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Lecture Main Topics

◼ General introduction
◼ State-of-the-art review

◼ Fault diagnosis nomenclature

◼ Main methods for fault diagnosis
◼ Parameter estimation methods

◼ Observer and filter approaches

◼ Parity relations

◼ Neural networks and fuzzy systems

◼ Application examples

◼ Concluding remarks
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Programme Details

◼ Introduction: Course Introduction 

◼ Issues in Model-Based Fault Diagnosis 

◼ Fault Detection and Isolation (FDI) Methods based 
on Analytical Redundancy 

◼ Model-based Fault Detection Methods 

◼ The Robustness Problem in Fault Detection 

◼ Fault Identification Methods 

◼ Modelling of Faulty Systems 
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Programme Details (Cont’d)

◼ Residual Generation Techniques 

◼ The Residual Generation Problem 

  

◼ Fault Diagnosis Technique Integration 

◼ Fuzzy Logic for Residual Generation 

◼ Neural Networks in Fault Diagnosis 
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Programme Details (Cont’d)

◼ Observers for Robust Residual Generation 

◼ Residual Robustness to Disturbances 

  

◼ Application Examples 
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Annual Meetings on FDI
◼ IFAC SAFEPROCESS Symposium
◼ Fault Detection Supervision & Safety for Technical Processes

◼ 1st held in Baden–Baden, Germany in 1991

◼ 2nd in Espo, Finland in 1994

◼ 3rd at Hull, UK in 1997

◼ 4th held in Budapest, Hungary in 2000

◼ 5th at Washington DC, USA, July 2003

◼ 6th in Beijing, P.R. China, August 2006

◼ 7th in Barcelona, Spain, July 2009

◼ 8th in Mexico City, Mexico, August 2012

◼ 9th in Paris, France, 2015

◼ 10th in Warsaw, Poland, 2018

◼ 11th in Cyrpus, Greece, June 2022

◼ 12th in Ferrara, Italy, 4-7 June, 2024
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Nomenclature
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Nomenclature (cont’d)
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Nomenclature (Cont’d)
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Nomenclature (Cont’d)
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Nomenclature (Cont’d)
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Nomenclature (Cont’d)

NOTE: Incipient fault (slowly developing fault)= hard to detect !!!
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Nomenclature (Cont’d)
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Application Examples

◼ Simulated case studies

◼ Identification/FDI applications

◼ Real processes

◼ Research works

◼ Undergraduate theses topics 
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Simulated Application Examples
Simulated Gas Turbine
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Simulated Application Examples (Cont’d)

Simulated Gas Turbine
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Simulated Application Examples (Cont’d)

Simulated Gas Turbine
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Simulated Application Examples (Cont’d)

Simulated Gas Turbine (SIMULINK®)
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Simulated Application Examples (Cont’d)

Simulated Power Plant: Pont sur Sambre
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Simulated Application Examples (Cont’d)

Simulated Power Plant: Pont sur Sambre
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Simulated Application Examples (Cont’d)

Simulated Gas Turbine
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Simulated Application Examples (Cont’d)

Small Aircraft Model
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Simulated Application Examples (Cont’d)

Small Aircraft Model
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Simulated Application Examples (Cont’d)

Aerospace Satellite
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Simulated Application Examples (Cont’d)

Aerospace Satellite
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Simulated Application Examples (Cont’d)

Manifacturing Process
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Simulated Application Examples (Cont’d)

Manifacturing Process
JAM!

(possibly unskilled)

human operator



05/02/2026

28

Introduction



05/02/2026

29

Introduction (Cont’d)
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Residual Generation

◼ This block generates residual signals 
using available inputs and outputs from 
the monitored system

◼ This residual (or fault symptom) should 
indicate that a fault has occurred

◼ Normally zero or close to zero under no 
fault condition, whilst distinguishably 
different from zero when a fault occurs
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Residual Evaluation

◼ This block examines residuals for the 
likelihood of faults and a decision rule is then 
applied to determine if any faults have 
occurred

◼ It may perform a simple threshold test 
(geometrical methods) on the instantaneous 
values or moving averages of the residuals

◼ It may consist of statistical methods, e.g., 
generalised likelihood ratio testing or 
sequential probability ratio testing
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Introduction (Cont’d)

◼ Model-Based FDI Methods:
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Introduction (Cont’d)

◼ Signal Model-Based Methods:

◼ Change Detection: Residual Analysis
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Introduction (Cont’d)

◼ Model Uncertainty and FDI
◼ Model-reality mismatch

◼ Sensitivity problem: incipient faults!

