Model–Based Fault Detection and Isolation: Linear Polynomial Methods for FDI with Applications

Silvio Simani

Dipartimento di Ingegneria, Università di Ferrara Via Saragat 1, 44122 Ferrara - ITALY E-mail: silvio.simani@unife.it URL: http://www.ing.unife.it/simani

FDI Overview

- Analytical redundancy makes use of a mathematical model of the monitored process
 model-based approach to Fault Detection & Isolation (FDI)
 - ⇒ The model-based FDI is normally implemented in software form as a computer algorithm
- Model-based methods use a model of the monitored system to produce residuals
 - $\Rightarrow~$ The system cannot be described accurately by a mathematical model

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 3

Model–Based FDI

- In real complex systems modelling uncertainty arises inevitably for example process noise, parameter variations & modelling errors
 - ⇒ The detection of incipient faults presents a challenge to model– based FDI techniques
 - ⇒ unseparatable mixture between fault effects & modelling uncertainty

Robust Model-Based FDI

- Optimisation to minimise the effect of modelling uncertainty, whilst maximising some fault effects
- Intelligent techniques, adaptive methods
- **Robust FDI is still an open problem for further research**

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 5

Introduction: System Modelling

Fault diagnosis for dynamic processes

 \Rightarrow disturbance de-coupling techniques

Input-output descriptions of the monitored system

 \Rightarrow model disturbance term takes into account system unknown inputs

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 7

Silvio Simani

Bologna, Italy. November, 2011

Introduction: Fault Diagnosis

Set of parity relations insensitive to the disturbance term

 \Rightarrow residual or symptom signals

Simulated process: power plant & small aircraft

 \Rightarrow sensor & actuator faults

Analytical Redundancy & Model–based Approach

Main problem: modelling uncertainties \Rightarrow unavoidable in real industrial systems System description → input–output linear model \Rightarrow by modelling or identification procedures \Rightarrow the disturbance term describes unknown (or non-measurable) inputs of the real process Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy Linear Polynomial Methods for FDI - 9 Silvio Simani Bologna, Italy. November, 2011 Model-based Approach Parity relations design for residual generation Detection of faults affecting input & output process

Residual generator: insensitive to disturbance signals

measurements

Presentation Topics (1)

- The system under diagnosis is modelled in terms of inputoutput polynomial description
- The design of disturbance de-coupled residual generators is reduced to the determination of the null-space of a specific polynomial matrix
 - ⇒ The use of input–output forms allows to design the analytical description for the disturbance de–coupled residual generators

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 11

Silvio Simani

Bologna, Italy. November, 2011

Presentation Topics (2)

These dynamic fault detection filters, organised into bank structures, are able to achieve Fault Isolation properties

⇒ An appropriate choice of their parameters allows to maximise robustness with respect to both measurement noise & modelling errors, while optimising fault sensitivity characteristics

The proposed FDI approach has been applied to 2 dynamic process models:

 \Rightarrow (i) Power Plant of "Pont sur Sambre"

 \Rightarrow (ii) Piper PA30

Presentation Topics (3)

The residual generators have been designed on the basis of the linear & linearised models
 ⇒ Experiments with data from linear & non-linear simulators implemented in Matlab/Simulink® environment
 An important aspect of the approach to FDI suggested is the simplicity of structure of the technique used to generate the residual functions for FDI
 ⇒ In comparison with traditional schemes e.g. based on banks of unknown input observers (UIO) & Kalman filters

Talk Structure (1)

- Mathematical description of the monitored system is outlined
- The approach exploited for the design of residual generators is described
- Structural characteristics of such filters are also explained
 - ⇒ How to achieve disturbance de-coupling, sensitivity optimisation of the residual functions & robustness with respect to measurement noise & modelling errors

Talk Structure (2)

- Problem of the design of banks of residual generators for the Isolation of faults affecting the input & the output sensors
- Application to 2 dynamic process models with some numerical results

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 15

Mathematical Description

$$P(s) y(t) = Q(s) u(t)$$

- *s* is the derivative operator
- P(s) & Q(s) are polynomial matrices with dimension $(m \times m)$ & $(m \times \ell)$ respectively, with P(s) nonsingular.
- $u(t) \in \Re^{\ell}$ & $y(t) \in \Re^m$, the input & output vectors of the considered multivariable system

•
$$u(t) \equiv \mathcal{L}[u(t)](s) \& y(t) \equiv \mathcal{L}[y(t)](s)$$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 17

Model Properties

- Models of type P(s) y(t) = Q(s) u(t) can be frequently found in practice
 - \Rightarrow applying well-known physical laws
 - \Rightarrow for describing the input–output dynamical links
- powerful tool when the knowledge of the system state does not play a direct role

Model Properties

$$P(s) y(t) = Q(s) u(t)$$

- Powerful tool when the knowledge of the system state does not play a direct role
 - \Rightarrow see, *e.g.* residual generator design, identification, de-coupling, output controllability,...

Algorithms to transform state-space models to equivalent input-output polynomial representations & vice versa are available [Beghelli, Guidorzi, Castaldi, Soverini]

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 19

Silvio Simani

Bologna, Italy. November, 2011

Mathematical Description

$$P(s) y(t) = \begin{bmatrix} Q_c(s) & Q_d(s) & Q_f(s) \end{bmatrix} \begin{bmatrix} c(t) \\ d(t) \\ f(t) \end{bmatrix}$$

- The equivalent representation $\left\{\tilde{P}(s),\,\tilde{Q}(s)\right\}$ is a canonical inputoutput form
- Link between $\left\{P(s),\,Q(s)\right\}$ & $\left\{\tilde{P}(s),\,\tilde{Q}(s)\right\}$ via an unimodular matrix $\mathbf{M}(s)$

•
$$c(t) \equiv \mathcal{L}[c(t)](s), d(t) \equiv \mathcal{L}[d(t)](s) \& f(t) \equiv \mathcal{L}[f(t)](s)$$

Model Description for the Monitored System

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 21

Input–Output Canonical Form Properties

 $\begin{cases} \deg \tilde{p}_{ii}(s) > \deg \tilde{p}_{ji}(s) & i \neq j \\ \deg \tilde{p}_{ii}(s) > \deg \tilde{p}_{ij}(s) & j > i \\ \deg \tilde{p}_{ii}(s) \ge \deg \tilde{p}_{ij}(s) & j < i \\ \deg \tilde{p}_{ii}(s) \ge \deg \tilde{q}_{ij}(s) \end{cases}$

- with the polynomials $\tilde{p}_{ii}(s)$ monic.
- Integers $\nu_i = \deg \tilde{p}_{ii}$ (i = 1, ..., m) equal the corresponding rowdegrees.
- Integers ν_i are the ordered set of Kronecker invariants associated to the pair $\{\tilde{A}, \tilde{C}\}$ of every observable realization of $\{\tilde{P}(s), \tilde{Q}(s)\}$.

1

State-Space Canonical Form Properties

Canonical state-space $(\tilde{\mathbf{A}}, \tilde{\mathbf{C}})$ models

$$\tilde{\mathbf{A}} = [\tilde{\mathbf{A}}_{ij}] , \text{ with } \tilde{\mathbf{A}}_{ii} = \begin{bmatrix} 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ \times_{ii1} & \times_{ii2} & \dots & \times_{ii\nu_i} \end{bmatrix}_{(\nu_i \times \nu_i)},$$

$$\tilde{\mathbf{A}}_{ij} = \begin{bmatrix} \vdots & & & \vdots \\ 0 & \dots & \dots & \dots & 0 \\ \times_{ij1} & \dots & \times_{ij\nu_{ij}} & 0 & \dots & 0 \end{bmatrix}_{(\nu_i \times \nu_j)}$$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 23

Silvio Simani

Bologna, Italy. November, 2011

State–Space Canonical Form Properties

Ĉ	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	0	 0	 1	 0	•••	•••	•••	•••	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
C =	: 0	· · · ·	· · · ·	· · · ·	· · · ·	 0	 1	 0	· · · ·	: 0

⇒ where the 1's entries in the matrix \tilde{C} are in the column 1, (ν_i+1) , ..., $(\nu_1 + \ldots + \nu_{m-1} + 1)$

Filter Design for Fault Diagnosis

A general linear residual generator is a filter of type:

$$R(s) r(t) = S_y(s) y(t) + S_c(s) c(t)$$

 $\Rightarrow r(t)$ signal is a scalar

 \Rightarrow Faults are neglected here!

