Y : ‘
= CM o ™
Fm, .
L 2 ¥ v ise ! p

T, _;t

P . > -

B Jm| ¢ ke fecM| T [ JED
P. Toc T
1C ot

— EG
E.Ce R, C;

Figure 5.2: Block diagram of the single—shaft gas turbine.
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Examples (Cont'd)

Fuel mass flow rate

Lower Heating Value

Isentropic compressor efficiency
Compressor mass flow function
Compressor rotational speed function
Compressor pressure ratio

Isentropic expansion efficiency
Turbine rotational speed function
Turbine pressure ratio

i—th section (module) temperature (i = 1,--- .
i—th section (module) pressure (i =1,--- ., 5)

5-th module mass flow rate
Ambient temperature
Ambient pressure
Compressor power

Turbine power

Compressor torque
Turbine torque

Electrical power

o
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Simulated Application Examples (Cont'd)

Simulated Gas Turbine

Ur— M[‘
%~ R
V= Toc CC
IGV ™~
g ]
2l C T
g —
U= o ¥~ By
1_ ¥;— Tot i
D n B ED
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uy(t), Inlet Guide Vane (IGV) angular position («a);

uz(t), fuel mass flow rate (My).
y1(t), pressure at the compressor inlet (p;.);

)
y2(t), pressure at the compressor outlet (p,.);
y3(t), pressure at the turbine outlet (p,;);

)

y4(t), temperature at the compressor outlet (7,.);

ys(1), temperature at the turbine outlet (7,,);

yg (1), electrical power at the generator terminal (F.).
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Simulated Application Examples (Cont'd)
Simulated Gas Turbine (SIMULINK®)

u(t) y(t)
Inputs Qutputs
Compressor Combustor Turbine
"ot
Controller Gas turbine main cycle parameters (ISO design conditions).

Air mass flow rate [kg/s] 24.4

Cycle pressure ratio (P,./Fj.) 9.1

Figure 5.7: SIMULINK block diagram of the process. Electrical power (1) [KW] 5220

Exhaust temperature (7T,¢)[K| 796

Fuel mass flow rate (My) [ke/s] | 0.388

IGV angle range (Aa) [deg] 17
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Simulated Application Examples (Cont'd)

Simulated Power Plant: Pont sur Sambre

. Qd T.P, 0 1. super heater (radiation);
A | v T
@ I | l 2. super heater (convection);
*\/\A/‘J \—\/\/\/‘—| @ Ty T T
D 2 s \Hi M.P. B'p'j%' 3. super heater:;
< o < (0=
Iy 4. reheater;

©
VAVAVS
YAVAYS

@

5. dampers;

i 6. condenser;
D — 7. drum;
e , 8. water pump;
b : b
iQai 9. burner.
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Simulated Application Examples (Cont'd)

Simulated Power Plant: Pont sur Sambre

e I oY
G | pe—
Bl ivrd L L —t—
O @ |19 [Hpr=wmP._ BP
T s Ch
OKE @
Q-
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oas flow

turbine valves opening
super heater spray flow
oas dampers

air flow

steam pressure
main steam temperature
reheat steam temperature
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Simulated Application Examples (Cont'd)

Simulated Gas Turbine
y(t)

Actuators J £(0)
g £V
U.(t) - __—| u fLU*(t) y*(t)
N I () System
a1 L =~ t. t, !
air 1:5—- [ a(t) ¥ u(
I .
Valve angle  Turbine [nput sensors ol 6
Compressor Combustor y(t)| Output sensors
f; Controller
E T £(t)
Nl Figure 5.46: Turbine closed—loop scheme.
Controller

Figure 5.44: The monitored system.
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Simulated Application Examples (Cont'd)

Small Aircraft Model

Table 1: Nomenclature

V True Air Speed (TAS) H altitude

o angle of attack be elevator deflection angle

g angle of sideslip g aileron deflection angle

P roll rate 8y rudder deflection angle
pitch rate Vin throttle aperture percentage
vaw rate ~ flight path angle
bank angle g acceleration of gravity
elevation angle m airplane mass
heading angle I, I, L principal-axis inertia moments

engine shaft angular rate d; distance of c.g. from the Thrust line

Piper Malibu

05/02/2026
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Simulated Application Examples (Cont'd)

Small Aircraft Model

Table 1: Nomenclature

Vv True Air Speed (TAS) H altitude

et angle of attack e elevator deflection angle

&} angle of sideslip Oa aileron deflection angle

P roll rate O rudder deflection angle

Q pitch rate ey throttle aperture percentage

R yaw rate 04 flight path angle

@ bank angle g acceleration of gravity

d elevation angle 7 airplane mass

s heading angle I, I,, I, principal-axis inertia moments

7 engine shaft angular rate d; distance of c.g. from the Thrust line

05/02/2026
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Simulated Application Examples (Cont'd)

6.4 SOLAR ARRAYS DYNAMICS

6.1 SATELLITE OVERVIEW A GLOBALSTAR solar array has been selected. Its dimensions are recalled on the Figure 6-2.
- 4.917m ( [SAT-08]) -;
Za YOke — - .._..-.-.-..... o 8 Cells ‘l
B ._.__._.____ -
A — - » o 1 778m

< 1476m ([SAT-08])

Frgure 6-2 : MARS-EXPRESS solar array

Simple SA model

1380

Aerospace Satellite

I |

Figure 6-1: Satellite dimensions
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Simulated Application Examples (Cont'd)

Aerospace Satellite

zﬁxﬁIﬁﬂ '

W

1

Figure 6-3 : Thrusters implementation

/ f
Fig. 1: Mars Express spacecraft (MEX) (WwWw.esa.int)
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* Simulated Application Examples (Cont'd)