◼ Robustness in FDI
◼ Disturbance, modelling errors, uncertainty

◼ UIO and Kalman filter: robust residual generation 

◼ System Identification for FDI
◼ Estimation of a reliable model

◼ Modelling accuracy

◼ Disturbance estimation 
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Introduction (Cont’d)

◼ Fault Identification Methods

◼ Fault nature (type, shape) & size (amplitude)

◼ Approximate Reasoning Methods:
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Introduction (Cont’d)
◼ FDI applications status & review
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Introduction (Cont’d)
◼ FDI applications status & review
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Introduction (Cont’d)
◼ FDI applications status & review
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Model-based FDI Techniques



05/02/2026

40

Model-based FDI Techniques (Cont’d)

1.

2.
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Model-based FDI Techniques (Cont’d)

➢ Modelling of Faulty Systems
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Model-based FDI Techniques (Cont’d)
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Model-based FDI Techniques (Cont’d)
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Model-based FDI Techniques (Cont’d)

Fault Location:

◼ Actuators

◼ Process or system 

 components

◼ Input sensors

◼ Output sensors

◼ Controllers
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Model-based FDI Techniques (Cont’d)

Fault and System Modelling



05/02/2026

46

Model-based FDI Techniques (Cont’d)

Fault and System Modelling
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Model-based FDI Techniques (Cont’d)

Fault and System Modelling
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Model-based FDI Techniques (Cont’d)

Fault and System Modelling
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Model-based FDI Techniques (Cont’d)

◼ Modelling 

of Faulty 

Systems
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Model-based FDI Techniques (Cont’d)

◼ Modelling 

of Faulty 

Systems

◼ Transfer function 

description:
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Residual Generator Structure

Under fault-free

assumptions, the

residual signal r(t)

is “almost” zero
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Residual General Structure (Cont’d)

Residual generation

via system simulator

z(t) is the simulated

plant output

_

y(t)
+

r(t)

r(t) = y(t) – z(t)
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Residual General Structure (Cont’d)

Residual generator:

Constraint conditions: design



05/02/2026

54

General Residual Evaluation

Faulty residual

Fault

free

residual
Detection thresholds

(t)
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General Residual Evaluation (example)

Fault free residual Fault-free & faulty residuals

Detection thresholds
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Residual Generation Techniques

➢ Fault detection via parameter     

   estimation

➢ Observer-based approaches

➢ Parity (vector) relations
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Fault Detection via 
Parameter Estimation
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Parameter Estimation 

◼ Parameter estimation for fault detection

◼ The process parameters are not known at all, or 
they are not known exactly enough. They can be 
determined with parameter estimation methods

◼ The basic structure of the model has to be known 

◼ Based on the assumption that the faults are 
reflected in the physical system parameters

◼ The parameters of the actual process are 
estimated on-line using well-known parameter 
estimations methods



05/02/2026

59

Parameter Estimation (Cont’d)

◼ The results are thus compared with the 
parameters of the reference model obtained 
initially under fault-free assumptions

◼ Any discrepancy can indicate that a fault may 
have occurred

◼ An approach for modelling the input-output 
behaviour of the monitored system will be 
recalled and exploited for fault detection
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Equation Error (EE) Approach

◼ SISO model

◼ Parameter vector

◼ Regression vector
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Equation Error Method

◼ Equation error

◼ Model of the process (Z-transform)

◼ Estimated polynomials
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Equation Error Method (Cont’d)

◼ Estimation of the process model: LS

◼ LS minimisation



05/02/2026

63

Equation Error Method (Cont’d)

◼ Estimation of the process model: RLS

◼ Estimate recursive adaptation

Note: see on-line estimation approach
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Parameter Estimation via EE

◼ Recursive estimation 

of the transfer 

function polynomials

◼ Equation error

◼ Parameter 

estimation via 

recursive algorithm

◼ RLS
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Links Between Input-

Output and State-Space 

Discrete-Time LTI Models
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Input-Output Model (EE)