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 25

Silvio Simani

Bologna, Italy. November, 2011

Residual Generator Computation Problem

 \Rightarrow Design the residual generator (r(t) scalar)

 $R(s) r(t) = S_y(s) y(t) + S_c(s) c(t)$.

 \Rightarrow for the input-output model (fault-free conditions)

 $P(s) y(t) - Q_c(s) c(t) = Q_d(s) d(t)$

Residual Generator Computation Problem

 \Rightarrow L(s) is a polynomial row belonging to the left null–space of $Q_d(s)$

 \Rightarrow Left null-space of $Q_d(s)$ is $\mathcal{N}_{\ell}(Q_d(s))$

$$L(s) \in \mathcal{N}_{\ell}(Q_d(s))$$

$$\Rightarrow$$
 i.e. $L(s) Q_d(s) = 0$

 \Rightarrow e.g. 2 outputs & 1 disturbance

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Linear Polynomial Methods for FDI - 27

Bologna, Italy. November, 2011

Residual Generator Formulation (with faults)

$$P(s) y(t) - Q_c(s) c(t) - Q_f(s) f(t) = Q_d(s) d(t) \hookrightarrow$$

$$L(s) P(s) y(t) - L(s) Q_c(s) c(t) = L(s) Q_f(s) f(t)$$

$$\begin{cases} S_y(s) = L(s) P(s) \\ S_c(s) = -L(s) Q_c(s) \\ R(s) = (1 + \tau_1 s)(1 + \tau_2 s) \dots (1 + \tau_{n_f} s) = \\ = a_1 s^{n_f} + a_2 s^{n_f - 1} + \dots + a_{n_f} s + 1 \end{cases}$$

Residual Generator Formulation

- n_f is the maximal row-degree of the pair $\{L(s) P(s), L(s) Q_c(s)\}$.
- Without faults: $R(s) r(t) = L(s) P(s) y(t) L(s) Q_c(s) c(t) = 0$
- With faults: $R(s) r(t) = L(s) P(s) y(t) L(s) Q_c(s) c(t) = L(s) Q_f(s) f(t)$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 29

Silvio Simani

Bologna, Italy. November, 2011

Residual Generator Properties

Bounds for the order n_f of the residual generator

- $\Rightarrow n_f$ is the maximal row-degree of the pair $\{L(s) P(s), L(s) Q_c(s)\}$
- \Rightarrow n_f is the degree of R(s) (filter causality)

$$\nu_{\min} \leq n_f \leq (\ell_d + 1) \nu_{\max}$$

- $\Rightarrow~\nu_{\rm min}$ & $\nu_{\rm max}$ are the minimal & the greatest Kronecker invariant, respectively.
- \Rightarrow [Frisk & Niberg, Bonfè, *et al.*]

Fault Description

Fault modelling

$$\begin{cases} \mathbf{c}^*(t) &= \mathbf{c}(t) + \mathbf{f}_c(t) \\ \mathbf{y}^*(t) &= \mathbf{y}(t) + \mathbf{f}_y(t) \end{cases}$$

 \Rightarrow $\mathbf{f}_{c}(t)$ & $\mathbf{f}_{y}(t)$: actuator & sensor additive faults

 \Rightarrow e.g. step, ramp, intermittent signals

c(t), **y**(t): fault-free signals

$\mathbf{c}^{*}(t)$, $\mathbf{y}^{*}(t)$: input & output measurements

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 31

Silvio Simani

Bologna, Italy. November, 2011

Fault Modelling

$$\begin{cases} \mathbf{c}^*(t) &= \mathbf{c}(t) + \mathbf{f}_c(t) \\ \mathbf{y}^*(t) &= \mathbf{y}(t) + \mathbf{f}_y(t) \end{cases}$$

$$R(s) r(t) = L(s) P(s) y^{*}(t) - L(s) Q_{c}(s) c^{*}(t)$$

$$= L(s) Q_{c}(s) f_{c}(t) - L(s) P(s) f_{o}(t)$$

$$= [L(s) Q_{c}(s)| - L(s) P(s)] \begin{bmatrix} f_{c}(t) \\ f_{o}(t) \end{bmatrix}$$

$$= L(s) [Q_{c}(s)| - P(s)] \begin{bmatrix} f_{c}(t) \\ f_{o}(t) \end{bmatrix} = L(s) Q_{f}(s) f(t)$$

Fault Modelling

$$\begin{cases} \mathbf{c}^{*}(t) &= \mathbf{c}(t) + \mathbf{f}_{c}(t) \\ \mathbf{y}^{*}(t) &= \mathbf{y}(t) + \mathbf{f}_{y}(t) \end{cases}$$

 $R(s) r(t) = L(s) Q_f(s) f(t) \hookrightarrow \text{ideal conditions!}$

with $f(t) = \begin{bmatrix} f_c(t) \\ f_o(t) \end{bmatrix}$

$$Q_f(s) = \left[Q_c(s)| - P(s)\right]$$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 33

Residual function r(t) for **Fault Detection**

Fault-free & faulty situations

Residual function r(t) comparison

 \Rightarrow fixed threshold ε

 \Rightarrow threshold logic:

 $\begin{cases} |r(t)| \leq \varepsilon & \text{for fault-free case,} \\ |r(t)| > \varepsilon & \text{for faulty cases.} \end{cases}$

Analysis of different residual functions $r_i(t)$

Residual Generator Design

$$R(s) r(t) = \underbrace{L(s) P(s) y(t) - L(s) Q_c(s) c(t)}_{=0} + \underbrace{L(s) Q_f(s) f(t)}_{\text{faulty case}}$$

$$R(s) r(t) = \underbrace{L(s) Q_f(s) f(t)}_{\text{faulty case}}$$

Ideal conditions

 \Rightarrow Easy solution

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 35

Silvio Simani

Bologna, Italy. November, 2011

Residual Generator Design

Optimisation Approach (real conditions):

$$R(s) r(t) = \underbrace{L(s) P(s) y(t) - L(s) Q_c(s) c(t)}_{\text{modelling error } \neq 0} + \underbrace{L(s) Q_f(s) f(t)}_{\text{faulty case}}$$

 $\Rightarrow R(s) \& L(s) \hookrightarrow \text{optimal selection}$

$$R(s) = (1 + \tau_1 s)(1 + \tau_2 s) \dots (1 + \tau_{n_f})$$

Fault sensitivity maximisation: max of $R^{-1}(s) L(s) Q_f(s) f(t)$

Residual Generator Parameter Optimisation: L(s)

Parameters of L(s)

- $\Rightarrow b_i(s)(i=1,2,\ldots,m-\ell_d) \text{ rows of a basis } B_{(m-\ell_d)\times m}(s) \text{ of the } \mathcal{N}_\ell(Q_d(s))$
- \Rightarrow Assumption: $m \ell_d > 1$
- \Rightarrow then, $L(s) = \sum_{i=1}^{m-\ell_d} k_i b_i(s)$ & k_i maximising:

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Linear Polynomial Methods for FDI - 37

Bologna, Italy. November, 2011

Residual Generator Parameter Optimisation: L(s)

$$\lim_{s \to 0} \frac{1}{R(s)} \Big[\sum_{i=1}^{m-\ell_d} k_i b_i(s) \Big] Q_f(s) = \Big[\sum_{i=1}^{m-\ell_d} k_i b_i(0) \Big] Q_f(0) \text{ with } \sum_{i=1}^{m-\ell_d} k_i^2 = 1$$

