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Introduction and Overview

- What is System Identification (SI)?

* Introduction to systems and models
* Procedure of system identification
* Methods of system identification

* Review on topics covered in course
&xcmples of system identification /




System ldentification

“Identification is the determination, on the basis of input
and output, of a system within a specified class of
systems, to which the system under test is equivalent.”

- L. Zadeh, (1962)
l Disturbances

(1)
Inputs . Outputs
»  DYysiern o
(1) ()

System identification is the field of modeling dynamic
systems from experimental data
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Systems

System: A collection of components which are coordinated
together to perform a function.

A system is a defined part of the real world. Interactions
with the environment are described by inputs, outputs, and
disturbances.

Dynamic system: A system with a memory, i.e., the input
value at time t will influence the output at future instants.

Examples of dynamic system:
« Example 1.1 A Solar-Heated House
« Example 1.2 A Military Aircraft
« Example 1.3 Speech
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A Solar Heated House
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Figure 1.2 A sclar-heated house.
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Figure 1.3 The solar-heated house system: u: input; /: measured disturbance; v
output; v: unmeasured disturbances,
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Vocal chords

Figure 1.7 Speech generation.

Speech

v: chord vibrations
airflow

. A

‘ y: sound

|

Figure 1.8 The speech system: y: output; v: unmeasured disturbance.
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Figure 1.9 The speech signal (air pressure). Data sampled every 0.125 ms. (8 kHz
sampling rate).
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Aircraft Model

Sensor Variable

Elevator deflection angle

Aileron deflection angle

Rudder deflection angle

Throttle aperture %

True Air Speed
Pitch Rate
Elevation Angle
Altitude
Roll Rate
Yaw Rate
Bank Angle
Heading Angle

Engine Angular Rate




120 MW Power Plant "Pont sur Sambre”

‘ Process Description

&D 3 major components: the reactor, turbine, & condenser

gas flow

turbine valves opening
super heater spray flow
gas dampers

air flow

steam pressure
main steam temperature
reheat steam temperature




Aircraft Mathematical Model
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Models

Model: A description of the system. The model should
capture the essential information about the system.

Systems Models

Complex Approximative (However,
model should capture the relevant
information of the system)

Building/Examining Models can answer

systems 1S eXpensive,
dangerous, time
consuming, etc.

many questions about
the system.
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Types of Models

- Mental, intuitive or verbal models
» e.g., driving a car
 Graphs and tables
» e.g., Bode plots and step responses
 Mathematical models
» e.g., differential and difference equations,
which are well-suited for modeling dynamic
systems



Mathematical Models and Benifits

- Do not require a physical system
» Can treat new designs/technologies without
prototype
» Do not disturb operation of existing system
« Easier to work with than real world
» Easy to check many approaches, parameter
values, ...
» Flexible to time-scales
» Can access un-measurable quantities
« Support safety
» Experiments may be dangerous
» Operators need to be trained for extreme situations

 Help to gain insight and better understanding

Lecture 1 10




Mathematical Models

Model descriptions
« Transfer functions
« State-space models
 Block diagrams
Notation for continuous-time and discrete-time models
Complex Laplace variable s and differential operator p:
X(1) =dx(t)/dt = px(r)
Complex z-transform variable z and shift operator ¢4:
x(k+1) = gx(k)
Block diagram of a nonlinelar system (DC-motor):
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Type of Models and System

Modeling

Lecture 1

Models

mathematical — other
parametric — nonparametric
continuous-time — discrete-time
input/output — state-space
linear — nonlinear
dynamic - static
time-invariant — time-varying

SISO - MIMO

Modeling/System ldentification

theoretical (physical) — experimental

white-box — grey-box — black-box

structure determination — parameter estimation

time-domain - frequency-domain

direct — indirect



Types of Models

Many approaches to system identification, depending on
model class

— linear/nonlinear
— parametric/nonparametric

Non-parametric methods try to estimate a generic model
of a signal or system.

— step responses, impulse responses, frequency responses,
etc.

