Fault Diagnosis & Sustainable Control of Wind Turbines: Robust Data-Driven & Model-Based Strategies

Silvio Simani

Department of Engineering, University of Ferrara Via Saragat 1E 44122 Ferrara (FE), ITALY Ph./Fax:+390532974844

Email: <u>silvio.simani@unife.it</u>. URL: <u>www.silviosimani.it</u>

Discussion Topics

- General considerations
- > Advanced control ('sustainable') motivations
- FDI/FTC general structures
- Fault models
- > Wind turbine modelling issues
- Benchmarks
- Concluding remarks

The Story Begins (1)

The Story Begins (2)

Energy & Control Issues

the total and the set of the

- Control systems have high influence on the total cost of energy
- Focus on 'advanced' control solutions
 - Condition monitoring
 - Fault diagnosis & fault tolerant control
- The design is enhanced by the development of high-fidelity benchmark models prototypes
 - Modelling issues
- Solutions characterised by quality, reliability & proven technology

Advanced' Control Solutions

"Sustainable"

Sustainable Control (1)

Sustainable Control (2)

Safety-Critical Systems

- Model-based & data-driven FDI & FTC are proposed as new approaches for 'sustainable' (high degree of reliability & availability) wind turbine control
- ✓ Manage disturbances (loads, storms, …) & faults
- NOTE: FTC was developed as aerospace topic, focused mainly on NASA projects, motivated by advanced aircraft that could be reconfigured by control through a high degree of flight surface redundancy

Motivations

Motivations (cont'd)

- Harsh environment asks for the system to be well protected
- Offshore wind turbines are stand-alone power plants in inadequate service & maintenance attendance (O&M)
- Safety-related control systems to help avert major incidents resulting from lightning, storms, gusts, other <u>periodic incidents</u> & <u>faults</u> that affect the electricity production

- ✓ A 5 MW wind turbine stopped will loose 24 MWh per day in production if 40% wind capacity is assumed
 - Combine this with difficult accessibility at an offshore wind farm, it might take days before a fault is cleared
 - Advanced FDI & FTC included in the control system could provide information on the fault, thus allowing for correct & faster repair if required, and/or continued

energy generation eventually at lower level until maintenance service -> sustainability

PFTC: Robust fixed structure controller

No fault information provided

✓ AFTC: Controller reconfiguration, fault compensation

Fault reconstruction (real time)

General Fault Modes

Abrupt fault: e.g. failures

Incipient fault: *i.e.* hard to detect, slowly developing

Intermittent fault: e.g. disconnections

System Requirements

- Safeguard w.r.t. all the different types of <u>loads</u> that inflict a wind turbine & regulate accordingly
 - i. Loads from the environment (e.g. storms, waves, wind shear and wakes),
 - ii. Loads from the wind turbine itself (e.g. blades aerodynamic imbalances, yaw misalignments),
 - iii. Loads from the system (start/stop & turbine failures)
- ✓ Analyse system performance to avoid instabilities
- Balancing efficient production with lifetime considerations
- Ensure redundant system capabilities to allow production until service & maintenance (O&M) are possible

Wind Turbine Maintenance

- High degree of reliability & availability (sustainability) is required; at the same, expensive & safety critical maintenance work can occur
- Site accessibility, system availability not always ensured, severe weather conditions (+ sea installations)
- FTC & FDI researches are stimulated in this application area since important aspects for decreasing wind energy cost & increasing electrical grid penetration
- FTC can enhance specific control actions to prevent plant damage and ensure system availability during malfunctions
- Maintenance costs (O&M) & off-time can be significantly reduced

- *kk-electronic* (Denmark) together with *MathWorks* launched a number of benchmark models for fault detection & accommodation, which allows turbine owners & researchers to find the best schemes to handle different faults
- Based on these models, a series of competitions & challenges were launched (2009 2015)
 - Simple Wind Turbine FDI/FTC benchmark model
 - Advanced WT FDI / FTC benchmark model
 - Wind farm FDI/FTC benchmark model

Benchmark Model Motivations

- Wind turbine benchmarks were proposed to provide generic platforms (freely available) for designing & testing different FDI/FTC solutions
- The target was researchers in the FDI & FTC community, such that they can apply & compare their methods on wind turbine realistic installations
- The model is generic, it can be provided to the public
- Solutions finally verified on accurate wind turbine models (confidential)

Competition Challenges

- Fault diagnosis & fault-tolerant control scheme designs
- ✓ Design procedure
 - Modelling
- Describe the considered system
 - Fault analysis
- Identify faults to be handled
 - Detect, isolate (& estimate faults)
 - Fault-tolerant control
- Based on signal correction
- Based on scheduling & reconfiguration of the controller