Fault f(t) step-function of magnitude F

$$\lim_{t \to \infty} r(t) = \lim_{s \to 0} s \frac{L(s)Q_f(s)}{R(s)} \frac{F}{s} = \left[\sum_{i=1}^{m-\ell_d} k_i b_i(0)\right] Q_f(0) F.$$

Residual Generator Parameter Optimisation: R(s)

Location of the roots of the polynomial R(s)

- ⇒ Influences the transient characteristics (maximum overshoot, delay time, rise time, settling time, etc.) of the fault detection filter
- $\Rightarrow~$ Optimisation of fault detection time, false alarm & missed fault rates

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 39

Silvio Simani

Bologna, Italy. November, 2011

Residual Generator Parameter Optimisation: R(s)

 $\frac{|G_f(j\omega)|^2}{|G_r(j\omega)|^2} = 1,$ (where ω belongs to a given frequency range)

 \Rightarrow reference transfer function $G_r(s)$

$$\Rightarrow G_f(s) = L(s)Q_f(s)/R(s)$$

Fault Isolation Introduction

- After fault detection...
 - Problem of the design of banks of residual generators
 - \Rightarrow Isolation of faults affecting input & output sensors
 - \Rightarrow The disturbance de–coupling method suggested previously is exploited
 - \Rightarrow It is assumed that $m > \ell_d + 1$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 41

Silvio Simani

Bologna, Italy. November, 2011

Input Sensor Fault Isolation

Input Sensor Fault Isolation

The number of these generators is equal to the number l_c of system control inputs
 The *i*-th device (*i* = 1,..., l_c) is driven by all but the *i*-th input & by all the outputs of the system
 A fault on the *i*-th input sensor affects all but the *i*-th residual generator
 ⇒ c^{*i}(t) represents the l_c-1 dimensional vector obtained by deleting from c^{*}(t) the *i*-th component

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 43

Input Sensor Fault Isolation

$$\blacksquare \quad c^*(t) = c(t) + f_{c_i}(t)$$

$$\Rightarrow \text{ with } f_{c_i}(t) = \begin{bmatrix} 0 & \dots & 0 & h_{c_i}(t) & 0 & \dots & 0 \end{bmatrix}^T$$

 $\Rightarrow c^{*i}(t) = c^i(t)$ when the fault on the $i-{\rm th}$ input sensor $h_{c_i}(t)$ is considered

Input Sensor Fault Isolation

In these conditions:

$$P(s) y(t) = Q_c(s) c(t) + Q_d(s) d(t) + q_{c_i}(s) h_{c_i}(t),$$

 $\Rightarrow q_{c_i}(s)$ represents the *i*-th column of the matrix $Q_c(s)$

By multiplying by the matrix $L_{c_i}(s)$

 $\Rightarrow L_{c_i}(s) \text{ is a row vector belonging to the basis for the left null space of the matrix } [Q_d(s) | q_{c_i}(s)]$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 45

Silvio Simani

Bologna, Italy. November, 2011

Input Sensor Fault Isolation

- If $L_{c_i}(s)$ is a row vector belonging to the basis for the left null space of the matrix $[Q_d(s) | q_{c_i}(s)]$
 - $\Rightarrow Q_c^i(s)$ is the matrix obtained by deleting from $Q_c(s)$ the $i-{\rm th}$ column:

The *i*-th filter becomes:

$$R_{c_i}(s) r_{c_i}(t) = L_{c_i}(s) P(s) y(t) - L_{c_i}(s) Q_c^i(s) c^{*i}(t) = 0,$$

 \Rightarrow while, for the *j*-th filter, with $j \neq i$:

$$R_{c_j}(s) r_{c_j}(t) = L_{c_j}(s) P(s) y(t) - L_{c_j}(s) Q_c^j(s) c^{*j}(t) = L_{c_j}(s) q_{c_i}(s) h_{c_i}(t)$$

Residual Generation for Fault Isolation

- $\Rightarrow R_{c_i}(s) \& R_{c_j}(s)$ are arbitrary polynomials with all the roots with negative real part
- In a similar way, *output* sensor isolation
 - All the input sensors & the remaining output sensors are fault-free

 \Rightarrow a bank of residual generator filters is used

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 47

Silvio Simani

Bologna, Italy. November, 2011

Output Sensor Fault Isolation

Bank of residual generators for output sensor fault isolation

Output Sensor Fault Isolation

- The number of these generators is equal to the number m of system outputs
- The *i*-th device (*i* = 1,...,*m*) is driven by all but the *i*-th output & by all the inputs of the system
 - \Rightarrow A fault on the *i*-th output sensor affects all but the *i*-th residual generator
 - $\Rightarrow \ y^{*i}(t)$ represents the m-1 dimensional vector obtained by deleting from $y^*(t)$ the $i\!-\!{\rm th}$ component

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 49

Output Sensor Fault Isolation

$$\Rightarrow$$
 with $f_{o_i}(t) = \begin{bmatrix} 0 & \dots & 0 & h_{o_i}(t) & 0 & \dots & 0 \end{bmatrix}^T$

$$P(s) y(t) = Q_c(s) c(t) + Q_d(s) d(t) - p_i(s) h_{o_i}(t)$$

- \Rightarrow where $p_i(s)$ represents the *i*-th column of the matrix P(s)
- $\Rightarrow y^{*i}(t) = y^i(t)$ when a fault on the $i-{\rm th}$ output sensor $h_{o_i}(t)$ is considered

Output Sensor Fault Isolation

- \Rightarrow By multiplying by the matrix $L_{o_i}(s)$
- $\Rightarrow \ L_{o_i}(s)$ is a row vector belonging to the basis for the left null space of the matrix $\left[Q_d(s)\,|\,p_i(s)\right]$
- $\Rightarrow~P^i(s)$ the matrix obtained by deleting from P(s) the i-th column

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 51

Silvio Simani

Bologna, Italy. November, 2011

Output Sensor Fault Isolation

The equation of the *i***-th filter becomes:**

$$R_{o_i}(s) r_{o_i}(t) = L_{o_i}(s) P^i(s) y^{*i}(t) - L_{o_i}(s) Q_c(s) c(t) = 0,$$

• while, for the *j*-th filter, with $j \neq i$:

$$R_{o_j}(s) r_{o_j}(t) = L_{o_j}(s) P^j(s) y^{*j}(t) - L_{o_j}(s) Q_c(s) c(t) = -L_{o_j}(s) p_i(s) h_{o_i}(t).$$

 $\Rightarrow R_{o_i}(s) \& R_{o_j}(s)$ are arbitrary polynomials whose roots have negative real part

Sensor Fault Isolation Summary

- **Summary of the FDI capabilities of the presented schemes**
- "Fault Signatures" in case of a single fault in each input & output sensor
- The residuals which are affected by faults are marked with the presence of '1' in the correspondent table entry
- An entry '0' means that the fault does not affect the correspondent residual

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 53

Silvio Simani

Bologna, Italy. November, 2011

Sensor Fault Isolation Table

Fault	signatures
ruun	Signatures

Residual / Fault	f_{c_1}	f_{c_2}		$f_{c_{\ell_c}}$	f_{o_1}	f_{o_2}		f_{om}
r_{c_1}	0	1		1	1	1		1
r_{c_2}	1	0		1	1	1		1
÷	:	:	:	:	:	:	:	:
$r_{c_{\ell_c}}$	1	1		0	1	1		1
r_{o_1}	1	1		1	0	1		1
r_{o_2}	1	1		1	1	0		1
:	:	:	:	:	:	:	:	:
r_{om}	1	1		1	1	1		0

Sensor Fault Isolation Conditions

When not all the elements out of the main diagonal of the table are '1's

- ⇒ the fault isolation is still feasible if the columns of the fault signature table are all different from each other
- When $m (\ell_d + 1) > 1$
 - ⇒ all the bases of the left null space of the matrices $[Q_d(s) | q_{c_i}(s)]$ & $[Q_d(s) | p_i(s)]$ have dimension bigger than 1
 - ⇒ the degrees of freedom in the choice of the vectors $L_{c_i}(s)$ & $L_{o_i}(s)$ belonging to the left null space can be exploited

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 55

Sensor Fault Isolation Conditions

- \Rightarrow All the elements out of the main diagonal on the Table are '1's when:
 - For $i = 1, \ldots, \ell_c$, the column vectors of the matrix $Q_c^i(s)$ & the column vectors of the matrix P(s) are not orthogonal with the row vector $L_{c_i}(s)$.
 - For j = 1, ..., m, the column vectors of the matrix $P^{j}(s)$ & the column vectors of the matrix $Q_{c}(s)$ are not orthogonal with the row vector $L_{o_{j}}(s)$.