◼ The input to output discrete-time model 
behaviour can be mathematically described 
by a set of ARX Multi-Input Single-Output 
(MISO) models
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Input-Output Model (EE)

◼ m is the number of the output variables

◼ The order n and the parameters i,j and i,j,k with i 
= 1,…,m, of the model are determined by the 
identification approach

◼ The term i(t) takes into account the modelling 
error (EE)
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State-Space Equivalent Model

◼ The input-output EE model has a state space 
“realisation” as follows:

◼ The matrices (Ai, Bi, Ci, B
, D

 ) of a state space 
representation in canonical form of the n-th order 
system are defined as follows:
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State-Space Matrices
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State-Space Matrices (Cont’d)

Note that the
matrix Si is always 

non-singular 
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State-Space Matrices (Cont’d)

In Matlab:

TF2SS  Transfer function to state-space conversion.

[A,B,C,D] = TF2SS(NUM,DEN) calculates the state-space representation 

from a single input.  Vector DEN must contain the coefficients of the 

denominator in descending powers of s.  Matrix NUM must contain the 

numerator coefficients with as many rows as there are outputs y

Note: for MIMO models, use ss and tf functions
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Observer-based 
Approaches
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Residual General Structure

◼ Observer-based approach

Plant model

Observer model

Output estimation approach!
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Residual Generator Structure

Plant model

Observer model

State estimation model

State estimation property (fault-free case!!!)
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Residual Generator Property

+ disturbance signals and fault 
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Residual Generator Property (Cont’d)

+ fault signals 

System model 

Observer model 

Output estimation error

with faults but noise-free 

Both e(t) and ex(t) are suitable residuals!
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General Residual Evaluation

Faulty residual

Fault

free

residual
Detection thresholds

(t)



05/02/2026

78

Change Detection & Residual Evaluation

Faulty residual

Fault

free

residual

Detection thresholds
(t)

3with

),,1()(



==



 mirt ii 

( ) )()( trtrJ 
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Residual Generation

✓ Output Observers

➢ Recall the output observer design

✓ Fault Detection

➢ Fault Isolation, i.e. where is the 

fault? 
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Output Observer

Process model with faults

Input-output sensor faults

Observer for the i-th output yi(t)

( ) modelprocessspacestatetheis,, −iii CBA
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Output Observer for Fault Detection

Given the observer model

Under fault-free assumptions

Fault detection logic
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Output Observer for Fault Isolation

Process model

Bank of output observers

)()()( * tftyty ii +=
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Output Observer for Fault Isolation (Cont’d)

Bank of 

output observers

)()()( * tftyty ii +=

Fault-free case:

Faulty case
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Output Observer for Fault Isolation (Cont’d)

Bank of 

output observers

)()()( * tftyty ii +=

Fault-free case:

Faulty case

0)(lim 
→

tri
t
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Multiple FDI

Input sensor FDI Output sensor FDI
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Residual Disturbance Robustness

◼ Residuals 

decoupled from 

disturbance

◼ Robust residual 

generator

◼ Disturbance 

effect 

minimisation

◼ Measurement 

errors
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FDI with Noisy Measurements

✓ Model with fault and noise

➢ Model with noise only: Kalman filter!
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Fault Detection with 

Parity Equations
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Parity Relations for Fault Detection

◼ The basic idea of the parity relations approach is 
to provide a proper check of the parity 
(consistency) of the measurements acquired 
from the monitored system

◼ In the early development of fault diagnosis, the 
parity vector (relation) approach was applied to 
static or parallel redundancy schemes, which may 
be obtained directly from measurements 
(hardware redundancy) or from analytical 
relations (analytical redundancy)
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Parity Relations for Fault Detection

◼ In the case of hardware redundancy, two methods 
can be exploited to obtain redundant relations

◼ The  first requires the use of several sensors 
having identical or similar functions to 
measure the same variable

◼ The second approach consists of dissimilar 

sensors to measure different variables but with 

their outputs being relative to each other

◼ Analytical forms of redundancy
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Analytical Redundancy

◼ Model (M) and process (P)

