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Abstract

This paper concerns a problem which is basic to perception: the integration of perceptual

information into a coherent description of the world. In this paper we present perception as a

process of dynamically maintaining a model of the local external environment. Fusion of perceptual

information is at the heart of this process.

After a brief introduction, we review the background of the problem of fusion in machine vision.

We then present fusion as part of the process of dynamic world modeling, and postulate a set of

principles for the "fusion" of independent observations. These principles lead to techniques which

permit perceptual fusion with qualitatively different forms of data, treating each source of

information as constraints. For numerical information, these principles lead to specific well known

tools such as various forms of Kalman filter and Mahalanobis distance. For symbolic information,

these principles suggest representing objects and their relations as a conjunction of properties

encoded as schema.

Dynamic world modeling is a cyclic process composed of the phases: predict, match and update.

These phases provide a framework with which we can organise and design perceptual systems. We

show that in the case of numerical measurements,  this framework  leads to the use of a form of

Kalman filter for the prediction and update phases, while a Mahalanobis distance is used for

matching. In the case of symbolic information, elements of the framework can be constructed with

schema and production rules. The framework for perceptual information is illustrated with the

architectures of several systems.
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Principles and Techniques for Sensor Data Fusion

1. Introduction

The problem of combining observations into a coherent description of the world is basic to

perception. In this paper, we present a framework for sensor data fusion and then postulate a set of

principles based on experiences from building systems. We argue that for numerical data,

techniques from estimation theory may be directly adapted to the problem. For symbolic data, these

principles suggest an adaptation of certain existing techniques for the problem of perceptual fusion.

We start the paper by discussing the problem of perception and sensing, and describing some

background from related scientific disciplines.

1.1  Perception and Sensing

Perception is not a goal in itself, but a means to obtain a certain behaviour by an agent (a thing

which "acts"). In order to plan and execute actions, an intelligent agent must reason about its

environment. For this, the agent must have a description of the environment. This description is

provided by fusing "perceptions" from different sensing organs (or different interpretation

procedures) obtained at different times.

We define perception as:

The process of maintaining of an internal description of the external environment.

The external environment is that part of the universe which is accessible to the sensors of an agent

at an instant in time. In theory, it would seem possible to use the environment itself as the internal

model.  In practice, this requires an extremely complete and rapid sensing ability. It is far easier to

build up a local description from a set of partial sources of information and to exploit the relative

continuity of the universe with time in order to combine individual observations.

We refer to the problem of maintaining an internal description of the environment as a that of

"Dynamic World Modeling".  By dynamic we mean that the description evolves over time based on

information from perception. This description is a model, because it permits the agent to "simulate"

the external environment. This use of model conflicts with "models" which a systems designer

might use in building a system. This unhappy confusion is difficult to avoid given that the two uses

of "model" are thoroughly embedded in the vocabulary of the scientific community. This confusion

is particularly troublesome in the area of perceptual fusion, where a sensor "model" is necessary for

the proper design of the system, and the result of the system is to maintain a world "model". Having



signaled this possible confusion, we will continue with the terminology which is common in the

vision and robotics communities: the use of “model” for an internal description used by a system to

reason about the external environment.

1.2 Background and State of the Art in Perceptual Fusion

Recent advances in sensor fusion from within the vision community have largely entailed the

rediscovery and adaptation of techniques from estimation theory. These techniques have made their

way to vision via the robotics community, with some push from military applications.

For instance, in the early 1980's, Herman and Kanade [30] combined passive stereo imagery from

an aerial sensor. This early work characterized the problem as one of incremental combination of

geometric information. A similar approach was employed by the author for incremental

construction of world model of a mobile robot using a rotating ultrasonic sensor [14]. That work

was generalized [13] to present fusion as a cyclic process of combining information from logical

sensors. The importance of an explicit model of uncertainty was recognized, but the techniques

were for the most part "ad-hoc". Driven by the needs of perception for mobile robotics, Brooks [5]

and Chatila [11] also published ad-hoc techniques for manipulation of uncertainty.