Application Examples

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 57

Fault Detection in an Industrial Process

- 1. super heater (radiation);
- 2. super heater (convection);
- 3. super heater;
- 4. reheater;
- 5. dampers;
- 6. condenser;
- 7. drum;
- 8. water pump;
- 9. burner.

Process Description

■ 120**MW power plant of Pont–sur–Sambre**

- \Rightarrow Double-shaft industrial gas turbine
- $\Rightarrow~$ working in parallel with the electrical mains

3 major components:

 \Rightarrow the reactor, turbine, & condenser

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 59

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Process Matrices: $\tilde{\mathbf{P}}(z)$ & $\tilde{\mathbf{Q}}(z)$

 $\tilde{\mathbf{P}}(z) = \begin{bmatrix} z^4 - 1.0774z^3 - 0.1846z^2 + 0.1004z + 0.1884 & -0.1662z^2 + 0.1932z - 0.0250 & -0.1239z + 0.1086 \\ -0.1021z^3 + 0.2958z^2 - 0.3528z + 0.1710 & z^3 - 1.6750z^2 + 0.8292z - 0.0852 & -0.0180z + 0.0156 \\ 0.1096z^2 - 0.0812z + 0.0142 & -0.2411z^2 + 0.5470z - 0.3544 & z^2 - 1.5875z + 0.662z^2 + 0.1021z^2 + 0.0120z^2 + 0.0120z^2$

$$\tilde{\mathbf{Q}}(z) = \begin{bmatrix} 0.02 + 0.06z + 0.08z^2 - 0.1z^3 - 0.1z^4 \\ 0.01 - 0.02z - 0.1z^2 - 0.1z^3 + 0.2z^4 \\ 0.02 - 0.005z + 0.003z^2 - 0.003z^3 - 0.02z^4 \\ -0.09 + 0.01z + 0.02z^2 + 0.08z^3 - 0.02z^4 \\ 0.01 - 0.2z - 0.1z^2 + 0.9z^3 + 0.1z^4 \end{bmatrix}$$

 $0.02 + 0.06z - 0.1z^2 + 0.009z^3$ $\begin{array}{r} 0.02 \pm 0.002 \pm 0.12 \ \pm 0.0092 \\ 0.1 - 0.1z \pm 0.1z^2 \pm 0.01z^3 \\ -0.02 - 0.09z \pm 0.04z^2 \pm 0.01z^3 \\ -0.01 \pm 0.01z - 0.02z^2 - 0.001z^3 \\ -0.1 - 0.3z \pm 0.03z^2 \pm 0.1z^3 \end{array}$

 $z^2 - 1.5875z + 0.6624$

 $0.05 - 0.05z - 0.03z^2$ $-0.1 + 0.1z + 0.04z^2$ $0.09 + 0.01z - 0.01z^2$ $0.01 - 0.1z + 0.01z^2$ $0.04 - 0.1z - 0.2z^2$

 \Rightarrow Kronecker invariants: $\nu_1 = 4$, $\nu_2 = 3$, $\nu_3 = 2$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 61

Silvio Simani

Bologna, Italy. November, 2011

Power Plant Description: *Discrete*-*Time Model*

$$P(z) y(t) = Q(z) u(t)$$

- z is the unitary advance operator
- P(z) & Q(z) are polynomial matrices with dimension $(m \times m) \&$ $(m \times \ell)$ respectively, with P(s) nonsingular.
- $u(t) \in \Re^{\ell} \& y(t) \in \Re^{m}$, the input & output vectors of the considered discrete-time multivariable system (t = 1, 2, ..., N)

•
$$u(t) \equiv \mathcal{Z}[u(t)](z) \& y(t) \equiv \mathcal{Z}[y(t)](z)$$

Residual Function & 1 Disturbance De-coupling

u₂(t) represents the disturbance signal
$$d_1(t)$$

$$\Rightarrow \tilde{\mathbf{Q}}_d(z) = \left[\tilde{\mathbf{Q}}_2(z) \right]$$

Università di Ferrara, Dipartimento di Ingegneria

Via Saragat, 1. I-44100, Ferrara, Italy

De-coupling of the input
$$u_2(t)$$

$$\Rightarrow \quad \tilde{\mathbf{Q}}_c(z) = \left[\begin{array}{c} \tilde{\mathbf{Q}}_1(z) \, \tilde{\mathbf{Q}}_3(z) \, \tilde{\mathbf{Q}}_4(z) \, \tilde{\mathbf{Q}}_5(z) \end{array} \right]$$

$$\Rightarrow \ \hookrightarrow$$
 sensitive to $u_1(t)$, $u_3(t)$, $u_4(t)$ & $u_5(t)$

Linear Polynomial Methods for FDI - 63

Silvio Simani

Bologna, Italy. November, 2011

Residual Function & 1 Disturbance De-coupling

$$\Rightarrow n_{f_1} = 4 \& n_{f_2} = 5$$

⇒ Computation of the coefficients of the polynomials of the matrices $\mathbf{S}_c(z)$ & $\mathbf{S}_y(z)$

$$\Rightarrow$$
 Null space of $\tilde{\mathbf{Q}}_d(z) \hookrightarrow$

$$\Rightarrow \mathbf{L}(z) = \begin{bmatrix} -0.029z - 0.19z^2 & -0.048z^2 \\ 0.46 + 0.62z + 0.49z^2 & -0.21z + 0.44z^2 \\ -0.11z + 0.35z^2 & 0.42 - 0.69z + 0.32z^2 \end{bmatrix}^T$$

$\begin{aligned} & \text{Residual Function \& 1 Disturbance De-coupling: $S_c(z)$} \\ & \text{$S_c(z) = [$S_{c_1}(z), $S_{c_3}(z), $S_{c_4}(z), $S_{c_5}(z)]$} \\ & \text{$S_c(z) = [$-0.0046z^4 + 0.0142z^3 - 0.0086z^2 - 0.0138z + 0.0113$} \\ & \text{$0.0100z^5 - 0.0243z^4 - 0.0386z^3 - 1.8 \times 10^{-6}z^2 + 0.0292z + 0.0041$}], $ \\ & \text{$S_{c_3}(z) = [$-0.0023z^4 + 0.0030z^3 + 0.0047z^2 + 0.0016z - 0.0039$} \\ & \text{$0.0087z^5 + 0.0321z^4 + 0.0209z^3 - 0.0067z^2 - 0.0115z - 0.0049$}], $ \\ \hline & \text{$Wiversità di Ferrara, Dipartimento di Ingegneria} Ya Saragat, 1.144100, Ferrara, Italy} $ \\ \end{aligned}$