◼ Error vector
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Analytical Redundancy (OE)

◼ Models, if:

◼ Residual, with input and output faults
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Analytical Redundancy (OE)
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Parity Relation (EE)



05/02/2026

95

Parity Relations via EE

◼ According to EE, another possibility for 

generating a polynomial error:
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Parity Relations

◼ The previous equations that generate residuals 
and are called parity equations under the 
assumptions of fault occurrence and of exact 
agreement between process and model

◼ However, within the parity equations, the model 
parameters are assumed to be known and 
constant, whereas the parameter estimations 
can vary the parameters of the polynomials in 
order to minimise the residuals
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Change Detection and 
Symptom Evaluation
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Residual Evaluation

◼ When the residual generation stage has 

been performed, the second step requires 

the examination of symptoms in order to 

determine if any faults have occurred

◼ A decision process may consist of a simple

threshold test on the instantaneous values 

of moving averages of residuals
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Residual Evaluation (Cont’d)

◼ On the other hand, because of the presence of 

noise, disturbances and other unknown signals 

acting upon the monitored system, the decision 

making process can exploits statistical methods

◼ In this case, the measured or estimated 

quantities, such as signals, parameters, state 

variables or residuals are usually represented by 

stochastic variables
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Residual Evaluation (Cont’d)

◼ Mean and standard values

◼ Residuals or symptoms
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Residual Evaluation (Cont’d)

◼ Fixed threshold selection

◼ By a proper choice of , a compromise has 
to be made between the detection of small 
faults and false alarms

◼ More complex residual evaluation schemes
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Residual Generation Problem

◼ Robustness issues!

◼ Two design principles:

➢Uncertainty is taken into account at the residual 

design stage: active robustness in fault diagnosis

➢ Passive robustness makes use of a residual 

evaluator with proper threshold selection 

methods (fixed or adaptive)
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Fault Diagnosis 
Technique 

Integration
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FDI Technique Integration

◼ Several FDI techniques have been developed and 
their application shows different properties with 
respect of the diagnosis of different faults in a 
process

◼ To achieve a reliable FDI technique, a good 
solution consists of a proper integration of several 
methods which take advantages of the different 
procedures

◼ Exploit a knowledge-based treatment of all 
available analytical and heuristic information



05/02/2026

105

Fuzzy Logic for Residual Generation

◼ Classical fault diagnosis model-based methods 
can exploit state-space of input-output dynamic 
models of the process under investigation

◼ Faults are supposed to appear as changes on the 
system state or output caused by malfunctions of 
the components as well as of the sensors

◼ The main problem with these techniques is that 
the precision of the process model affects the 
accuracy of the detection and isolation system as 
well as the diagnostic sensitivity
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Fuzzy Logic for Residual Generation (Cont’d)

◼ The majority of real industrial processes are 
nonlinear and cannot be modelled by using a single 
model for all operating conditions

◼ Since a mathematical model is a description of 
system behaviour, accurate modelling for a complex 
nonlinear system is very difficult to achieve in 
practice

◼ Sometimes for some nonlinear systems, it can be 
impossible to describe them by analytical equations
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Fuzzy Logic for Residual Generation (Cont’d)

◼ Sometimes the system structure or parameters are not 
precisely known and if diagnosis has to be based 
primarily on heuristic information, no qualitative model 
can be set up

◼ Because of these assumptions, fuzzy system theory 
seems to be a natural tool to handle complicated and 
uncertain conditions

◼ Instead of exploiting complicated nonlinear models, it is 
also possible to describe the plant by a collection of 
local affine fuzzy models, whose parameters are 
obtained by identification procedures
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Residual Generation via Fuzzy Models

Resisual signals:
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Neural Networks in Fault Diagnosis

◼ Quantitative model-based fault diagnosis 
generates symptoms on the basis of the 
analytical knowledge of the process under 
investigation

◼ In most cases this does not provide enough 
information to perform an efficient FDI, i.e., to 
indicate the location and the mode of the fault

◼ A typical integrated fault diagnosis system uses 
both analytical and heuristic knowledge of the 
monitored system
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Neural Networks in Fault Diagnosis (Cont’d)

◼ The knowledge can be processed in terms 
of residual generation (analytical 
knowledge) and feature extraction 
(heuristic knowledge)