Manifacturing Process

05/02/2026
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i Simulated Application Examples (Cont'd)

Manifacturing Process JAM!

products

o)

2

(possibly unskilled)
human operator
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Introduction

Redundant >
Sensors . ,
Diagnostic|
Input logic
—r> Plant Sensors >
Output 5%%1.[%
—> FDI L. .
mathematical Dliignmtm >
> model 5 logIcC

Figure 1.1: Comparison between hardware and analytical redundancy schemes.
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Introduction (Cont'd)

05/02/2026

Input
u(t)

'

Fault alarm

Faults
s " X Output
» Actuators —> Plant » Sensors .
y(t)
_| Plant |_
| model |
¢ Model-based
Residual fault detection
generator
r(t) A4 Residuals
Residual
evaluation

Figure 1.2: Scheme for the model-based fault detection.
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Residual Generation

= This block generates residual signals
using available inputs and outputs from
the monitored system

= This residual (or fault symptom) should
indicate that a fault has occurred

= Normally zero or close to zero under no
fault condition, whilst distinguishably
different from zero when a fault occurs

05/02/2026
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i Residual Evaluation

= This block examines residuals for the
likelihood of faults and a decision rule is then
applied to determine if any faults have
occurred

= It may perform a simple threshold test
(geometrical methods) on the instantaneous
values or moving averages of the residuals

= It may consist of statistical methods, e.qg.,
generalised likelihood ratio testing or
sequential probability ratio testing

05/02/2026
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‘L Introduction (Cont'd)

m Model-Based FDI Methods:

1. Output observers (OO, estimators, filters);
2. Parity equations;

3. Identification and parameter estimation.

05/02/2026
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‘L Introduction (Cont'd)

m Signal Model-Based Methods:

1. Bandpass filters;

2. Spectral analysis (FFT);

3. Maximum-entropy estimation.

m Change Detection: Residual Analysis

1. Mean and variance estimation:
2. Likelihood-ratio test, Bayes decision;

3. Run-sum test.

05/02/2026
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‘L Introduction (Cont'd)

= Model Uncertainty and FDI

= Model-reality mismatch
» Sensitivity problem: incipient faults!

s Robustness in FDI
» Disturbance, modelling errors, uncertainty
» UIO and Kalman filter: robust residual generation

= System Identification for FDI
= Estimation of a reliable model
= Modelling accuracy
» Disturbance estimation

05/02/2026
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Introduction (Cont'd)

m Fault Identification Methods
= Fault nature (type, shape) & size (amplitude)

1. Geometrical distance and probabilistic methods;
2. Artificial neural networks;

3. Fuzzy clustering.

s Approximate Reasoning Methods:

1. Probabilistic reasoning;
2. Possibilistic reasoning with fuzzy logic;

3. Reasoning with artificial neural networks.

05/02/2026
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‘L Introduction (Cont'd)

m FDI applications status & review

Table 1.1: FDI applications and number of contributions.

Application Number ofﬁytributions
Simulation of real processes l’ 55 o
Large-scale pilot processes il g
Small-scale laboratory processes il
Full-scale industrial processes ., ;%?_‘ .

Table 1.2: Fault type and number of contributions.

Fault type Number g)f egntributions
=
Sensor faults v, 697
Actunator faults 3“)1 ",
Process faults I§3 :
Control loop or controller faults g=*

05/02/2026
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Introduction (Cont'd)

m FDI applications status & review

Table 1.3: F'DI methods and number of contributions.

Method type Number of geytributions
S
Observer ', 53 @
anm
Parity space PETIN
Parameter estimation "51 ‘:
|}
Frequency spectral analysis '
Neural networks 9

Table 1.4: Residual evaluation methods and number of contributions.
Evaluation method | Number of contributions

Neural networks §19 :

. ®ane
Fuzzy logic 5"
Bayes classification 4
Hyvpothesis testing 8

05/02/2026
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Introduction (Cont'd)

m FDI applications status & review

Table 1.5: Reasoning strategies and number of contributions.
| Reasoning strategy | Number of contributions |

Rule based 10
Sign directed graph
Fault symptom tree

Fuzzy logic

(o0 I SR

Table 1.6: Applications of model-based fault detection.

| FDD | Number of contributions
Milling and grinding processes 41
Power plants and thermal processes 46
Fluid dynamic processes 17
Combustion engine and turbines 36
Automotive 8
Inverted pendulum 33
Miscellaneous 42
DC motors 61
Stirred tank reactor 27
Navigation system 25
Nuclear process 10

05/02/2026
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‘L Model-based FDI Techniques

Input Output
—T1—> Process >

Measurements

Megpurenents

Residual
generation

vlr Residuals
Residual
evaluation

v Fault information

Figure 2.1: Structure of model-based FDI system.
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Model-based FDI Techniques (Cont'd)

]. Residual generation: this block generates residual signals using avail-
able inputs and outputs from the monitored system. This residual (or fault
symptom) should indicate that a fault has occurred. It should normally
be zero or close to zero under no fault condition, whilst distinguishably
different from zero when a fault occurs. This means that the residual is
characteristically independent of process inputs and outputs, in ideal con-
ditions. Referring to Figure 2.1, this block is called residual generation.

2. _Residual evaluation: This block examines residuals for the likelihood
of faults and a decision rule is then applied to determine if any faults have
occurred. The residual evaluation block, shown in Figure 2.1, may perform
a simple threshold test (geometrical methods) on the instantaneous values
or moving averages of the residuals. On the other hand, it may consist of
statistical methods, e.q., generalised likelihood ratio testing or sequential
probability ratio testing [Isermann, 1997, Willsky, 1976, Basseville, 1988,
Patton et al., 2000].