Silvio Simani

Bologna, Italy. November, 2011

Residual Function & 1 Disturbance De-coupling: $S_c(z)$

$$\mathbf{S}_{c}(z) = \left[\begin{array}{c} \mathbf{S}_{c_{1}}(z), \ \mathbf{S}_{c_{3}}(z), \ \mathbf{S}_{c_{4}}(z), \ \mathbf{S}_{c_{5}}(z) \end{array}
ight]$$

$$\mathbf{S}_{c_4}(z) = \left[\begin{array}{c} 0.0004z^4 - 0.0049z^3 + 0.0078z^2 - 0.0042z + 0.0008\\ -0.0006z^5 - 0.0004z^4 + 0.0062z^3 - 0.0059z^2 + 0.0002z + 0.0009 \end{array} \right],$$

$$\mathbf{S}_{c_5}(z) = \begin{bmatrix} -0.0060z^4 + 0.0002z^3 + 0.0124z^2 - 0.0062z - 0.0015\\ 0.0025z^5 + 0.0096z^4 + 0.0025z^3 - 0.0169z^2 - 0.0038z - 0.0019 \end{bmatrix}$$

$$\begin{split} \textbf{Residual Function \& 1 Disturbance De-coupling: $S_y(z)$} \\ \textbf{S}_y(z) &= \left[\begin{array}{c} \textbf{S}_{y_1}(z), \ \textbf{S}_{y_2}(z), \ \textbf{S}_{y_3}(z) \end{array} \right], \\ \textbf{S}_{y_1}(z) &= \left[\begin{array}{c} 0.0053z^4 - 0.0545z^3 + 0.1073z^2 - 0.0843z + 0.0269\\ -0.0601z^5 - 0.0575z^4 + 0.1645z^3 - 0.0760z^2 + 0.0419z - 0.0045 \end{array} \right], \\ \textbf{S}_{y_2}(z) &= \left[\begin{array}{c} -0.1173z^4 + 0.4365z^3 - 0.5235z^2 + 0.2431z - 0.0326\\ 0.4615z^5 - 0.1553z^4 - 0.5843z^3 + 0.3770z^2 - 0.0025z - 0.0154 \end{array} \right], \end{split}$$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 67

Residual Function & 1 Disturbance De-coupling: $S_y(z)$

$${f S}_y(z) = \left[egin{array}{c} {f S}_{y_1}(z), \ {f S}_{y_2}(z), \ {f S}_{y_3}(z) \end{array}
ight],$$

$$\mathbf{S}_{y_3}(z) = \begin{bmatrix} 0.1417z^4 - 0.4147z^3 + 0.4482z^2 - 0.2097z - 0.0349\\ -0.1692z^4 + 0.3667z^3 - 0.2578z^2 + 0.0529z + 0.0040 \end{bmatrix}$$

Residual Function & 1 Disturbance De–coupling: $\mathbf{L}(z)$

$$\mathbf{L}(z) = \begin{bmatrix} -0.029z - 0.19z^2 & -0.048z^2 \\ 0.46 + 0.62z + 0.49z^2 & -0.21z + 0.44z^2 \\ -0.11z + 0.35z^2 & 0.42 - 0.69z + 0.32z^2 \end{bmatrix}^T$$

It can be evaluated by means of the command null (Matlab Polynomial Toolbox) of the matrix $\tilde{\mathbf{Q}}_d(z)$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 69

Silvio Simani

Bologna, Italy. November, 2011

Residual Function & 2 Disturbance De-coupling

u₂(t) &
$$u_4(t) \hookrightarrow$$
 disturbance signals $d_1(t)$ & $d_2(t)$

$$\Rightarrow \quad \tilde{\mathbf{Q}}_d(z) = \left[\begin{array}{c} \tilde{\mathbf{Q}}_2(z), \quad \tilde{\mathbf{Q}}_4(z) \end{array} \right] \hookrightarrow$$

input $u_2(t)$ & $u_4(t)$ de-coupling

$$\Rightarrow \quad \tilde{\mathbf{Q}}_c(z) = \left[\begin{array}{c} \tilde{\mathbf{Q}}_1(z), \tilde{\mathbf{Q}}_3(z), \tilde{\mathbf{Q}}_5(z) \end{array} \right]$$

$$\Rightarrow \ \hookrightarrow$$
 sensitive to $u_1(t)$, $u_3(t)$ & $u_5(t)$

Residual Function & 2 Disturbance De-coupling

 $\Rightarrow n_{f_1} = 9$

⇒ Computation of the coefficients of the polynomials of the matrices $\mathbf{S}_c(z)$ & $\mathbf{S}_u(z)$

$$\Rightarrow$$
 Null space of $\tilde{\mathbf{Q}}_d(z) \hookrightarrow$

$$\mathbf{L}(z) = \begin{bmatrix} -0.029 + 0.17z - 0.34z^2 + 0.2z^3 + 0.0016z^4 - 0.005z^5 \\ -0.024 + 0.036z - 0.092z^2 + 0.18z^3 + 0.43z^4 - 0.62z^5 + 0.042z^6 \\ -0.018 + 0.068z - 0.11z^2 + 0.11z^3 + 0.17z^4 - 0.37z^5 + 0.13z^6 + 0.016z^7 \end{bmatrix}^T$$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Linear Polynomial Methods for FDI - 71

Bologna, Italy. November, 2011

Residual Function & 2 Disturbance De-coupling: $S_c(z)$

$$\mathbf{S}_{c}(z) = \left[egin{array}{c} \mathbf{S}_{c_{1}}(z), \ \mathbf{S}_{c_{2}}(z), \ \mathbf{S}_{c_{3}}(z) \end{array}
ight]$$

$$\begin{split} \mathbf{S}_{c_1}(z) &= \begin{bmatrix} 0.0002z^9 - 0.0077z^8 + 0.0315z^7 - 0.0257z^6 - 0.0056z^5 + \\ + 0.0067z^4 + 0.0015z^3 - 0.0022z^2 + 0.0027z - 0.0011 \end{bmatrix}, \end{split}$$

$$\begin{split} \mathbf{S}_{c_3}(z) &= \begin{bmatrix} 0.0003z^9 - 0.0044z^8 - 0.0092z^7 + 0.0118z^6 + 0.0074z^5 + \\ -0.0063z^4 + 0.0016z^3 - 0.0034z^2 + 0.0015z - 0.0001 \end{bmatrix}, \end{split}$$

Residual Function & 2 Disturbance De-coupling: $S_c(z)$

$$\mathbf{S}_{c}(z) = \left[egin{array}{c} \mathbf{S}_{c_{1}}(z), \ \mathbf{S}_{c_{2}}(z), \ \mathbf{S}_{c_{3}}(z) \end{array}
ight]$$

$$\begin{split} \mathbf{S}_{c_5}(z) &= \begin{bmatrix} -0.0004z^9 - 0.0016z^8 + 0.0028z^7 + 0.0015z^6 - 0.0026z^5 + \\ +0.0001z^4 + 0.0036z^3 - 0.0048z^2 + 0.0016z - 3 \times 10^{-5} \end{bmatrix}, \end{split}$$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 73

Silvio Simani

Bologna, Italy. November, 2011

Residual Function & 2 Disturbance De-coupling: $S_y(z)$

$$\mathbf{S}_{y}(z) = \left[\begin{array}{c} \mathbf{S}_{y_{1}}(z), \ \mathbf{S}_{y_{2}}(z), \ \mathbf{S}_{y_{3}}(z) \end{array}
ight]$$

$$\begin{split} \mathbf{S}_{y_1}(z) &= \begin{bmatrix} -0.0031z^9 + 0.0360z^8 - 0.0172z^7 - 0.0988z^6 + \\ +0.1273z^5 - 0.0550z^4 + 0.0262z^3 - 0.0307z^2 + 0.0194z - 0.0044 \end{bmatrix}, \end{split}$$

$$\begin{split} \mathbf{S}_{y_2}(z) &= \begin{bmatrix} 0.0167z^9 - 0.3144z^8 + 0.7071z^7 - 0.5489z^6 + \\ + 0.0923z^5 + 0.1046z^4 - 0.1078z^3 + 0.0702z^2 - 0.0241z + 0.0027 \end{bmatrix}, \end{split}$$

Residual Function & 2 Disturbance De–coupling: $\mathbf{S}_y(z)$

$$\mathbf{S}_{y}(z) = \begin{bmatrix} \mathbf{S}_{y_{1}}(z), \ \mathbf{S}_{y_{2}}(z), \ \mathbf{S}_{y_{3}}(z) \end{bmatrix}$$

$$\mathbf{S}_{y_3}(z) = \begin{bmatrix} 0.0124z^9 - 0.0380z^8 + 0.0272z^7 + 0.0422z^6 + \\ -0.0740z^5 - 0.0074z^4 + 0.0979z^3 - 0.0886z^2 + 0.0329z - 0.0044 \end{bmatrix},$$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 75