◼ The processed knowledge is then provided
to an inference mechanism which can 
comprise residual evaluation, symptom
observation and pattern recognition



05/02/2026

111

Neural Networks in Fault Diagnosis (Cont’d)

◼ In recent years, neural networks (NN) have been 
used successfully in pattern recognition as well as 
system identification, and they have been 
proposed as a possible technique for fault 
diagnosis, too

◼ NN can handle nonlinear behaviour and partially 
known process because they learn the diagnostic 
requirements by means of the information of the 
training data
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Neural Networks in Fault Diagnosis (Cont’d)

◼ NN are noise tolerant and their ability to generalise the 
knowledge as well as to adapt during use are extremely 
interesting properties 

◼ FDI is performed by a NN using input and output 
measurements

◼ NN is trained to identify the fault from measurement patterns

◼ Classification of individual measurement pattern is not always 
unique in dynamic situations

◼ Fault diagnosis of dynamic plant is not practical and other 
approaches should be investigated
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Neural Networks in Fault Diagnosis (Cont’d)

◼ A NN could be exploited in order to  find a dynamic model 

of the monitored system or connections from faults to 

residuals

◼ In the latter case, the NN is used as pattern classifier or 

nonlinear function approximator

◼ NN are capable of approximating a large class of functions 

for fault diagnosis of an industrial plant

◼ The identification of models for the system under diagnosis 

as well as the application of NN as function approximator 

will be shown
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Neural Networks in Fault Diagnosis (Cont’d)

◼ Quantitative and qualitative approaches have a lot of 

complementary characteristics which can be suitably 

combined together to exploit their advantages and to 

increase the robustness of quantitative techniques

◼ Partial knowledge deriving from qualitative reasoning is 

reduced by quantitative methods

◼ Further research on model-based fault diagnosis consists 

of finding the way to properly combine these two 

approaches together to provide highly reliable diagnostic 

information
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FDI with Neural Networks
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FDI with Neural Networks (Cont’d)

◼ As described in the figure, the fault diagnosis 
methodology consist of 2 stages

◼ In 1st stage, the fault has to be detected on the 
basis of residuals generated from a bank of output 
estimators, while, in the 2nd step, fault 
identification is obtained from pattern recognition 
techniques implemented via NN

◼ Fault identification represents the problem of the 
estimation of the size of faults occurring in a 
dynamic system
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FDI with Neural Networks (Cont’d)

◼ A NN is exploited to  find the connection from a 
particular fault regarding system inputs and 
output measurements to a particular residual

◼ The output predictor generates a residual which 
does not depend on the dynamic characteristics 
of the plant, but only on faults

◼ NNs classify static patterns of residuals, which 
are uniquely related to particular fault conditions 
independently from the plant dynamics
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FDI with Neural Networks (Cont’d)

◼ NNs have been used both as predictor of 
dynamic models for fault diagnosis, and pattern 
classifiers for fault identification

◼ The most frequently applied neural models are 
the feed-forward perceptron used in multi-layer 
networks with static structure

◼ The introduction of explicit dynamics requires the 
feedback of some outputs through time delay 
units
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FDI with Neural Networks (Cont’d)

◼ Alternatively to static structure, NN with 
neurons having intrinsic dynamic properties 
can be used

◼ On the other hand, NN can be effectively 
exploited for residual signal processing, 
which is actually a static patter recognition 
problem
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FDI with Neural Networks (Cont’d)

◼ Fault signals create changes in several 
residuals obtained by using output
predictors of the process under 
examination

◼ A neural network is exploited in order to
find the connection from a particular fault 
regarding input and output measurements 
to a particular residual
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FDI with Neural Networks (Cont’d)

◼ The predictors generate residuals independent 
of the dynamic characteristics of the plant and
dependent only on sensors faults

◼ Therefore, the neural network evaluates static 
patterns of residuals, which are uniquely related 
to particular fault conditions independently from 
the plant dynamics
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Conclusion

✓ Model-Based FDI

✓ Analytical Redundancy

✓ State-Space Models

✓ Residual Generation

✓ Dynamic Observers

✓ Output observers

✓ Residual Evaluation/Change Detection
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