| Lecture 4 '

Prediction Error Methods (PEM)
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The Least-Squares Method

e Chapter 4: The least squares method applied to static (deterministic)
linear regression models (¢(t) deterministic).

e What happens when we consider dynamic models?
A(g",0)y(t) = Blg ", 0)u(t) + e(t)
= yt) =¢ (1)0 +e(t)

where

et)=[—yt—1) ... —yt —na)u(t —1) ... u(t —ny)]"

9:[a1 R 793 bl ...bnb]T

a

Properties of the least squares estimate
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Properties: Assume that the true system can be described as

y(t) = " (£)80 + v(t)

Results: The estimate 075 will be consistent ( @ — 0 as N — oo) if

(i) Ep(t)e!(t) is nonsingular.

(i) Ep(t)u(t) = 0.
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The first condition will be satisfied in most cases. A few exceptions
e The input is not persistently exiting of order ny.

e The data is noise-free v(t) = 0 and the model order is chosen too

high (which implies that A(¢~') and B(¢~ ') have common

factors).
e The system operates under feedback with a low order regulator.

The second condition is in most cases not satisfied. A notable

exception is when e(t) is white noise.
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Modifications of the Least-Squares Method

To relax the second constraint, we will in the following examine two

different ways to modify the least-squares method:

(i) Prediction error methods. Model the noise as well!

(ii) The instrumental variables methods (IV methods) — modifying

the normal equations associated with the least-squares estimate.
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Prediction Error Methods (PEM)

Idea:

e Model the noise as well = stochastic models, 7.e., the outputs
from the models are not deterministic.

e Minimize the prediction errors (¢,0) = y(t) — y(t|t — 1,0). The

least-squares method is a special case of this approach; consider

the prediction error
e(t,0) = y(t) — J(tlt —1,8) = y(t) — " (t)6

A general methodology applicable to a wide range of model

structures.
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Examples

Find the optimal predictor, §(¢|t — 1) for the following systems
assuming Fe(t) = 0, Fe(t)e(s) = 5. ¢A\°.

Notice that (¢|t — 1) is a function of {y(s), u(s)}:_*

S=—00"

b) (1 —0.1¢g7YHy(t) = —0.5¢ 1 u(t) + e(t)

c) (1—-0.1¢ YHy(t) = —0.5¢ tu(t) + (1 — 0.8¢ )e(t)
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| Predictions '

A predictor can be described as a filter that predicts the output of a
dynamic system given old measured outputs and inputs. Design the

predictor by

(i) Choosing the model structure of y(t), e.g., ARX, OE, or
ARMAX.

(i) Choosing the predictor, g(¢t|t — 1,0). A general predictor can be

viewed as

g(tlt —1,0) = L1(q~ ', 0)y(t) + La(q ", 0)u(?)

where Li(q~1,0) and La(qg~ ', 0) are constrained such that
y(t|t — 1,0) depends on past data.
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Optimal Prediction

We will here consider the general model structure
y(t) = Glg~ ", 0)u(t) + H(g ", 0)e(t)

where Ele(t)e’ (s)] = A(6)d; s and G(0,0) = 0.

Goal: Find the optimal mean square predictor g(t|t — 1, 8), i.e., solve

min Ee(t)e! (t
g(t[t—1) ()" (1)

where £(t) = y(t) — y(t|t — 1) is the prediction error, and g(t|t — 1)
t—1

depends on {y(s),u(s)}
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Results:

Under the assumptions that

(i) z(t) only depends on past measurements

(ii) u(t) and e(s) are uncorrelated for t < s

then

gt —1,0)=H (¢ ',0)G(qg ".0)ult)+ [I—H (¢ '.0)]y)

is the optimal mean square predictor, and e(¢) the prediction error,

Hence,
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e(t,0)

y(t) —y(tit —1,0)
H g1, 0) [yt) — G(g ", 0)ult)]
e(t)

Ec(t,0)e'(t,0) = A(0)
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Optimal Prediction for State Space Models

As an alternative to the model structure:

y(t) = Glqg~ ", 0)u(t) + H(q~ ', 0)e(t),

it 1s often common to use state-space models:

r(t+1)=F(@)x(t)+ B(0)u(t) + v(t)
y(t) = C(0)x(t) + e(t)
where v(t) and e(t) are uncorrelated white noise sequences with zero

mean and covariance matrices R1(0) and Ry (0).

In this case the optimal mean square predictor is given by the
Kalman filter
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| Cost Function '

How do we find the best model in the model structure?
e Minimize the prediction errors (¢, 8) for all ¢. How?

e Choose a criterion function Vi (6) to minimize:

P

0 = arg ngn VN (0)

where Vv (0) depends on (¢, 0) is a suitable manner.

Depending on the choice of model structure, predictor filters and
criterion function, the minimization of the loss function is more
or less difficult.
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For single-output systems the following criterion function is most

often used

Va(0) = = £ (1,6)

In general, the cost function is chosen as
Vn(0) = h(Rn(0))

where h(-) is a scalar-valued monotonically increasing function, and

R (0) is the sample covariance matrix of the prediction errors,

Ry (0) = % D e(t,0)7(¢,0).