Parametric methods estimate parameters in a user-
specified model

— parameters in transfer functions, state-space matrices of
given order, etc.
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Types of Models

Lecture 1

The system identification methods are characterized by
model type:

A. Linear discrete-time model: Classical system
identification

B. Neural network: Strongly non-linear systems with
complicated structures — no relation to the actual
physical structures/parameters (will not be covered)

C. General simulation model: Any mathematical
model, that can be simulated e.g. with Matlab\Simulink.

It requires a realistic physical model structure, typically
developed by theoretical modelling

14



Types of Models

Lecture 1

D. Fuzzy systems: linguistic descriptions of the input
and output behavior. See e.g., when a person drives
a car and uses the brakes.

E. Nonlinear models: they are characterised by
nonlinear functions.

14.



Types of Models - contd

Models can also be classified according to purpose:
 Models to assist plant design and operation

» Detailed, physically based, often non-dynamic models to assist in
fixing plant dimensions and other basic parameters

» Economic models allowing the size and product mix of a projected
plant to be selected

» Economic models to assist decisions on plant renovation
* Models to assist control system design and operation

» Fairly complete dynamic model, valid over a wide range of
process operation to assist detailed quantitative design of a
control system

» Simple models based on crude approximation to the plant, but
including some economically quantifiable variables, to allow the
scope and type of a proposed control system to be decided

> I%educed dynamic models for use on-line as part of a control
system
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Systems/Models Representations

Linearization

Step/
Impulse
Response
and
Frequency
Response
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Nonlinear Lumped
Parameter System

State-Space
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Sampling
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Laplace
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How to Build Mathematical Models?

Two basic approaches:

 Physical modeling
1 Use first principles, laws of nature, etc. to model
components
1 Need to understand system and master relevant
facts!

« System identification - Experimental modeling
] Use experiments and observations to deduce
model
(] Need prototype or real system!



Principle of System Identification

Basic Idea: estimate system from measurement of u(t) and y(f)

Uit

Issues:

wit) - disturbance

Y

System

0,0

ulleh)

y |t 1

elt) - measurement

nolse
I yikh)

— Choice of sampling frequency, input signal (experimental

conditions)

— What class of models — how to model disturbances?
— Estimating model parameters from sampled, finite and noisy

data

Lecture 1



Procedure of System Identification

Experiment design and data

collection
Data preprocessing
Model structure selection
Parameter estimation

Model validation

Lecture 1

Experiment design

!

Data collection

!

Data prefiltering

Y

W— =

Model structure selection

'

Parameter estimation

!

Maodel validation

No <—< Model OK? =

Y

v

Yes

An iterative
procedure !
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Procedure of System Identification — |

<:: Start ::: a priori process

information

r

» Experimental design and execution Experimental Design
’ = and Execution

[ Step, Pulse, or
PRBS-Generated Data)

» Data preprocessing e
a . * Data Preprocessing
Model structure determination et Sk =
Determination
» Parameter estimation = Parnmeter Estimmution

{ Linear Plant and
Disturbance Models)

Model validation Model Validation e

(Simulation, Residual auto and
cross- correlation,
step-response)

L Yes

C End :’ From D.E. Rivera, ASU
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Does the model
meet validation criteria?




Sugar Cane Crushing Process
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Procedure of System Identification — I

f —_—
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- m— . p— mode Not OK = revise!
Not O = revise prior?
¢'€.)I{ = accept model!

From D.E. Rivera, ASU:
Originally from P. Lindskog
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Experiments and Data Collection

Often good to use a two-stage approach
1. Preliminary experiments

— step/impulse response tests to get basic
understanding of system dynamics

— linearity, static gains, time delays, time constants,
sampling interval

2. Data collection for model estimation
— carefully designed experiment to enable good model fit

— operating point, input signal type, number of data
points to collect, etc.
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Preliminary Experiments: Step Response
Experiment

Resonance frequency

: |

/
s /|

| 1 I
0 / 5 10 15 20
Dead-time

Static gain 1

Rise time

Useful for obtaining qualitative information about system

 [ndicates dead-times, static gain, time constants and
resonance frequency etc.