Silvio Simani

Bologna, Italy. November, 2011

Residual Function & 2 Disturbance De-coupling: L(z)

n_f = 9 & $\mathbf{L}(z)$ given by:

$$\mathbf{L}(z) = \begin{bmatrix} -0.029 + 0.17z - 0.34z^2 + 0.2z^3 + 0.0016z^4 - 0.005z^5 \\ -0.024 + 0.036z - 0.092z^2 + 0.18z^3 + 0.43z^4 - 0.62z^5 + 0.042z^6 \\ -0.018 + 0.068z - 0.11z^2 + 0.11z^3 + 0.17z^4 - 0.37z^5 + 0.13z^6 + 0.016z^7 \end{bmatrix}^T,$$

Residual Function & 2 Disturbance De-coupling: L(z)

Silvio Simani

Bologna, Italy. November, 2011

2. Residual Function r(t) with Measurement Noise

P(z) & Q(z) is the linear model of Pont–sur–Sambre

 $\Rightarrow \{u(t), y(t)\}$ simulated from the linear model + additive noise

$$\Rightarrow \begin{cases} \mathbf{c}^{*}(t) = \mathbf{c}(t) + \tilde{\sigma}_{c}(t) \\ \mathbf{y}^{*}(t) = \mathbf{y}(t) + \tilde{\sigma}_{y}(t) \end{cases}$$

- \Rightarrow Residual generator $R(z) r(t) = S_y(z) y^*(t) + S_c(z) c^*(t)$
- \Rightarrow from the linear model

2. Residual Function r(t) with Measurement Noise $R(s) r(t) = \underbrace{L(s) P(s) y^{*}(t) - L(s) Q_{c}(s) c^{*}(t)}_{\text{measurement noise} \neq 0} + \underbrace{L(s) Q_{f}(s) f(t)}_{\text{faulty case}}$ $\Rightarrow \{\tilde{\sigma}_{c}(t), \tilde{\sigma}_{y}(t)\} \leq 10\%$ $\Rightarrow R(z) \hookrightarrow \text{fault sensitivity maximisation}$ $\Rightarrow 1 \text{ or } 2 \text{ de-coupled disturbances} + \text{fault isolation} \hookrightarrow n_{f} = 4, 5, \&9$ Università di Ferrara, Dipartimento di Ingegneria Ya Saragat, 1. L44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

2. Fault Detection Capabilities with Noise

Noise	$f_{c_1}\%$	$f_{c_2}\%$	$f_{c_3}\%$	$f_{c_4}\%$	$f_{c_5}\%$	$f_{y_1}\%$	$f_{y_2}\%$	$f_{y_3}\%$
0.1%	0.8226	0.32	0.48	0.19	0.47	0.61	0.01	0.50
1 %	3.72	0.90	2.16	0.60	1.12	1.83	0.91	3.31
10 %	7.44	2.32	4.36	1.20	4.53	15.86	5.47	28.75
20 %	9.92	2.54	7.27	2.40	6.80	31.12	9.13	63.24
30 %	14.88	3.51	10.18	3.60	9.07	47.60	12.78	94.55
40 %	17.36	4.68	11.63	4.80	11.29	54.31	15.52	110.52

 \Rightarrow Minimal detectable fault

 \Rightarrow Increasing additive noise amplitude

First & second monitored fault-free residuals for the case of one disturbance signal ($\ell_d = 1$).

2. Fault–Free Residual Signals (2 disturbance signals)

Monitored fault-free residual for the case of 2 disturbance signals ($\ell_d = 2$).

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 83

Faults on the first input & first output when 1 disturbance ($l_d = 1$) has been de-coupled.

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

3. Residual Function r(t) with Model Uncertainty

I $\{P(s), Q(s)\}$ model linearisation of a Piper PA–30 aircraft non–linear system

- $\Rightarrow~\{u(t),y(t)\}$ & faults simulated from the non–linear model simulator
- \Rightarrow Residual generator $R(s) r(t) = S_y(s) y(t) + S_c(s) c(t)$ from the *linearised model*
- $\Rightarrow R(s)$ poles by trial & error procedure \hookrightarrow fault sensitivity maximisation
- $\Rightarrow 3+1$ de–coupled disturbances \hookrightarrow wind gust + fault isolation; $n_f=3,\ldots,5$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 85

Piper PA-30 Model Nomenclature

V	True Air Speed (TAS)	δο	elevator deflection angle	
a	angle of attack	δ_{a}	aileron deflection angle	
2		s s	under deflection angle	
β	angle of sideslip	o_r	rudder dellection angle	
P	roll rate	δ_{th}	throttle aperture percentage	
Q	pitch rate	X,Y	horizontal coordinates	
R	yaw rate		(inertial reference system)	
ϕ	bank angle	H	altitude	
θ	elevation angle		(inertial reference system)	
ψ	heading angle	γ	flight path angle	
n	engine r.p.m.	m	airplane mass	
Γ	$I_x 0 -I_{xz}$			
	$0 I_y 0$	airplan	e inertia moments matrix	
_	I_{xz} $\tilde{0}$ I_z			
\bar{F}_x , 1	F_u, F_z	total force components along body axes		
M_r .	M_{u} . M_{z}	total moment components along body axes		
-27	9'~			

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Linear Polynomial Methods for FDI - 87

Bologna, Italy. November, 2011

Piper PA-30 Model (1)

$$\dot{V} = F_x \frac{\cos \alpha \cos \beta}{m} + F_y \frac{\sin \beta}{m} + F_z \frac{\sin \alpha \cos \beta}{m}$$
$$\dot{\alpha} = \frac{-F_x \sin \alpha + F_z \cos \alpha}{mV \cos \beta} + Q - (P \cos \alpha + R \sin \alpha) \tan \beta$$
$$\dot{\beta} = \frac{-F_x \cos \alpha \sin \beta + F_y \cos \beta - F_z \sin \alpha \sin \beta}{mV} + P \sin \alpha + -R \cos \alpha$$
$$\dot{P} = \frac{M_x I_z + M_z I_{xz} + PQ I_{xz} (I_x - I_y + I_z)}{MV} + \frac{QR (I_y I_z - I_{xz}^2)}{MV}$$

$$\dot{P} = \frac{M_x I_z + M_z I_{xz} + PQ I_{xz} (I_x - I_y + I_z)}{I_x I_z - I_{xz}^2} + \frac{QR (I_y I_z - I_{xz}^2 - I_z^2)}{I_x I_z - I_{xz}^2}$$

Piper PA-30 Model (2)

$$\begin{aligned} \dot{Q} &= \frac{M_y + PR\left(I_z - I_x\right) - P^2 I_{xz} + R^2 I_{xz}}{I_y} \\ \dot{R} &= \frac{M_x I_{xz} + M_z I_x + PQ\left(I_x^2 - I_x I_y + I_{xz}^2\right)}{I_x I_z - I_{xz}^2} + \frac{QR I_{xz} \left(-I_x + I_y - I_z\right)}{I_x I_z - I_{xz}^2} \\ \dot{\phi} &= P + Q \sin \phi \tan \theta + R \cos \phi \tan \theta \\ \dot{\theta} &= Q \cos \phi - R \sin \phi \end{aligned}$$

١

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 89

Silvio Simani

Bologna, Italy. November, 2011

Input-Output Canonical Form Computation

 $ilde{P}(s)$ & $ilde{Q}(s)$ from model linearisation:

$$\dot{x}(t) = Ax(t) + Bc(t) + Ed(t) \text{ with}$$

$$x(t) = \left[\Delta V \ \Delta \alpha \ \Delta \beta \ \Delta P \ \Delta Q \ \Delta R \ \Delta \phi \ \Delta \theta \ \Delta \psi \ \Delta H \ \Delta n\right]^{T}$$

$$c(t) = \left[\Delta \delta_{e} \ \Delta \delta_{a} \ \Delta \delta_{r} \ \Delta \delta_{th}\right]^{T}$$

$$d(t) = \left[w_{u} \ w_{v} \ w_{w}\right]^{T}$$

$$y(t) = \left[\Delta V \ \Delta P \ \Delta Q \ \Delta R \ \Delta \phi \ \Delta \theta \ \Delta \psi \ \Delta H \ \Delta n\right]^{T}$$