05/02/2026
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Model-based FDI Techniques (Cont'd)
» Modelling of Faulty Systems

o u* (1) v (¢)
— Actuators Plant >
Input é Output
Sensors

SENSOrs

u(t) Ay‘ FDI system |«—{ ¥ (%)

Controller |«

T

Reference
signals

Figure 2.2: Fault diagnosis in a closed-loop system.
05/02/2026
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Model-based FDI Techniques (Cont'd)

05/02/2026

|
| Output sensors |
Ilnput SCNSOrs (1) |
y
: @ u*(t) g Plant h@ :
t
| u® YO
| Actuators [ Controller |
| Reference |
L _ _ _signals ||
' » FDI system < Y
u(t) y(t)

Figure 2.3: The rearranged fault diagnosis scheme.
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Model-based FDI Techniques (Cont'd)

Controller fault
N
~——-—-——-eeee—————  Controller I e
- ]
f(t) £(t)
P *
L »|Actuatorsf— (t);; Process y*(t) s
ug(t)
£(t) fy(t)
Input sensors Qutput sensors —————-
u(®) y(1)
Y

Figure 2.4: The controlled system and fault topology.
05/02/2026
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Model-based FDI Techniques (Cont'd)

Fault Location:

m Actuators

m Process or system
components

= [nput sensors

a Qutput sensors

a Controllers

05/02/2026

Controller fault
N
~——---eeee———+  Controller l R
I )
(1) £(t)
R T
L »|Actuators|— (t)-,- Process y*(t)
Ug(t)
f(t) £(0)
Input sensors Output sensors ——-——--
u y()
Y

Figure 2.4: The controlled system and fault topology.
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i Model-based FDI Techniques (Cont'd)
Fault and System Modelling

£,(1) £.(t)
up(t l u*(t) l v* (1)
—R—{l Actuators Plant »
Input @ Output
Sensors f.(t) t,(t) Sensors
uml IR0

Figure 2.5: The monitored system and fault topology.

Ax(t) + Bu*(t)
Cx(t)

——
Ja
_I_
=
|

<
*
—_
—
e’
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i Model-based FDI Techniques (Cont'd)
Fault and System Modelling

fa (ﬂ fc[:t)

un(?) : u* (1) l v*(1)

—> Actuators » Plant P
Input é‘i *)é Output

Sensors £, (1) £, (1) Sensors
ut) l l y(?)

x(t+ 1) = Ax(t) + Bu™(t) + f.(¢)

Figure 2.5: The monitored system and fault topology.

——,
=
—
—
—
I
=
*

Ax(t) + Bu*(t)
Cx(t)

J‘_'n‘_"\
-
* A
—_—, T
=

Il
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i Model-based FDI Techniques (Cont'd)
Fault and System Modelling

*(t Tt -
O prant |—— (ue = wra
% % y(t) = y*(t) +y(t)
f,,(t)7 Input Output £, (t)
'Lll:ﬁ) SENSOrs Sensors }’T(ﬂ
Figure 2.6: The structure of the plant sensors. { u(t) = u*(f) + E‘(f*) + £ ()
y(t) = y*(t) +y(t) + ()
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i Model-based FDI Techniques (Cont'd)
Fault and System Modelling

£,(1) fe(1)

l l

uz() Actuators i(f—)" Plant y'() >
Inpugi 4)%} OUtpUt
Sensors £u () f,(t) Sensors
u(t) l l y (1)
x(t+1) = Ax(t)+f.(t) + Bu*(t)
u*(t) = upg(t) + fa(t) { y(t) =  Cx(t) +f,(t)
u(t) = u*(t) + fu(?)
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‘“\/Iodel-based FDI Techniques (Cont'd)

(1) fcl(t}
Eﬂ Actuators 0 Plant Y70 > . MOdelhng
put (%4 ,%5 Output of Fault
SEIIIIE;[‘S £u(t) £, (t) Sensors Y
l Systems
u(t) y y(t)

Figure 2.7: Fault topology with actuator input signal measurement.

x(t+1) = Ax(t)+f.(t)+ Bf.(t) + Bu*(t)
u(t) = t)

x(t+1) = Ax(t)+Bu*(t)+ Lif(#)

y(t) = Cx(t) + Lof(#)

u(t) = u*(t) + Laf ()
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Wodel—based FDI Techniques (Contd)

fa(tj fl(f}
Eﬂ Actuators 0 Plant Y () > . MOdelhng
Input é"_ %} Output Of Faulty
Sensors £ (1) £,(t) Sensors Sys tems
u(t) ¢ y(t)

Figure 2.7: Fault topology with actuator input signal measurement.
y(z) = Gyus (2)u"(2) + Gy (2)(2)
m Transfer function
description:

Pt
PRD
S
M;‘m
2
Il
®
N
—
|
=
L
ws!

05/02/2026



51

‘L Residual Generator Structure

Inputs Outputs {Z(t) — I"T-""l(u(-).y(ﬂ)
u(t) y(t) r(t) = Wa(z().y()) = o0.
—> Plant -

Under fault-free

L W (u().y () =] Wa(z(),y (")) Residuals assumptions, the

z(t) r(t)

residual signal r(7)

Figure 2.8: Residual generator general structure, IS “almost” 7ero

05/02/2026



52

‘L Residual General Structure (Cont'd)

y(?) n

—T Plant

—

Simulator or
| output estimator

Figure 2.9: Residual generation via system simulator.