Modelling Topics

- Coupled aero-hydroservo-elastic interaction
- Models originate from different disciplines
 - Wind-Inflow
 - Waves
 - Aerodynamics
 - Hydrodynamics
 - Structural dynamics
 - Control systems
- Multi-Physics Simulation Tools

NREL Design Codes National Renewable Energy Laboratory

/ http://wind.nrel.gov/designcodes

- One set of models
 - FAST
 - aeroelasticity
 - TurbSim
 - turbulent inflow
 - Others... *e.g.* ADAMS (MSC)
- Freely available

- Used heavily in industry, academia & other governmental research organizations
- Important for control system design

Design Codes Examples

Coupled Aero-Hydro-Servo-Elastic Simulation

Wind Turbine Components

- Stochastic wind model including tower shadow & wind shear
- Actuator models

Zero-mean Gaussian distributed measurement noise

Measurement Sensors

Measurements

Sensor Type	Symbol	Unit	Noise Power
Anemometer - Wind speed at hub height	$v_{ m w,m}$	m/s	0.0071
Rotor Speed	$\omega_{ m r,m}$	rad/s	10^{-4}
Generator Speed	$\omega_{ m g,m}$	rad/s	$2 \cdot 10^{-4}$
Generator Torque	$ au_{ m g,m}$	Nm	0.9
Generated Electrical Power	$P_{g,m}$	W	10
Pitch Angle of <i>i</i> th Blade	$eta_{i,\mathrm{m}}$	deg	$1.5 \cdot 10^{-3}$
Azimuth angle low speed side	$\phi_{ m m}$	rad	10^{-3}
Blade root moment <i>i</i> th blade	$M_{\mathrm{B},i,\mathrm{m}}$	Nm	10^{3}
Tower top acceleration (x and y directions) measurement	$egin{array}{c} \ddot{x}_{ ext{x,m}} \ \ddot{x}_{ ext{y,m}} \end{array}$	m/s^2	$5 \cdot 10^{-4}$
Yaw error	Ξ _{e,m}	deg	$5 \cdot 10^{-2}$

Wind Turbine Actuators

Simple Models

> Pitch actuator model

$$\frac{\beta(s)}{\beta_{\rm r}(s)} = \frac{\omega_{\rm n}^2}{s^2 + 2 \cdot \zeta \omega_{\rm n} \cdot s + \omega_{\rm n}^2}$$

Generator and converter model

 $\frac{\tau_{\rm g}(s)}{\tau_{\rm g,r}(s)} = \frac{\alpha_{\rm gc}}{s + \alpha_{\rm gc}},$

> Generator power

 $P_{g}(t) = \eta_{g}\omega_{g}(t)\tau_{g}(t),$

Wind Turbine Submodels

$$\dot{\omega}_r(t) = \frac{1}{J} \left(\tau_{aero}(t) - \tau_{gen}(t) \right)$$

Drive-train model

$$\dot{\tau}_{gen}(t) = p_{gen} \left(\tau_{ref}(t) - \tau_{gen}(t) \right)$$

Hydraulic

pitch system

$$\frac{\beta(s)}{\beta_r(s)} = \frac{\omega_n^2}{s^2 + 2\,\zeta\,\omega_n\,s + \omega_n^2}$$

$$\frac{\tau_g(s)}{\tau_{gr}(s)} = \frac{\alpha_{gc}}{s + \alpha_{gc}}$$

Generator & converter models

$$P_g(t) = \eta_g \,\omega_g(t) \,\tau_g(t)$$

Aerodynamic Model

$$\tau_{aero}(t) = \frac{\rho A C_p \left(\beta(t), \lambda(t)\right) v^3(t)}{2 \omega_r(t)}$$

Aerodynamic torque and tipspeed ratio

Wind speed is not unknown, but measured & highly noisy

Simulink-based Scheme

Wind Turbine Simulators

Turbine Model & Controller

- Routines for pitch, torque, & yaw controllers
- ✓ Dynamic link library (DLL):
 - DLL interface routines included with FAST archive
 - Can be Fortran, C++, etc.
- MATLAB/Simulink:
 - FAST implemented as S-Function block
 - Controls implemented in block-diagram form

Reference Controller

Reference Controller

- 2 working conditions: (I) partial & (II) full load
- Approximates the configuration of an existing control system
- Used in the design of the fault diagnosis algorithms

Fault Analysis

FMEA

Fault Scenario

Component	Fault	
Pitch sensor	Biased output	
Pitch actuator	Pump wear	
	High air content in oil	
	Hydraulic leakage	
	Valve blockage	
	Pump blockage	
Generator speed sensor	Proportional error	
	Fixed output	
	No output	