Residual Function r(t) with Model Uncertainty

- $u(t) \in \Re^4$, $y(t) \in \Re^9$ obtained from a non–linear Simulink model of Piper PA30
- **With** $\tilde{P}(s)$ & $\tilde{Q}(s)$ derived from model linearisation

$$\Rightarrow R(s) r(t) = L(s) \tilde{P}(s) y(t) - L(s) \tilde{Q}_c(s) c(t) + L(s) \tilde{Q}_f(s) f(t)$$

$$\Rightarrow L(s) \tilde{P}(s) y(t) - L(s) \tilde{Q}_c(s) c(t)$$
 is model mismatch error

R(s) & L(s): polynomial matrices optimisation $\hookrightarrow GAOT$ for Matlab

 $\Rightarrow \ell_d = 3 \text{ (wind gusts)} + 1 \text{ (input or output)}$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 91

Scheme for Input Sensor FDI

Scheme for Output Sensor FDI

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 93

Silvio Simani

Bologna, Italy. November, 2011

Model Mismatch & Measurement Errors

Faulty $\{u(t), y(t)\}$ simulated by the non–linear model

- $\Rightarrow \text{ Wind gusts: } (w_u, w_v, w_w). \text{ Correlation times \& variances: } \tau_u = 2.326[s], \\ \tau_v = 7.143[s], \tau_w = 0.943[s], E[w_u^2] = E[w_v^2] = E[w_w^2] = 0.7[(m/s)^2]$
- \Rightarrow Trajectory:
 - radius of curvature 1000[m]
 - speed $V = 50[\frac{m}{s}]$
 - altitude H = 330[m]
 - flap = 0° .
- ⇒ Detailed model of Inertial Measurement Unit (MEMS technology), Air Data Computer, Heading Reference System

Simulator Block Brief Description (1)

Command Surfaces Deflection Measurements

- $\Rightarrow \delta_e$, δ_a , δ_r , δ_{th} acquired with a sample rate of 100Hz by means of potentiometers
- \Rightarrow Errors modelled by bias & white noise:

Input sensor	Bias	White Noise Std
Elevator deflection angle	$0.0052 \; \mathrm{rad}$	$0.0053 \; \mathrm{rad}$
Aileron deflection angle	$0.0052 \; \mathrm{rad}$	$0.0053 \; \mathrm{rad}$
Rudder deflection angle	$0.0052 \; \mathrm{rad}$	$0.0053 \; \mathrm{rad}$
Throttle aperture	1%	1%

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 95

Silvio Simani

Bologna, Italy. November, 2011

Simulator Block Brief Description (2)

Angular Rate Measurement

- \Rightarrow Angular rate measures by 3 gyroscopes of (IMU) with sample rate of 100Hz
- \Rightarrow Measurement errors:
 - Non unitary scale factor: multiplicative factor $\in [0.99, 1.01]$.
 - Alignment error of spin axes with respect to body (reference) axes: six error angles up to 1 deg (uniform random variables)
 - Limited bandwidth of the considered gyro (10 Hz).
 - g-sensitivity $(72 \frac{deg}{h g})$.
 - Additive white noise (216 deg/h).
 - Gyro drift, coloured stochastic process, 1080 deg/h std. dev. & a decay time of 20 min.

Simulator Block Brief Description (3)

Attitude Angle Measurement

- \Rightarrow angles generated by a digital filtering system based on a DSP that processes both the angular rate & the accelerations provided by the IMU with a sample rate of 100Hz
- $\Rightarrow~2$ Measurement errors correlated by a first order filter system with time constant equal to $60~{\rm sec}$
 - A systematic error generated by the apparent vertical.
 - $\bullet~$ A white noise modelling the imperfection of both the system & the environment influences.

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 97

Simulator Block Brief Description (4a)

Air Data System (ADS)

- \Rightarrow the ADS unit consists of an Air Data Computer (ADC) providing measures with a sample rate of 1 Hz
- \Rightarrow Errors affecting the TAS:
 - Calibration error affecting the differential pressure sensor. This error leads to a TAS computation systematic error, performed the ADC, fulfilling the ARINC (Aeronautical Radio Inc.) accuracy requirements (2 m/sec).
 - Additive coloured noise due to wind gusts (std. dev. $1\ \&$ correlation time $2.3\ {\rm sec}).$
 - Additive white noise (std. dev. 0.5 m/sec) modelling the imperfection of the system & the environment influences.

Simulator Block Brief Description (4b)

Air Data System (ADS)

- \Rightarrow Altitude errors:
 - Calibration error affecting the static pressure sensor. This error leads to an altitude computation systematic error, performed the ADC, fulfilling the ARINC accuracy requirements (5 m).
 - Additive White noise (std. dev. 1 m) modelling the imperfection of the system & the environment influences.

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 99

Silvio Simani

Bologna, Italy. November, 2011

Simulator Block Brief Description (5)

Heading Reference System (HRS)

- \Rightarrow Magnetic compass coupled to a directional gyro
- \Rightarrow Measurement errors correlated by a first order filter with time constant equal to $60~{\rm sec}$:
 - a systematic error generated by a bias of the magnetic compass (1 deg),
 - a white noise modelling the imperfection of the system & the environment influences.
- \Rightarrow The resulting heading measurement is affected by an additive coloured noise std.dev. 1 deg


```
Silvio Simani
```

Bologna, Italy. November, 2011

FDI Filter Design

- Filters fed by 4 component c(t) & by 9 component y(t)
- The input & output sequences are affected by the measurement errors
- 4 residual generator filter bank used to detect input sensor for the 4 control variables $c(t) = [\Delta \delta_e(t), \Delta \delta_a(t), \Delta \delta_r(t), \Delta \delta_{th}(t)]^T$
- Fault isolation properties if each residual fed generator is by 4 inputs & the outputs all but one the by 9 y(t)_ $\left[\Delta V(t), \Delta P(t), \Delta Q(t), \Delta R(t), \Delta \phi(t), \Delta \theta(t), \Delta \psi(t), \Delta H(t), \Delta n(t)\right]^{T}$
- The output variables $\Delta \alpha(t)$ & $\Delta \beta(t)$ not considered as critical to obtain

FDI Filter Design: De-coupling Issues

- Each filter bank is independent of one of the 4 inputs
- insensitive to the corresponding fault signals
- Residual generator bank is be de-coupled from 3 wind gusts $d(t) = [w_u(t), w_v(t), w_w(t)]^T$
- FDI capability related to the properties of the residual generators with measurement errors, modelling approximations & un-decoupled disturbance signals
- Filter robustness properties in terms of fault sensitivity & disturbance insensitivity

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 103

FDI Filter Design: Optimisation

- Filter synthesis performed by choosing residual generator linear combination of residual generators maximising the steady-state gain of the transfer functions between input sensor fault signals $f_{c_i}(t)$ & residual functions $r_{c_j}(t)$ $(i, j = 1, \ldots, 4, j \neq i)$
- Polynomial roots $R_{c_j}(s)$ optimised numerically [GAOT, 1995] for obtaining suitable transient dynamics.
- Aircraft operating conditions with different faults were simulated
- Faults in single input-output sensors are generated by in the input-output signals c(t) & y(t).

FDI Filter Remarks: Fault Detection

- The residual signals indicate fault occurrence if their values are lower or higher than the fault-free thresholds
- The thresholds depend on the residual errors due to measurement errors, linearised model approximations & un-decoupled disturbance signals
- Positive & negative threshold 10% margins on the maximum & minimum values of the fault–free residual signals

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 105

Samples (sec.)

Bank residuals for the $1^{\rm st}$ input sensor fault $f_{c_1}(t)$ isolation

0 150 200 Samples (sec.)