05/02/2026

Residuals

S

()

Residual generation
via system simulator

r(0) = y(o) — z(?)

z(t) 1s the simulated
plant output




53

‘L Residual General Structure (Cont'd)

System
f(z)
» G (2)
u(2) s | YO
1 @ -

_|_

_|_

1 B = H@

A

r(z)

Figure 2.10: Residual generator general structure.

05/uz/ 2uco

Residual generator

Y(2) = Gyur (2)u”(2) + Gyy(2)f(2)

Residual generator:

r(t) =0 if and only if () =0

Constraint conditions: design

Hu‘ (Z) + Hy (E)Gyu’ =0
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‘L General Residual Evaluation

T(e(0) S0 for f()=0
J(r(t)) >i=(t) ifor f(t)#0 auity residua
Fault
/ free

residual

e

Detection thresholds

(t)

1000 2000 3000 4000 5000
Data Samples
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General Residual Evaluation (example)

Detection thresholds

1
0-3 Residual
0.2
0.1 |
Residual o : mw
o1l I U AP
0.2
0.3l
0.4 e _s——
-0.3 1000 2000 F000 4090~ so¢ =05 1000 2000 7;foo 4000 5000
Data SAmples Data Samyples
Fault free residual Fault-free & faulty residuals
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i Residual Generation Techniques

> Fault detection via parameter

estimation

» Observer-based approaches

» Parity (vector) relations

05/02/2026



Fault Detection via
Parameter Estimation
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i Parameter Estimation

s Parameter estimation for fault detection

= The process parameters are not known at all, or
they are not known exactly enough. They can be
determined with parameter estimation methods

s The basic structure of the model has to be known

= Based on the assumption that the faults are
reflected in the physical system parameters

= The parameters of the actual process are
estimated on-line using well-known parameter
estimations methods

05/02/2026
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i Parameter Estimation (Cont'd)

= The results are thus compared with the
parameters of the reference model obtained
initially under fault-free assumptions

= Any discrepancy can indicate that a fault may
have occurred

= An approach for modelling the input-output
behaviour of the monitored system will be
recalled and exploited for fault detection

05/02/2026
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‘L Equation Error (EE) Approach

= SISO model
y(t) =o'e
= Parameter vector
O =[ay...an, by...by,]
= Regression vector

gl =yt —1)...y(t—n) ult—1)...u(t —n)]

05/02/2026
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‘L Equation Error Method

m Equation error
e(t) =y(t) —wle

= Model of the process (Z-transform)
y(t)  B(z)

u(t)  A(z)
= Estimated polynomials

e(t) = B(2)u(t) — A(2)y(1)

05/02/2026
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‘_LEquation Error Method (Cont'd)

= Estimation of the process model: LS
e =w" v lely
= LS minimisation

{ J(@) = Y . (t)=ele

0.

Q.
O
|

05/02/2026
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‘_LEquation Error Method (Cont'd)

= Estimation of the process model: RLS

o~ ~

Ot +1) = Ot) + (1) [y(t + 1) o (t+ 1Ot + 1)]

= Estimate recursive adaptation

(1) = lI'T(t—I—l)P(lt)!If(t—l—l)—l—lP(t)"’p(t +1)
P

I — ()P (t+1)] P(t).

~~
o~
_|_
-
~—
|

Note: see on-line estimation approach
05/02/2026
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i Parameter Estimation via EE

s Recursive estimation

. ig . of the transfer
function polynomials
v v = Equation error
B(z) ﬂ%)— A(z) = Parameter
A ¢ A estimation via
Parameter recursive algorithm
estimator « RLS

o
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+

Links Between Input-
Output and State-Space
Discrete-Time LTI Models

05/02/2026



66

i Input-Output Model (EE)

= The input to output discrete-time model
behaviour can be mathematically described
by a set of ARX Multi-Input Single-Output
(MISO) models
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i Input-Output Model (EE)

= /mis the number of the output variables

= The order nand the parameters o, ; and f;;  with /
= 1,...,m, of the model are determined by the
identification approach

= The term ¢(t) takes into account the modelling
error (EE)
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i State-Space Equivalent Model

= The input-output EE model has a state space
“realisation” as follows:

= The matrices (A,B,C, B, , D, ) of a state space
representation in canonical form of the r-th order
system are defined as follows:
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‘L State-Space Matrices
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State-Space Matrices (Cont'd)

Kgé,r,l 0

Note that the
matrix §; is always
non-singular
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‘L State-Space Matrices (Cont'd)

In Matlab:

TF2SS Transfer function to state-space conversion.

[A,B,C,D] = TF2SS(NUM,DEN) calculates the state-space representation
from a single input. Vector DEN must contain the coefficients of the
denominator in descending powers of s. Matrix NUM must contain the
numerator coefficients with as many rows as there are outputs y

Note: for MIMO models, use ss and tf functions
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‘L Residual General Structure

m Observer-based approach

Plant model

u(t) x(t+1) = Ax(t) + Bu(t y(t)
" yEJ | —CX8+ " > {K(Hl) = Ax(t) + Bu(?)
N y (1) = Cx(1).
T—ed
H |« W —
- r(t)
— B —1 X(q- C >
: ’ 0 Observer model
(t 4 1)
A |« {:Z:(t+1} = Ax(t) +Bu(t) + He(t)
e(t) = y(t) = Cx(t).

Output estimation approach!
05/02/2026
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‘L Residual Generator Structure

(t+1) = Ax(f)+ Bu(t)
Plant model {;{(f—) ~ oo

X(t+1) = Ax(t) +Bu(t) + He(t
Observer model {:((t)+ ) - y(?)(igi(?)(_H e(t)

ez (1) x(t) — x(t)

State estimation model { en(t + 1) (A — HC)eu (f).

