‘Lecture 2.5 I

e Nonparametric Methods
e Input Signals

e Model Parameterizations

Lecture 2.5 Silvio Simani Page 1/28



System Identification

Obtain a model of a system from measured inputs and outputs.

Type of model depends on application and system. Often we assume
that the true system can be described as a LTI (linear time-invariant)

system:
y(t) = Golq)u(t) + v(1) (1a)

equivalently,

Zq(} Ju(t — k) + v(t) (1b)

Question: How do we determine the model Gy (q) or {go(k)}?
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Parametric models:

Postulate a model G(q, 8) parameterized by 6.
e Easy to use for simulation, control design, etc.
e Often accurate models.
e Requires some work...

e Example: FIR model

y(t) = u(t) + bru(t — 1) + bou(t — 2)

= G(g 1, 0)=14+bqg ' +bqg? 60 =][bb]"

Question: Can we determine G(q) or {go(k)} without postulating a

parameterized model?
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Nonparametric Identification

Nonparametric models:

Determine G or {go(k)} without parameterizing.

e Simple to obtain.

e Results often in graphs or tables which can not easily be used for

simulation, etc.
Often used to validate parametric models.

Transient analysis, correlation analysis, frequency analysis,

spectral analysis.
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Transient Analysis

Impulse response analysis: Applying the input

t=0
40

to (1b) gives the output

y(t) = kgo(t) + v(t)

which motivates the impulse response estimate
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Step-response analysis Applying the input

k, t>0
0, t<0

u(t) =

gives the output

y(t) =k Z go(k) + v(t)

which motivates the impulse response estimate
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Step-response (true — solid, measured — x)

15

time (=)
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Transient analysis

e Input taken as impulse or step.

e Model consists of recorded output, or an estimate of gg(k)

Convenient for deriving crude models. Gives estimates of

dominating time constants, time delays and static gain.
Sensitive to noise.

Poor excitation.
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Correlation Analysis

System:

oo

y(t) = Z go(k)u(t — k) + v(t)

k=1
where u(t) is a stochastic process which is independent of v(?).

Multiplying by u(t — 7) and taking expectation yields

rulT) = 3 go(k)ru(r = F)
k=1

which 1s known as the Wiener-Hopt equation.

In practice, truncate the sum and solve the resulting system of eq.
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Estimates of the covariance functions.

e First choice:

N-—T1
1

Fyu(T) = i y(k+ 1)u(k) (v >0)
k=1

e Second choice:

;':\"T—T

—7— Z y(,l{: —+ ’T)"U,(k:) (’T > 0)

k=1

Which one to prefer?
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Corr. analys N=100 Corr. analys N=500
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Frequency Analysis

Estimate Gg(e')!

« cos(wt) Gol2) alGo(e™)] cos(wt + @) + v(t)
ol 2

Repeat experiment for different w (1 =1,..., N).

Determine the phase shift and the amplitude of the output.

Results in a Bode plot (|Go(e')| and arg Go(e™)).

Sensitive to noise. Require long experiments.

Gives basic information about the system.
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Spectral Analysis

e The correspondence of the Wiener-Hopt equation in the
frequency domain is given by:

¢ yu (w)

e An estimate of the transfer function can be obtained as:

é((i_m) (i)yu (w)/(i)u (W)

e Use estimates of the spectral densities, e.g..

1 N
(I)yu_((.d) — m ?/’\'yu_(’T)G

T—— J.'?\'T
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e lirrors in 'f‘y,u,(T) are summed together = not consistent!
— N large = total (square) error is large even if the error in
Iy (7) 1s small for all 7.
— T4y, (7) decreases slowly = poor estimate of 7, (7) for large

values of 1.

e Better estimates are obtained if a lag window, w(t), is used:

S
."\T

¥ 1 A —iTW
D, (w) = 5o Z Fyu(T)w(T)e

T—=—N

e Length of lag window (M) - compromise between bias and

variance (high resolution and reducing erratic fluctuations).
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Figure 1: Spectral analysis, N = 256: Left: Periodogram. Right:
Bartlett window M = 128.
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Summary - Nonparametric Methods

Results often in graph or table (step response, weighting

function, transfer function etc.).

Transient analysis (step-response, impulse response).

Frequency analysis (sinusoidal input).

Correlation analysis (weighting function estimate).
Spectral analysis (transfer function estimate).

Useful for obtaining crude estimates of time constants, cut-oft

frequencies etc. or for model validation.
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‘ Input Signals I

The quality of the model is dependent on an appropriate choice of

input signal.
Examples of useful input signals are:

e Step function.

e Pseudorandom binary sequence (PRBS).

e Sums of sinusoids
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Most often the input signal is characterized by its first and second

order moments:

m = Fu(t)
r(1) = E(u(t +71) —m)(u(t) —m)?

and /or its spectral density:

Rem: Deterministic signals

Fulh) = N .
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Step Function

Properties

e Mostly used for transient analysis: overshoot, static gain, major

time constants.

e Limited usability for parametric modeling.
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PseudoRandom Binary Sequence (PRBS)

A PRBS u(t) is a periodic, deterministic signal with white-noise-like

properties.

u(t) = rem(A(q)u(t),2) = rem(aiu(t — 1) + -+ + a,u(t —n),2)

Properties

e The signal shifts between two levels in a certain fashion

depending on A(q).

e Spectral characteristics is determined by A(q) and, in particular,

by the period length M = 2" — 1.

e Deterministic sequence behaving as noise (reproducibility).

Lecture 2.5 Page 20/28



Figure 2: PRBS sequence, p—=0.5, M = oco. Left: Example of realiza-

tion. Right: Spectral density.
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Sum of Sinusoids

M
E Ay SIN (Wit + @)

m=1

Properties
e User parameters: a,,. w,, and ¢,,.

e (Covariance function given by:

M 5

a.,.,

m=1

e Spectral density given by:

M 5
a m

4

0w — wm) + 0w + wy, )]
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Figure 4: Sum of 4 sinusoids. Left: Signal. Right: Spectral density.
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Persistent Excitation

To obtain estimates of a parametric model the input signal has to be

“rich” enough to excite all modes ot the system.
A input signal is said to be persistently exciting (p.e.) of order n if:

(1) The following limit exists:

N—oo

j\r
1 B
ro(7) = lim NZ u(t + 7)u’ (1)
=1

Rem: u(t) ergodic implies

ro(7) = Eu(t + 7)ul (¢)
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(i) The matrix:

1s positive definite.

e Another definition: det R, (n) # 0.

e And another: u(t) is p.e. of order n if ®,(w) # 0 on at least n

points in the interval —m < w < 7.
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An input signal that is p.e. of order 2n can be used to consistently

estimate a parametric model of order < n.

e A step function is p.e. of order 1.

e A PRBS with period M is p.e. of order M.

e A sum of m sinusoids is p.e. of order 2m (if w,, # 0 and w,,, # 7).
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Another important observation!

A parametric model becomes more accurate in the

frequency region where the input signal has the major part

of its energy.

A physical process is often of low frequency character = use low-pass

filtered signal as input.

Lecture 2.5 Page 27/28



SlllIlHl‘éLI‘V - Input Signals
N S

The choice of input signal determines the quality of the final

parametric model.

The obtained parametric model is more accurate in tfrequency

regions where the input signal contains much energy.

An input signal has to be rich enough to excite all interesting

modes of the system (persistently exciting of sufficiently high

order).

In practice there might be some restrictions on the input.
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