Fault Examples

No.	Fault	Туре
1	Blade root bending moment sensor	Scaling
2	Accelerometer	Offset
3	Generator speed sensor	Scaling
4	Pitch angle sensor	Stuck
5	Generator power sensor	Scaling
6	Low speed shaft position encoder	Bit error
7	Pitch actuator	Abrupt change in dynamics
8	Pitch actuator	Slow change in dynamics
9	Torque offset	Offset
10	Yaw drive	Stuck drive

FTC General Structure

PFTC: Robust fixed structure controller
 AFTC: Real-time controller reconfiguration

Fault Accommodation

Component	Fault	Fault Accommodation Method		
Pitch sensor	Biased output	Signal correction of measurement and reference signals		
Pitch actuator	High air content in oil	Active and passive fault-tolerant control		
	Pump wear			
	Hydraulic leakage			
	Valve blockage	Shut down the wind turbine		
	Pump blockage			
Generator speed sensor	Proportional error	Signal correction of measurement signal		
	Fixed output	Signal correction of measurement signal (PL)		
	No output	Active and passive fault-tolerant control (FL)		

FTC Solutions: Passive

FTC Solutions: *Active*

FTC Solutions: Active Approach

Active FTC Tools

- Data-driven or mixed model-based & datadriven
- Kalman filter + disturbance distribution identification
- ✓ Adaptive (recursive) model estimation
- ✓ Adaptive filter + nonlinear geometric approach
- Takagi-Sugeno fuzzy modelling & identification
- Quasi-static multi-layer perceptron backpropagation neural network
- Fault reconstruction
- Robust solutions

FTC Solutions: Passive

Passive FTC Tools

- Data-driven & model-based mixed methods
- Controller parameter recursive identification (PID)
- ✓ Takagi-Sugeno fuzzy modelling & identification
- Quasi-static multi-layer perceptron backpropagation neural network
- FDI is by-product
- Robustness w.r.t. disturbance & faults

FDI & FTC Competitions

Two competitions in two parts launched on (I) wind turbine & (II) wind farm benchmark models

- Part I.I on FDI: solutions were presented in two invited sessions at IFAC World Congress, Milan, Italy, 2011
- Part I.II on FTC: solutions were presented in two and a half invited sessions at IFAC SafeProcess, Mexico City, Mexico, 2012
- Three prizes for each part was sponsored by kkelectronic a/s and Mathworks

- Part II.I on FDI: solutions were presented in one invited session at 2014 IFAC World Congress, Cape Town, South Africa, August 2014
- Part II.II on FTC: solutions were presented in one invited session at IFAC SafeProcess, Paris, France, September 2015
- Three prizes for each part was sponsored by Mathworks

FTC Competition: Results

- CUSUM Based Detection (Borchersen et al. 2014)
 - Wind direction and speed estimation
 - Comparison of different sets of wind turbines with similar operational conditions, used to generate residuals
 - CUSUM method for FDI
- Interval Parity Equation (Blesa et al. 2014)
 - Interval parity equations for FDI.
 - Bounded description of noise and modelling errors
 - FDI based on on-line interval prediction bound violations + structural analysis
- Fuzzy Residual Generators (Simani et al. 2014)
 - Takagi-Sugeno models for residual generation
 - Data-driven approach
 - Adaptive thresholding logic for FDI

Conclusion

✓ Different approaches to passive & active fault diagnosis & fault tolerant control
 ✓ Sustainability
 ✓ Offshore wind turbines
 ✓ Operation & maintenance

Real process/data verification & validation
 Application to different systems: e.g. AUV

Challenges

Original benchmark models combined with NREL's FAST to provide a FDI & FTC test case with more detailed aerodynamic & structural model

Research Issues

Floating Wind Turbine Control

Forthcoming Events

SAFEPROCESS 2022

11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes

Pafos, Cyprus

7-10 June 2022

Selected References

- Gearbox fault detection using time-frequency based methods, by P. F. Odgaard, J. Stoustrup
- Fault Detection and Isolation for a Wind Turbine Benchmark using a mixed Bayesian/Setmembership Approach, by R. M. Fernandez-Cantia, J. Blesa, S. Tornil-Sin, V. Puig
- Active Power Control Design for Supporting Grid Frequency Regulation in Wind Farms, by H. Badihi, Y. Zhang, H. Hong
- Fault-Tolerant Control of Wind Turbines with Hydrostatic Transmission using Takagi-Sugeno and Sliding Mode Techniques, by H. Schulte, E. Gauterin

Selected References (1)