State estimation property lim e.(t) =0 (fault-free case!!!)
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‘L Residual Generator Property

+ disturbance signals and fault

Figure 2.14: MIMO process with faults and noises.

05/02/2026

x(t+1)

Lo

Ax(t) + Bu(t) + Qv(t) + Ly (1)
Cx(1) + Rw(t) 4+ Lof (1)
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i Residual Generator Property (Cont'd)

+ fault signals
x(t+1) = Ax(t)+Bu(t) +Qv(t) + L, f(¢#)
System model { v (t) —  Cx(t) + Rw(t) + Lof(#) 1
Observer model ex(t+1) = (A — HC)ex(t) + Laf(t) — HLof (1)

e(t) = Cey(t) + Laf(t).

Output estimation error
with faults but noise-free

Both e(?) and e (t) are suitable residuals!
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‘L General Residual Evaluation

T(e(0) S0 for f()=0
J(r(t)) >i=(t) ifor f(t)#0 auity residua
Fault
/ free

residual

e

Detection thresholds

(t)

1000 2000 3000 4000 5000
Data Samples
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i Change Detection & Residual Evaluation

{ T (x(t)) gm for £(t) =0  |[U@)=0

J (r(1)) :}:(ﬂ for £(t) # 0 Faulty residual
Fault
free

residual

B} 2R B P} g

.
----

Detection thresholdg

1000 2000 3000 4000 5000
Diata Samples
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‘L Residual Generation

v" Output Observers

» Recall the output observer design

v Fault Detection

» Fault Isolation, i.e. where is the
fault?
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‘L Output Observer

Process model with faults u® | process y®
x(t+1) = Ax(t)+ B(u(t) +f.(t)) + f.(t)
v (1) = Cx(t), -
Residual
.
Input-output sensor faults .
r(t)
l_l(f-) = Tt ) (T) '|.r
y(t) = f£,(t) +y*(1) Residual
evaluation
Observer for the i-th output y;(t) }fault

X' (t+1) = Aix'(t) + Biu(t) + K, (yi(t) — Cix' (1))

(Ai,Bl.,Cl.) 1s the state —space process model
05/02/2026
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i Output Observer for Fault Detection

Given the observer model
X' (t+1) = Ax'(t) + Byu(t) + K; (v () — Cix' (1))
Under fault-free assumptions

ri(t) =yl (t) — a(t) = C; (Xi(f) — xi(t)) is equal to zero.

Fault detection logic

fixed threshold e,
r(t) <e for f(t)
r(t) > e for f£(t)

0

e

f(t) being a generic failure vector.
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i Output Observer for Fault Isolation

s
—~ T~
_|_
e
Il

Ax(t) + Bu(t) + Bf, (1) }

Cx(1) + 1, (1) Bank of output observers

Process model u (1) ¥ (1

— | System

x'(t+1) = Ax'(t) + Byu(t) + > ?
+ K; (yi(f‘) — Cix' (ﬂ) — (Ohserver; —ET
(t) + 0 7
* ~ : [LINE ¥ T SONSOTS
i) = 50 — (D) = Ci () < () S | Ot o
r2

V(0= (O + £ (2) —

- Observer, —
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iOutput Observer for Fault Isolation (Cont'd)

Bank of

x'(t+1) = Ax'(t) + Biu(t) + K; (i () — Cix' (1)) output observers

ra(t) =y (t) — 5a(t) = Cs (xa(t) — (1))

Faul u (1) y* ()
ault-free case. - ——
o 9
. ., — |y (1) — /2- i(¢ —
i )= i (1) € ) =0 —
—= Observer; —
Py @
F aulty case u(t) * UYs Output sensors
— Observery —
* - r2
5, (0=, O+ /0 "
"E*
— Observer,;— Jm
'm
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utput Observer for Fault Isolation (Cont'd)

Table 4.1: F:

ault signatures.

x'(t+1) = Ax'(t) + Byu(t) +

U1 U2 c e Up U1 2 Um
r.(__-}l 1“‘i1 . .I.....l. “ '.....U ]
¢ TS ., N
ro, B 1 1RO 0
:|1’ ' P
. v . . ’0. RN :
) 4 . 0. . Q. .
. o1 oy e,
Tr“'(—_""m. '_I_'.. 1 “‘1‘ 0 0 .. "0,‘ I‘n
...
Y

Fault-free case:

lim r;(t) = lim (y;(t)

t— 00 t—o0

- C'x'(t)) =0

Faulty case

limr(¢) =0

ﬁﬁﬁﬁﬁﬁﬁ

05/

UZ]Z0Z0

¥ =y O+ f(©)

Bank of

output observers

) v
——{ System -
(I
U1
— Observery —
r @
! * Ya Output sensors
—= Observers —
T2 %
* *
.
L e {:}h-‘if‘l’l’ﬂl‘m—— Ym
"m
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‘_L Multiple FDI

u*(t) y*(t)

System —@[—b

ﬂ - r .
I%] .| Observery 1 y (1)

T 11

g 1 .
o = "2
Observery —

uq

i—
r.
Observer, —

Input sensor FDI
05/02/2026

— 71— System

o ¢
(7
—= Observery —
el
u(t) ] yi
—= Observer, —
ro %9
! Upn
—= Observer,,—
I'm
Output sensor FDI
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‘L Residual Disturbance Robustness

m Residuals

decoupled from () — Lu o,
disturbance + W(ﬂ
m Robust residual "o.f_(f}.j' Q _@ g
generator Ly X(t+1)  x(t)
= Disturbance u{t) —| B ) 2= >
effect "
minimisation A |

m Measurement
errors

05/02/2026

Figure 2.14: MIMO process with faults and noises.
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‘L FDI with Noisy Measurements

Ax(t )+B-H-(J‘J+QV{ 1+L1f( )
Cx(t )+=Rw fI+L;,.f1”f

v Model with fault and noise

Ax(t) + Bu(t) + Qv(t)
Cx(t) + Rw(t)

» Model with noise only: Kalman filter!