Ex: h(-) =tr (), or h(:) = det(-).
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‘ A PEM Algorithm I

To define a PEM the user has to make the following choices:

e Choice of model structure. How should G(¢~*,0), H(q~1,0) and
A(0) be parameterized?

e Choice of predictor g(¢t[t — 1,0). Usually the optimal mean

square predictor is used.

e Choice of criterion function V(@). A scalar-valued function of all
the prediction errors £(1,80),...,e(N,0), which will assess the

performance of the predictor used.
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Computational Aspects

I. Analytical solution exists

If the predictor is a linear function of the unknown parameters,

g(tlt —1,0) = ' ()6,

and the criterion function V(@) is simple enough, a closed form
solution can be found. For example, when

N N
1 1 2
Vn(0) = =D 2(t.0) = =) (y(t) — " (1),
it is clear that the PEM is equivalent to linear regression (the least
squares method). This holds for example for ARX or FIR models but

not for ARMAX and OE models.
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I1. No analytical solution exists

For general criterion functions, and predictors that depend
non-linearly on the data, a numerical search algorithm is required to
find the 0 that minimizes Vi (0).

Numerical minimization:

e Nonlinear = local minima may exist.

e Time consuming (convergence rate) and computationally

complex.

e Initialization.
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Different (standard) methods available:

Lecture 4

The Newton-Raphson algorithm

~(E+1) A (F) ~ () ~ (k)

0 =0 — o [V"O )TV

The derivatives of the loss function can be computationally

complex to evaluate. Fast convergence.

The Gauss-Newton algorithm is a computationally less
intensive algorithm with a theoretically lower rate of convergence

which can be used as an alternative.

Gradient based methods are simpler to apply, but has a slow

convergence rate.

Grid search. Search the whole parameter space. VERY time

consuming.
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Theoretical Analysis

Assumptions
e The data {u(t),y(t)} are stationary processes.
e The input is persistently exciting.

e V/(0) is nonsingular around the minimum points of V().

o The filters G(q¢1,0) and H(q !, 0) are smooth differentiable

functions of the parameter vector.

What happens with the estimate Oy as N — oo ?
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Consistency:

lim Oy = arg mein Voo (0)

N —o00

N
.1 2 2
Voo (0) = J\;gréo — tE_l e“(t,0) = Fe=(t,0)

The PEM estimates are robust and consistent:
e As N — oo, Oy converges to a minimum point of Vo (0).

e If the model structure includes the true system (D7 non-empty)

Fa

then the PEM is system identifiable (0., € Dr).

~

e If there is a unique vector 8, that gives an exact description of

the system (D, contains one point), then the system is

parameter identifiable. The PEM estimate is consistent
(On — 0y as N — ).
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Asymptotic distribution: Asymptotic distribution of the

parameter estimates (assuming that the model is parameter
identifiable, O —> 6,)

e The parameter estimation errors are asymptotically Gaussian
distributed with zero mean and variance P

VN(@x — 0y) — N(0,P)

e For single-output systems the covariance matrix of the parameter
estimates are given by

P = A[EU(t0,)07(t,00)]

U(t,0) = — (8Egé9))T

and Fe(t)el (t) = A.

Lecture 4 Page 20/ 25



Accuracy of linear regression for static/dynamic case
Static case (N finite)

e O unbiased.

e VN(Ox — 0y) is Gaussian distributed N (0, P),

( Z‘Pt% tgo))

Dynamic case (for N — 00).

e O is consistent.

e V/N(Oxn — 6)) is asymptotically Gaussian distributed N (0, P).

P =A[Ep(t,00)¢ (t, 90)]_1
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Statistical efficiency

e A method is said to be statistically efficient if its estimates have

the smallest possible variance.

e The smallest possible variance of any (asymptotically) unbiased

estimator is given by the Cramér-Rao lower bound.

e For Gaussian disturbances the PEM method is statistically

efficient (equivalent to the maximum likelihood (ML) method) if
— Single-output: Vi (0) = ~ Ziil e2(t,0).

— Multi-output: Vn(0) = tr (SRy(0)) and S = A~1(0y), or
Vn(0) = det(Rn(0)).
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‘ Approximation I

The true system is often more complex than the model structure

(under-parametrization, Dr is empty).

e Still, O converges to a minimum point of Va ()

e We cannot expect G(q',0) = Go(q ') and H(q ',0) =
to hold.

e The model-fit can be controlled by pre-filtering the data,
up(t) = F(g u®),  yr(t) = F(q )y),
or by choosing an appropriate input.

e The OE model structure is useful.
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| Conclusions '

e The PEM is a general method to obtain a parametric model of a
dynamic system. The following choices define a prediction error

method:

— Choice of model structure;
— choice of predictor;

— choice of criterion function.

The PEM principle is to minimize the prediction errors given a

certain model structure and predictor.

The PEM principle leads to parameter estimates that have

several nice properties (in general, consistent and statistically

efficient estimates).
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Lecture 4

Approximation. The PEM is useful also for under-parameterized
models. The model-fit can be controlled by pre-filtering the data,

or by choosing an appropriate input.

If the prediction errors depend linearly on the parameter vector
the PEM estimates are obtained through linear regression (e.g.,
ARX and FIR models).

In the case of more complicated model structures a nonlinear

search algorithm is required to obtain the PEM estimates (e.g.,
ARMAX, OE, etc.).
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