- 1. F. D. Bianchi, H. D. Battista, R. J. Mantz, *Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design*, 1st Edition, Advances in Industrial Control, Springer, 2007, ISBN: 1–84628–492–9
- 2. L. Y. Pao, K. E. Johnson, Control of Wind Turbines, *IEEE Control Systems Magazine* 31 (2) (2011) 44–62
- 3. M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, *Diagnosis and Fault–Tolerant Control*, Springer–Verlag, Berlin, Germany, 2006
- 4. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, *Wind Energy Handbook*, 2nd Edition, John Wiley & Sons, New York, 2011
- 5. P. F. Odgaard, J. Stoustrup, M. Kinnaert, Fault–Tolerant Control of Wind Turbines: A Benchmark Model, *IEEE Transactions on Control Systems Technology* 21 (4) (2013) 1168– 1182, ISSN: 1063–6536. DOI: 10.1109/TCST.2013.2259235
- 6. L. Y. Pao, K. E. Johnson, A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms, in: *Proceedings of the American Control Conference, 2009 ACC'09*, IEEE, St. Louis, MO, USA, 2009, pp. 2076–2089, ISSN: 0743–1619. ISBN: 978–1–4244–4523–3. DOI: 10.1109/ACC.2009.5160195
- 7. A. Betz, D. G. Randall, *Introduction to the Theory of Flow Machines*, Permagon Press, Oxford, 1966, ISBN: 978–0080114330
- 8. S. Simani, C. Fantuzzi, R. J. Patton, *Model-based fault diagnosis in dynamic systems using identification techniques*, 1st Edition, Vol. 1 Advances in Industrial Control, Springer–Verlag, London, UK, 2003, ISBN: 1852336854
Selected References (2)

- 9. J. Chen, R. J. Patton, *Robust Model–Based Fault Diagnosis for Dynamic Systems*, Kluwer Academic Publishers, Boston, MA, USA, 1999
- 10. M. Mahmoud, J. Jiang, Y. Zhang, *Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis*, Lecture Notes in Control and Information Sciences, Springer–Verlag, Berlin, Germany, 2003, ISBN: 3540003185
- 11. Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault–tolerant control systems, Annual Reviews in Control 32 (2008) 229–252
- 12. S. X. Ding, Model–based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, 1st Edition, Springer, Berlin Heidelberg, 2008, ISBN: 978–3540763031
- 13. W. Leithead, B. Connor, Control of variable speed wind turbines: design task, International Journal of Control 73 (13) (2000) 1189–1212, DOI: 10.1080/002071700417849
- 14. P. F. Odgaard, J. Stoustrup, Fault Tolerant Wind Farm Control a Benchmark Model, in: *Proceedings of the IEEE Multiconference on Systems and Control – MSC2013*, Hyderabad, India, 2013, pp. 1–6.
- 15. P. F. Odgaard, J. Stoustrup, A benchmark evaluation of fault tolerant wind turbine control concepts, *IEEE Transactions on Control Systems Technology* 23 (3) 1221–1228
- 16. C. L. Bottasso, A. Croce, B. Savini, Performance comparison of control schemes for variable–speed wind turbines, in: *Journal of Physics: Conference Series*, Vol. 75, IOP Publishing, 2007, p. 012079, DOI: 10.1088/1742-6596/75/1/012079
- 17. S. Simani, P. Castaldi, Active Actuator Fault Tolerant Control of a Wind Turbine Benchmark Model, *International Journal of Robust and Nonlinear Control* 24 (8–9) (2014) 1283–1303, John Wiley. DOI: 10.1002/rnc.2993
- 18. E. A. Bossanyi, G. Hassan, The Design of Closed Loop Controllers for Wind Turbines, *Wind Energy* 3 (3) (2000) 149–164, john Wiley & Sons, Ltd. DOI: 10.1002/we.34

Selected References (3)

- 19. K. E. Johnson, L. Y. Pao, M. J. Balas, L. J. Fingersh, Control of variable–speed wind turbines: standard and adaptive techniques for maximizing energy capture, *IEEE Control Systems Magazine* 26 (3) (2006) 70–81, DOI: 10.1109/MCS.2006.1636311
- 20. C. E. Plumley, B. Leithead, P. Jamieson, E. Bossanyi, M. Graham, Comparison of individual pitch and smart rotor control strategies for load reduction, in: *Journal of Physics: Conference Series*, Vol. 524, 2014, p. 012054, DOI: 10.1088/1742-6596/524/1/012054
- 21. A.-P. Chatzopoulos, W. E. Leithead, Reducing tower fatigue loads by a co-ordinated control of the supergen 2MW exemplar wind turbine, in: *Proc. of the 3rd Torque 2010 Conference*, Heraklion, Crete, Greece, 2010, pp. 667–674
- 22. F. Shi, R. J. Patton, An active fault tolerant control approach to an offshore wind turbine model, *Renewable Energy* 75 (1) (2015) 788–798, DOI: 10.1016/j.renene.2014.10.061

Thanks for your attention