05/02/2026



;

05/02/2026

Fault Detection with
Parity Equations



89

iParity Relations for Fault Detection

= The basic idea of the parity relations approach is
to provide a proper check of the parity
(consistency) of the measurements acquired
from the monitored system

= In the early development of fault diagnosis, the
parity vector (relation) approach was applied to
static or parallel redundancy schemes, which may
be obtained directly from measurements
(hardware redundancy) or from analytical
relations (analytical redundancy)
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iParlty Relations for Fault Detection

= In the case of hardware redundancy, two methods
can be exploited to obtain redundant relations

= The first requires the use of several sensors
having identical or similar functions to
measure the same variable

= The second approach consists of dissimilar
sensors to measure different variables but with
their outputs being relative to each other

= Analytical forms of redundancy
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‘L Analytical Redundancy

= Model (M) and process (P)

Gy(z) = % Gp(z) = ég)

T

s Error vector

05/02/2026
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‘L Analytical Redundancy (OE)

= Models, if:

Gu(z) = Gp(z) i.e. gzi _ ggg

= Residual, with input and output faults

A(2)
B(z)

r(z) = Ful2) + fy(2)
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‘L Analytical Redundancy (OE)

=u-#

u(?) A2) y(©)
P :“’ B(Z) ’:'

0“;\m=..0
s A(Z)
—— I = =

~. B(2)."
LS ._._‘_‘ L d

(a) Output error
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‘L Parity Relation (EE)

05/02/2026

>

uo o AE y()
B(z)

= B) 4_’?;* AG) *
r(s)

(b) Equation error
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i Parity Relations via EE

= According to EE, another possibility for
generating a polynomial error:

r(z) A(2)y(2) — B(2)u(z)
B
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i Parity Relations

05/02/2026

The previous equations that generate residuals
and are called parity equations under the
assumptions of fault occurrence and of exact
agreement between process and model

However, within the parity equations, the model
parameters are assumed to be known and
constant, whereas the parameter estimations
can vary the parameters of the polynomials in
order to minimise the residuals



Change Detection and
Symptom Evaluation
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i Residual Evaluation

= When the residual generation stage has
been performed, the second step requires
the examination of symptoms in order to
determine if any faults have occurred

= A decision process may consist of a simple
threshold test on the instantaneous values
of moving averages of residuals
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i Residual Evaluation (Cont'd)

= On the other hand, because of the presence of
noise, disturbances and other unknown signals
acting upon the monitored system, the decision
making process can exploits statistical methods

= In this case, the measured or estimated
quantities, such as signals, parameters, state
variables or residuals are usually represented by
stochastic variables
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‘L Residual Evaluation (Cont'd)

= Mean and standard values
i = EAri(t) }; E{[ri(t) — )%}

= Residuals or symptoms

Ar; = E{T@'(t) — ﬂ}; Ao, = E{O‘i(t) — 5‘@}
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i Residual Evaluation (Cont'd)

s Fixed threshold selection

= By a proper choice of ¢, a compromise has
to be made between the detection of small
faults and false alarms

= More complex residual evaluation schemes
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i Residual Generation Problem

s Robusthess issues!
= Two design principles:

» Uncertainty is taken into account at the residual
design stage: active robustness in fault diagnosis

» Passive robustness makes use of a residual
evaluator with proper threshold selection
methods (fixed or adaptive)
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i FDI Technique Integration

= Several FDI techniques have been developed and
their application shows different properties with
respect of the diagnosis of different faults in a
process

= [0 achieve a reliable FDI technique, a good
solution consists of a proper integration of several
methods which take advantages of the different
procedures

= Exploit a knowledge-based treatment of all
available analytical and heuristic information
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‘L Fuzzy Logic for Residual Generation

= Classical fault diagnosis model-based methods
can exploit state-space of input-output dynamic
models of the process under investigation

= Faults are supposed to appear as changes on the
system state or output caused by malfunctions of
the components as well as of the sensors

= The main problem with these techniques is that
the precision of the process model affects the
accuracy of the detection and isolation system as
well as the diagnostic sensitivity
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fuzzy Logic for Residual Generation (Cont'd)

= The majority of real industrial processes are
nonlinear and cannot be modelled by using a single
model for all operating conditions

= Since a mathematical model is a description of
system behaviour, accurate modelling for a complex
nonlinear system is very difficult to achieve in
practice

= Sometimes for some nonlinear systems, it can be
impossible to describe them by analytical equations
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fuzzy Logic for Residual Generation (Cont'd)

= Sometimes the system structure or parameters are not
precisely known and if diagnosis has to be based
primarily on heuristic information, no qualitative model
can be set up

s Because of these assumptions, fuzzy system theory
seems to be a natural tool to handle complicated and
uncertain conditions

= Instead of exploiting complicated nonlinear models, it is
also possible to describe the plant by a collection of
local affine fuzzy models, whose parameters are
obtained by identification procedures
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i Residual Generation via Fuzzy Models

process
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i Neural Networks in Fault Diagnosis

= Quantitative model-based fault diagnosis
generates symptoms on the basis of the
analytical knowledge of the process under
investigation

= In most cases this does not provide enough

information to perform an efficient FDI, /.e., to
indicate the location and the mode of the fault

= A typical integrated fault diagnosis system uses
both analytical and heuristic knowledge of the
monitored system

05/02/2026



110

i Neural Networks in Fault Diagnosis (Cont'd)