In 1985,  a pre-publication of a paper by Smith and Cheeseman was very widely circulated [45]. In

this paper, the authors argue for the use of Bayesian estimation theory in vision and robotics. An

optimal combination function was derived and shown to be equivalent to a simple form of Kalman

filter. At the same period, Durrant-Whyte completed a thesis [26] on the manipulation of

uncertainty in robotics and perception. This thesis presents derivations of techniques for

manipulating and integrating sensor information which are extensions of technique from estimation

theory.  Well versed in estimation theory, Faugeras and Ayache [27] contributed an adaptation of

this theory to stereo and calibration.  From 1987, a rapid paradigm shift occurred in the vision

community, with techniques from estimation theory being aggressively adapted.

While most researchers applying estimation theory to perception can cite one of the references [45],

[26] or [27] for their inspiration, the actual techniques were well known to some other scientific

communities, in particular the community of control theory. The starting point for estimation theory

is commonly thought to be the independent developments of Kolmogorov [37] and Weiner [47].

Bucy [9] showed that the method of calculating the optimal filter parameters by differential

equation could also be applied to non-stationary processes. Kalman [34] published a recursive

algorithm in the form of difference equations for recursive optimal estimation of linear systems.

With time, it has been shown that these optimal estimation methods are closely related to Bayesian

estimation, maximum likelihood methods, and least squares methods. These relationships are

developed in textbooks by Bucy and Joseph [10], Jazwinski [32], and in particular by Melsa and

2



Sage [41]. These relations are reviewed in a recent paper by Brown et. al. [6], as well as in a book

by Brammer and Siffling [4].

These techniques from estimation theory provide a theoretical foundation for the processes which

compose the proposed computational framework for fusion in the case of numerical data. An

alternative approach for such a foundation is the use of  minimum energy or minimum entropy

criteria. An example of such a computation is provided by a Hopfield net [31]. The idea is to

minimize some sort of energy function that expresses quantitatively by how much each available

measurement and each imposed constraint are violated [38]. This idea is related to regularization

techniques for surface reconstruction employed by Terzopoulos [46]. The implementation of

regularization algorithms using massively parallel neural nets has been discussed by Marroquin,

Koch et. al. [36], Poggio and Koch [43] and Blake and Zisserman [3].

Estimation theory techniques may be applied to combining numerical parameters. In this paper, we

propose a computational framework which may be applied to numeric or symbolic information. In

the case of symbolic information, the relevant computational mechanisms are inference techniques

from artificial intelligence. In particular, fusion of symbolic information will require reasoning and

inference in the presence of uncertainty using constraints.

The Artificial Intelligence community has developed a set of techniques for symbolic reasoning. In

addition to brute force coding of inference procedures, rule based "inference engines" are widely

used. Such inference may be backward chaining for diagnostic problems, consultation, or data base

access as in the case of MYCIN [8]. Rule based inference may also be forward chaining for

planning or process supervision, as is the case in OPS5 [28], [7].  Forward and backward chaining

can be combined with object-oriented "inheritance" scheme as is the case in KEE and in SRL.

Groups of "experts" using these techniques can be made to communicate using black-board

systems, such as BB1 [29]. For perception, any of these inference techniques must be used in

conjunction with techniques for applying constraint based reasoning to uncertain information.

Several competing families of techniques exist within the AI community for reasoning under

uncertainty. Automated Truth Maintenance Systems [24] maintain chains of logical dependencies,

when shifting between competing hypotheses. The MYCIN system [8] has made popular a set of

ad-hoc formulae for maintaining the confidence factors of uncertain facts and inferences. Duda,

Hart and Nilsson [25] have attempted to place such reasoning on a formal basis by providing

techniques for symbolic uncertainty management based on Bayesian theory. Shafer has also

attempted to provide a formal basis for inference under uncertainty by providing techniques for

combining evidence [44].  A large school of techniques known as "Fuzzy Logic" [48] exist for

combining imprecise assertions and inferences.