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

FDI Filter Design Remarks

- The first residual for the input sensor $f_{c_1}(t)$ independent of a fault on the input sensor itself: $r_{c_1}(t)$ filter designed to be sensitive to the input signal $c^{*1}(t)$
- Filter parameter optimisation, *i.e.* the the roots -1/τ_i(i = 1, 2, ..., n_f) & of real constants k_i, obtained by means of the *Genetic Algorithm Optimisation Toolbox* (GAOT) [GAOT, 1995] for Matlab[®] (local minima problems)
- $R_{c_i}(s)$ polynomial matrix roots optimised & placed between $-1 \& -10^{-2}$ for maximising fault detection promptness & for minimising false alarm rate

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 107

Silvio Simani

Bologna, Italy. November, 2011

Examples of Faulty & Fault-Free Residuals

Residuals of the bank for the isolation of the 9th output sensor fault $f_{oq}(t)$.

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

FDI Filter Design Remarks

- Minimal fault detection capabilities obtained by optimising maximum & minimum values of $r_{c_i}(t) \& r_{o_i}(t)$ in fault-free conditions (acceptable false-alarms rate)
- Minimal detectable step faults on the various sensors are collected in the Tables
- First Table collects the minimal detectable *step* fault simulated on the *input* sensors: $r_{c_j}(t)$ monitored for FDI of the considered input fault case $f_{c_i}(t)$ $(i, j = 1, ..., 4, i \neq j)$
- Second Table collects minimal detectable *step* fault amplitudes on *output* sensors: $r_{o_j}(t)$ monitored for FDI of output sensor fault case $f_{o_i}(t)$ $(i, j = 1, ..., 9, i \neq j)$

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 109

Silvio Simani

Bologna, Italy. November, 2011

Minimal Detectable Input Faults

Minimal detectable step input sensor faults.

Input Sensor Variable $c_i(t)$	Fault Size	Detection Delay
Elevator deflection angle	2^{o}	18 sec
Aileron deflection angle	3^o	6 sec
Rudder deflection angle	4^o	8 sec
Throttle aperture %	2%	$15~{ m sec}$

Minimal Detectable *Output* Faults

Output Sensor Variable $y_i(t)$	Fault Size	Detection Delay
True Air Speed	8 m/sec	$27 \mathrm{sec}$
Pitch Rate	3 deg/sec	$22 \sec$
Elevation Angle	$5 \deg$	28 sec
Altitude	8 m	$12 \sec$
Roll Rate	$2 \deg/\mathrm{sec}$	$24 \sec$
Yaw Rate	3 deg/sec	29 sec
Bank Angle	$5 \deg$	$5 \sec$
Heading Angle	6 deg	$25~{ m sec}$
Engine Angular Rate	20 RPM	30 sec

Minimal detectable step output sensor faults.

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 111

Silvio Simani

Bologna, Italy. November, 2011

Minimal Detectable Fault Remarks

- The minimal detectable fault values in Tables expressed in the unit of measure of sensor signals & s.t. any fault occurrence must be detected & isolated asap
- Detection delay time evaluated & based on the slowest residual crossing time w.r.t. the settled thresholds
- Residual generator performance seems to assess the diagnostic capabilities of the technique
- FDI strategy appears promising for diagnostic application to general aviation aircrafts
- Similar results obtained by dynamic observers, UIO or Kalman filters: but the corresponding realisations require a more complex design & an higher cost implementation

Residual Function Examples: faulty & fault-free residuals

Silvio Simani

Bologna, Italy. November, 2011

- Some results are shown in FDI of sensor faults of dynamic system by using a model-based approach
- Different types of fault having a barely detectable effect on anyone measurement, can be detected easily using a bank of residual generator in the form of dynamic filters
- An important aspect of the approach suggested here to FDI is the simplicity of structure of the technique used to generate the residual functions for FDI, when compared with traditional schemes *e.g.* based on banks of Unknown Input Observers (UIO) & Kalman filters.

Final Remarks

- The method outlined focuses to some extent on input-output or state-space concepts; the actual algorithm is based only on input-output processing of all measurable signals (c(t) & y(t))
- Algorithmic simplicity important when verification & validation of a demonstrable scheme for air-worthiness certification needed
- Complex computations & schemes require high cost & complexity w.r.t. certification
- Modelling uncertainty & measurement noise well tackled: this method used in real applications
- Further studies for evaluating effectiveness on real aircraft system data

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 115

References: General FDI

- J. Gertler, *Fault Detection and Diagnosis in Engineering Systems*. New York: Marcel Dekker, 1998.
- R. J. Patton, P. M. Frank, and R. N. Clark, eds., *Fault Diagnosis in Dynamic Systems, Theory and Application*. Control Engineering Series, London: Prentice Hall, 1989.
- R.J.Patton, P.M.Frank, and R.N.Clark, eds., *Issues of Fault Diagnosis for Dynamic Systems*. London Limited:Springer-Verlag, 2000.
- J. Chen and R. J. Patton, *Robust Model–Based Fault Diagnosis for Dynamic Systems*. Kluwer Academic Publishers, 1999.
- R.Isermann and P.Ballé, "Trends in the application of model-based fault detection and diagnosis of technical processes", *Control Engineering Practice*, vol.5, no.5, pp.709–719, 1997.

References: Same Author

- S. Simani, C. Fantuzzi, and R. J. Patton, *Model-based fault diagnosis in dynamic systems using identification techniques.* Advances in Industrial Control, London, UK: Springer-Verlag, first ed., November 2002. ISBN 1852336854.
- M. Bonfè, P. Castaldi, W. Geri, S. Simani. Fault detection and isolation for on-board sensors of a general aviation aircraft. *International Journal of Adaptive Control and Signal Processing*, Vol. 20, Issue: 8, October 2006, pp. 381–408.
- S. Simani, C. Fantuzzi, and S. Beghelli, Diagnosis techniques for sensor faults of industrial processes, *IEEE Transactions on Control Systems Technology*, vol.8, pp.848–855, September 2000.
- S. Simani, R. Diversi, U. Soverini, Identification of residual generators for fault detection of linear dynamic models. 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. Pp. 7651–7655, 2005.

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Silvio Simani

Bologna, Italy. November, 2011

Linear Polynomial Methods for FDI - 117

References: Related Works

- E. Frisk, "Order of residual generators: bound and algorithms", in *SAFEPROCESS'2000: Proc. of IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes*, vol. 1, (Budapest, Hungary), pp. 599–604, 2000.
- E. Frisk and M. Nyberg, "A minimal polynomial basis solution to residual generation for fault diagnosis in linear systems", *Automatica*, vol. 37, no. 9, pp. 1417–1424, 2001.

References: Canonical Forms

- S. Beghelli and R. Guidorzi, "A new input-output canonical form for multivariable systems", *IEEE Trans. Automat. Contr.*, vol. AC-21, pp. 692–696, 1976.
- R. P. Guidorzi, "Canonical Structures in the Identification", *Automatica*, vol. 11, pp. 361–374, 1975.
- R. P. Guidorzi and R. Rossi, "Identification of a power plant from normal operating records", *Automatic Control Theory and Applications*, vol. 2, pp. 63–67, September 1974.

Università di Ferrara, Dipartimento di Ingegneria Via Saragat, 1. I-44100, Ferrara, Italy

Linear Polynomial Methods for FDI - 119

Silvio Simani

Bologna, Italy. November, 2011

References: Algorithms

- T. Kailath, *Linear systems*. Englewood Cliffs, New Jersey. Prentice Hall, 1980.
- G. D. Forney Jr., "Minimal bases of rational vector spaces with applications to multivariable linear systems", *SIAM Journal on Control*, vol. 13, no. 3, pp. 493–520, 1975.
- C. T. Chen, *Linear Systems Theory and Design*. New York: Holt, Rinehart and Winston, 1984.
- C. Houck, J. Joines, and M. Kay, "A Genetic Algorithm for Function Optimization: A Matlab Implementation", *Tech. Rep.* NCSU-IE TR-95-09, North Carolina State University, Raleigh, NC, USA, 1995. (Available at ftp://ftp.eos.ncsu.edu/pub/simul/GAOT/).