= The knowledge can be processed in terms
of residual generation (analytical
knowledge) and feature extraction
(heuristic knowledge)

= The processed knowledge is then provided
to an inference mechanism which can
comprise residual evaluation, symptom
observation and pattern recognition
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i Neural Networks in Fault Diagnosis (Cont'd)

= In recent years, neural networks (NN) have been
used successfully in pattern recognition as well as
system identification, and they have been
proposed as a possible technique for fault
diagnosis, too

= NN can handle nonlinear behaviour and partially
known process because they learn the diagnostic
requirements by means of the information of the
training data
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i Neural Networks in Fault Diagnosis (Cont'd)

= NN are noise tolerant and their ability to generalise the
knowledge as well as to adapt during use are extremely
interesting properties

= FDI is performed by a NN using input and output
measurements
= NN is trained to identify the fault from measurement patterns
= Classification of individual measurement pattern is not always
unique in dynamic situations
= Fault diagnosis of dynamic plant is not practical and other
approaches should be investigated
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i Neural Networks in Fault Diagnosis (Cont'd)

= A NN could be exploited in order to find a dynamic model
of the monitored system or connections from faults to
residuals

= In the latter case, the NN is used as pattern classifier or
nonlinear function approximator

= NN are capable of approximating a large class of functions
for fault diagnosis of an industrial plant

= The identification of models for the system under diagnosis
as well as the application of NN as function approximator
will be shown
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i Neural Networks in Fault Diagnosis (Cont'd)

= Quantitative and qualitative approaches have a lot of
complementary characteristics which can be suitably
combined together to exploit their advantages and to
increase the robustness of quantitative techniques

= Partial knowledge deriving from qualitative reasoning is
reduced by quantitative methods

= Further research on model-based fault diagnosis consists
of finding the way to properly combine these two
approaches together to provide highly reliable diagnostic
information
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‘L FDI with Neural Networks

Process

05/02/2026

Measurements

Residual
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Residual
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— Fy
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i FDI with Neural Networks conta)

= As described in the figure, the fault diagnosis
methodology consist of 2 stages

= In 1st stage, the fault has to be detected on the
basis of residuals generated from a bank of output
estimators, while, in the 2nd step, fault
identification is obtained from pattern recognition
techniques implemented via NN

= Fault identification represents the problem of the
estimation of the size of faults occurring in a
dynamic system
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i FDI with Neural Networks conta)

= A NN is exploited to find the connection from a
particular fault regarding system inputs and
output measurements to a particular residual

= The output predictor generates a residual which
does not depend on the dynamic characteristics
of the plant, but only on faults

= NNs classify static patterns of residuals, which
are uniquely related to particular fault conditions
independently from the plant dynamics
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i FDI with Neural Networks conta)

= NNs have been used both as predictor of
dynamic models for fault diagnosis, and pattern
classifiers for fault identification

= The most frequently applied neural models are
the feed-forward perceptron used in multi-layer
networks with static structure

= The introduction of explicit dynamics requires the
feedback of some outputs through time delay
units
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i FDI with Neural Networks conta)

= Alternatively to static structure, NN with
neurons having intrinsic dynamic properties
can be used

= On the other hand, NN can be effectively
exploited for residual signal processing,
which is actually a static patter recognition

problem
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i FDI with Neural Networks conta)

= Fault signals create changes in several
residuals obtained by using output
predictors of the process under
examination

= A neural network is exploited in order to
find the connection from a particular fault
regarding input and output measurements
to a particular residual
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i FDI with Neural Networks conta)

= The predictors generate residuals independent
of the dynamic characteristics of the plant and
dependent only on sensors faults

= Therefore, the neural network evaluates static
patterns of residuals, which are uniquely related
to particular fault conditions independently from
the plant dynamics
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‘L Conclusion