 Aids sampling time selection (rule-of-thumb: 4-10
sampling points over the rise time)
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Designing Experiment for Model Estimation

Input signal should excite all relevant frequencies

— estimated model are more accurate in frequency ranges
where input has high energy

— a good choice is often a binary sequence with random “hold
times” (e.g., PRBS — Pseudo-Random Binary Sequence)

T T T _ T _ T T
05+
ﬂ_
_D_ﬁ_
-1 ] ] 1 1 ! 1

10 15 20 23 30

Trade-off in éeleétion of signél amplitudeﬂ

— large amplitude gives high signal-to-noise ratio (SNR),
low parameter variance

— most systems are nonlinear for large input amplitudes

Manyésitfalls If estimating a model of a system under
closed-loop control !
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Data Collection

with - disturbance

Y

e Vit
—T1 G{p}
eit) - measuremeant
nolsa
Ly, Ly

S )

I uikh} I yikhy

Sampling time selection and anti-alias filtering are central !
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Procedure of System ldentification

— Experiment design

Y

Data collection

!

- Data prefiltering

Y

— Model structure selection

'

Parameter estimation

4
Maodel validation An iterative
' procedure !
T - 1______‘__
No -l.'—r-if_i& Maodel OKY ,f::’

—

v

Lecture 1 Yes



Prefiltering of Data

Remove

— transients needed to reach desired operating point
— mean values of input and output signals, /.e., work with

Ault]=ult]—- % iu[r]

A= =23 1
N~

— trends (use detrend in MATLAB)
— outliers (“obviously erroneous data points™)
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Procedure of System Identification

— Experiment design

Y

Data collection

|

i Data prefiltering

Y

——— Model structure selection

Y

Parameter estimation

!

Model validation An iterative
oy procedure !
No «—__  ModelOK? =

Y

Lecture 1 Yes



Model Structures

Model structures commonly used (BJ includes all others as special cases)

ARMAX (autoregressive moving average
exogeneous input)

elk]

Cilq)
k] ¢ | yIk]
—» Biq) (> AQ) >~

B(q) C(q)
[kl= k o[ i
v[k] A(g)”[ ]+A(g)€’[ ]

ARX (autoregressive with exogeneous input)

e[kl
ufk] ¢ | vkl
—»  B(q) > AQ) >
1. Bl@) 1 ol
VK] 1) ulk] 1(2) [ /]
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BJ (Box Jenkins)

elk]

Y

Cla)
Diq)

¢ ylk]

Ll k] Biq)
I., 1." :
Fllt[qjl
k)= 29 ey ED i
F(q) D(q)
OE (output error)
e[k
I_|[ I-'\ I B'Lq :‘ ¢ ",."I |\ ]
Alg) )—O >

VK] = ‘?(9’; uk]+ el k]



Model Structures -contd

 Model structures Based on Input-Output

Model p(q) 7.(q)
B(q) 1
ARX A(q) A(q)
ARMAX B(q) C(q)
4(q) A(q)
FIR B(q) 1
Box-Jenkins Blg) Clg)
F(q) D(q)
| B(q) |
Output Error (o) 1
A(g)yik]= %H[k] - ;EZ; e[k] or V[k]= p(q)ulk]+ p.(q)e|k]
 Model structures Based on State-Space Representation
x|k +1]= Ax[k]|+ Bu[k] X[k +1]=AO)x[k]+ B(O)ulk]

or

vk +1]|=Cx[k+1]|+ Dulk+1] y[lk+1]=CO)x[k+1]+DO@)u[k +1]
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Choice of Model Structure

1. Start with non-parametric estimates (correlation
analysis, spectral estimation)
— give information about model order and important
frequency regions
2. Prefilter input/output data to emphasize important
frequency ranges
3. Begin with ARX (AutoRegressive with eXogeneous input) models
4. Select model orders via
— cross-validation (simulate model and compare with new
data)
— Akaike’s Information Criterion (AIC), i.e., pick the model
that minimizes

(1+2%);g[z‘;9]2

(where d is the number of estimated parameters in the model)
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Procedure of System ldentification

— Experiment design

Y

Data collection

!

R— Data prefiltering

Y

— Model structure selection

'

Parameter estimation

!

Model validation An itel'ative
oy procedure !
No =—=__ ModelOK? =

Y

Lecture 1 Yes



Nonparametric Estimation Methods

Nonparametric methods
 Transient response
« Correlation analysis

- Frequency responses analysis and Fourier
analysis

« Spectral analysis



Parametric Estimation Methods

Lecture 1

Non-recursive/Batch (off-line) methods

Linear regression and (block) least squares methods
Prediction error methods

Instrumental variable methods

Subspace methods (If possible, few details)

Recursive (on-line) methods

Recursive Least Squares (RLS) methods

Forgetting factor techniques and time-varying
svstems identification methods



Procedure of System Ildentification

— > Experiment design

Y

Data collection

!