v" Model-Based FDI
v Analytical Redundancy
v’ State-Space Models

v" Residual Generation

v" Dynamic Observers

v" Qutput observers

v Residual Evaluation/Change Detection

05/02/2026



	Diapositiva 1: Supervision & Condition Monitoring Strategies for Technical Processes: Model-Based & Data-Driven Methods
	Diapositiva 2: Lecture Main Topics
	Diapositiva 3: Programme Details
	Diapositiva 4: Programme Details (Cont’d)
	Diapositiva 5: Programme Details (Cont’d)
	Diapositiva 6: Annual Meetings on FDI
	Diapositiva 7: Nomenclature
	Diapositiva 8: Nomenclature (cont’d)
	Diapositiva 9: Nomenclature (Cont’d)
	Diapositiva 10: Nomenclature (Cont’d)
	Diapositiva 11: Nomenclature (Cont’d)
	Diapositiva 12: Nomenclature (Cont’d)
	Diapositiva 13: Nomenclature (Cont’d)
	Diapositiva 14: Application Examples
	Diapositiva 15: Simulated Application Examples
	Diapositiva 16: Simulated Application Examples (Cont’d)
	Diapositiva 17: Simulated Application Examples (Cont’d)
	Diapositiva 18: Simulated Application Examples (Cont’d)
	Diapositiva 19: Simulated Application Examples (Cont’d)
	Diapositiva 20: Simulated Application Examples (Cont’d)
	Diapositiva 21: Simulated Application Examples (Cont’d)
	Diapositiva 22: Simulated Application Examples (Cont’d)
	Diapositiva 23: Simulated Application Examples (Cont’d)
	Diapositiva 24: Simulated Application Examples (Cont’d)
	Diapositiva 25: Simulated Application Examples (Cont’d)
	Diapositiva 26: Simulated Application Examples (Cont’d)
	Diapositiva 27: Simulated Application Examples (Cont’d)
	Diapositiva 28: Introduction
	Diapositiva 29: Introduction (Cont’d)
	Diapositiva 30: Residual Generation
	Diapositiva 31
	Diapositiva 32: Introduction (Cont’d)
	Diapositiva 33: Introduction (Cont’d)
	Diapositiva 34: Introduction (Cont’d)
	Diapositiva 35: Introduction (Cont’d)
	Diapositiva 36: Introduction (Cont’d)
	Diapositiva 37: Introduction (Cont’d)
	Diapositiva 38: Introduction (Cont’d)
	Diapositiva 39: Model-based FDI Techniques
	Diapositiva 40: Model-based FDI Techniques (Cont’d)
	Diapositiva 41: Model-based FDI Techniques (Cont’d)
	Diapositiva 42: Model-based FDI Techniques (Cont’d)
	Diapositiva 43: Model-based FDI Techniques (Cont’d)
	Diapositiva 44: Model-based FDI Techniques (Cont’d)
	Diapositiva 45: Model-based FDI Techniques (Cont’d)
	Diapositiva 46: Model-based FDI Techniques (Cont’d)
	Diapositiva 47: Model-based FDI Techniques (Cont’d)
	Diapositiva 48: Model-based FDI Techniques (Cont’d)
	Diapositiva 49: Model-based FDI Techniques (Cont’d)
	Diapositiva 50: Model-based FDI Techniques (Cont’d)
	Diapositiva 51: Residual Generator Structure
	Diapositiva 52: Residual General Structure (Cont’d)
	Diapositiva 53: Residual General Structure (Cont’d)
	Diapositiva 54: General Residual Evaluation
	Diapositiva 55: General Residual Evaluation (example)
	Diapositiva 56: Residual Generation Techniques
	Diapositiva 57: Fault Detection via Parameter Estimation 
	Diapositiva 58: Parameter Estimation 
	Diapositiva 59: Parameter Estimation (Cont’d)
	Diapositiva 60: Equation Error (EE) Approach
	Diapositiva 61: Equation Error Method
	Diapositiva 62: Equation Error Method (Cont’d)
	Diapositiva 63: Equation Error Method (Cont’d)
	Diapositiva 64: Parameter Estimation via EE
	Diapositiva 65: Links Between Input-Output and State-Space Discrete-Time LTI Models 
	Diapositiva 66: Input-Output Model (EE)
	Diapositiva 67: Input-Output Model (EE)
	Diapositiva 68: State-Space Equivalent Model
	Diapositiva 69: State-Space Matrices
	Diapositiva 70: State-Space Matrices (Cont’d)
	Diapositiva 71: State-Space Matrices (Cont’d)
	Diapositiva 72: Observer-based Approaches 
	Diapositiva 73: Residual General Structure
	Diapositiva 74: Residual Generator Structure
	Diapositiva 75: Residual Generator Property
	Diapositiva 76: Residual Generator Property (Cont’d)
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79: Residual Generation
	Diapositiva 80: Output Observer
	Diapositiva 81: Output Observer for Fault Detection
	Diapositiva 82: Output Observer for Fault Isolation
	Diapositiva 83: Output Observer for Fault Isolation (Cont’d)
	Diapositiva 84: Output Observer for Fault Isolation (Cont’d)
	Diapositiva 85: Multiple FDI
	Diapositiva 86: Residual Disturbance Robustness
	Diapositiva 87: FDI with Noisy Measurements
	Diapositiva 88: Fault Detection with Parity Equations
	Diapositiva 89: Parity Relations for Fault Detection
	Diapositiva 90: Parity Relations for Fault Detection
	Diapositiva 91: Analytical Redundancy
	Diapositiva 92: Analytical Redundancy (OE)
	Diapositiva 93: Analytical Redundancy (OE)
	Diapositiva 94: Parity Relation (EE)
	Diapositiva 95: Parity Relations via EE
	Diapositiva 96: Parity Relations
	Diapositiva 97: Change Detection and Symptom Evaluation
	Diapositiva 98: Residual Evaluation
	Diapositiva 99: Residual Evaluation (Cont’d)
	Diapositiva 100: Residual Evaluation (Cont’d)
	Diapositiva 101: Residual Evaluation (Cont’d)
	Diapositiva 102: Residual Generation Problem
	Diapositiva 103: Fault Diagnosis Technique Integration
	Diapositiva 104: FDI Technique Integration
	Diapositiva 105: Fuzzy Logic for Residual Generation
	Diapositiva 106: Fuzzy Logic for Residual Generation (Cont’d)
	Diapositiva 107: Fuzzy Logic for Residual Generation (Cont’d)
	Diapositiva 108: Residual Generation via Fuzzy Models
	Diapositiva 109: Neural Networks in Fault Diagnosis
	Diapositiva 110: Neural Networks in Fault Diagnosis (Cont’d)
	Diapositiva 111: Neural Networks in Fault Diagnosis (Cont’d)
	Diapositiva 112: Neural Networks in Fault Diagnosis (Cont’d)
	Diapositiva 113: Neural Networks in Fault Diagnosis (Cont’d)
	Diapositiva 114: Neural Networks in Fault Diagnosis (Cont’d)
	Diapositiva 115: FDI with Neural Networks
	Diapositiva 116: FDI with Neural Networks (Cont’d)
	Diapositiva 117: FDI with Neural Networks (Cont’d)
	Diapositiva 118: FDI with Neural Networks (Cont’d)
	Diapositiva 119: FDI with Neural Networks (Cont’d)
	Diapositiva 120: FDI with Neural Networks (Cont’d)
	Diapositiva 121: FDI with Neural Networks (Cont’d)
	Diapositiva 122: Conclusion