B Data prefiltering

Y

— Model structure selection

{

Parameter estimation

!

Model validation An itel‘aﬁve
' procedure !

-—.________--_

—
No -—_  Model OK? =

. —

Y
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Model Validation

A critical evaluation: “is model good enough”?
— typically depends on the purpose of the model

Example
I
(r{\} —
(s + 1){(s 4+ a)
Open- and closed-loop responses fora = —0.01. 0, 0.01
a=-0.01
a=001 _ ~- ﬁﬁﬁﬁﬁ N ] 1 ‘;,/’F\”\\‘___fﬁ__ﬁ____

Insufficient for open-loop prediction, good enough for closed-loop control.
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Model Validation - cont’d

« Bode diagrams reveal why model is good enough for
closed-loop control

- -
10 i
1 1 1 1 1 10 1
A [ — ——
gt = L] s e e
_..___>
=0 ==__ sof- E
a=-0.01 "l 1
\ ‘(L"M‘
| \ -1_‘! -
o .
r‘l L |1 A 1 | llJLll L el L L L L) L} 1 LI B B " L A .l ILJLJI
10 * 10" 10° 10" 10’ 10" 10°

 Different low-frequency behavior, similar responses
around cross-over frequency
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Principle of Model Validation

1. Compare model simulation/prediction with real data
2. Compare estimated model’s frequency response and

spectral analysis result
3. Perform statistical tests on prediction errors
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Validation: simulation and prediction

 Split data into two parts: one for estimation and one

for validation

« Apply input signal in validation data set to estimated
model

« Compare simulated output with output stored in
validation data set

Measured and simulated output

6.5
G r" I !|I ] fF i ' rl P
[} f i /I III I v |I i | Bt
al i | 1 :I | i ? | | 1|II | 1 : |
1 | | it 3 |
b 1 . i I' 11 | He it - i
I 1 \ . I | | 1
1 ! |I i it u 1 3t |L r,l § I| y! El. | i {1
1] I | y{ L I|l i1 Ln ll
4 1 I 1 I | it IAI | Ill /! IIil I | —
| | ll l | ! III 'j; Il'n|1l: ill j 1 III
1 | II | I i I il‘ I -
I | y 1
1| i IU'?I ||J | | l‘lJ I\ ! { ]
i | \u v 5 |
k] J ) j—“l'_'.l 3 = 1

Time [s]
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e eane TORIS

Practice vourself using Matlab System Identification toolbox demonstrations: “iddemo”

== 1ddemo

The SYSTEM IDENTIFICATION TOOLBOX 1s an analysis module
that contains tools for building mathematical models of

dynamical systems. based upon observed mput-output data.

The toolbox contains both PARAMETRIC and NON-PARAMETRIC
MODELING methods.

[dentification Toolbox demonstrations:

1) The Graphical User Interface (1dent): A guided Tour.
2) Build simple models trom real laboratory process data.
3) Compare different identification methods.

4) Data and model objects in the Toolbox.

5) Dealing with multivariable systems.

6) Building structured and user-defined models.

7) Model structure determination case study.

8) How to deal with multiple experiments.

9) Spectrum estimation (Marple's test case).

10) Adaptive/Recursive algorithms.

11) Use of SIMULINK and continuous time models.

12) Case studies. ’7

e LEE

Operatons

i i
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s }

I lms—=_ |

Ciata Yiews

todel Views
Ta Te
Jii ibrkzpace || LTI ewer | [ Ji
7 =
Trash Valickstion Data
Statuz linz is here.

<) Interactive Demo of ident

To follow the demo, please select menu items and click on buttons
as prompted. You are of course free to explore ather options during
the demo. but the text assumes thatyou carry out all instructions

Maote that you can resize this figure (and most other ident figures)
if necessary. Try to resize now if you wish

1) First type load dryer2 at the MATLAB command
line. This loads the data variables ug and v into the workspace.
This data is from an actual hairdryer. The input (u2) is the heating
power and the output (v2) is the temperature of the outflow air.

Mewt > Cloze
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