2  Fusion and Dynamic World Modeling
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This section presents a general framework for dynamic world modeling. The problem of perceptual

fusion is identified as fundamental to this process.

The section begins with description of dynamic world modeling as an iterative process of

integrating observations into an internal description. This process provides a framework within

which to examine problems of perceptual fusion. Using this framework, a set of principles for

fusing perceptual information are elaborated. These principles are then illustrated in the following

sections by presenting techniques for each of the phases of the cyclic process which make up the

framework.

2.1 A General Framework for Dynamic World Modeling

A general framework for dynamic world modeling is illustrated in figure 1.  In this framework,

independent observations are "transformed" into a common coordinate space and vocabulary.

These observations are then integrated (fused) into a model (or internal description) by a cyclic

process composed of three phases: Predict, Match and Update.

Observation

Transformation

Match

Update

Model

Predict

Common Vocabulary

Figure 1.  A Framework for Dynamic World Modeling.

Predict: In the prediction phase, the current state of the model is used to predict the state of the

external world at the time that the next observation is taken.

Match: In the match phase, the transformed observation in brought into correspondence with the

predictions. Such matching requires that the observation and the prediction express information
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which is qualitatively similar. Matching requires that the predictions and observations be

transformed to the same coordinate space and to a common vocabulary.

Update: The update phase integrates the observed information with the predicted state of the model

to create an updated description of the environment composed of hypotheses.

The update phase serves both to add new information to the model as well as to remove "old"

information.  During the update phase, information which is no longer within the "focus of

attention" of the system, as well as information which has been found transient or erroneous, is

removed from the model. This process of "intelligent forgetting" is necessary to prevent the internal

model from growing without limits.

We have demonstrated systems in which this framework is applied to maintain separate models of

the environment with different update rates and information at different levels of abstraction. For

example, in the SAVA Active Vision System [22], dynamic models are maintained for edge

segments in image coordinates, for 3D edges in scene coordinates and of symbolic labels of

recognized objects. In the MITHRA surveillance robot system [17], a geometric model of the

environment is maintained in world coordinates, and a separate symbolic model is maintained

based on searching the geometric model to detected expected objects.

From building systems using this framework, we have identified a set of principles for integrating

perceptual information. These principles follow directly from the nature of the cyclic process for

dynamic world modeling.

2.2 Principles for Integrating Perceptual Information

Experience from building systems for dynamic world modeling have led us to identify a set of

principles for integrating perceptual information. These principles follow directly from the nature

of the "predict-match-update" cycle presented in figure 1.

Principle 1) Primitives in the world model should be  expressed as a set of properties.

A model primitive expresses an association of properties which describe the state of some part of

the world. This association is typically based on spatial position. For example the co-occurrence of

a surface with a certain normal vector, a yellow color, and a certain temperature.  For numerical

quantities, each property can be listed as an estimate accompanied by a precision. For symbolic

entities, the property slot can be filled with a list of possible values, from a finite vocabulary. This

association of properties is known as the "state vector" in estimation theory.

Principle 2) Observation and Model should be expressed in a common coordinate system.
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In order to match an observation to a model, the observation must be "registered" with the model.

This typically involves transforming the observation by the "inverse" of the sensing process, and

thus implies a reliable model of the sensor geometry and function.

When no prior transformation exists, it is sometimes possible to infer the transformation by

matching the structure of an observation to the internal description. In the absence of a priori

information, such a matching process can become very computationally expensive. Fortunately, in

many cases an approximate registration can be provided by knowledge that the environment can

change little between observations.

The common coordinate system may be scene based or observer based. The choice of reference

frame should be determined by considering the total cost of the transformations involved in each

predict-match-update cycle.  For example, in the case of a single stationary observer, a sensor based

coordinate system may minimize the transformation cost. For a moving observer with a model

which is small relative to the size of the observations, it may be cheaper to transform the model to

the current sensor coordinates during each cycle of modeling. On the other hand, when the model is

large compared to the number of observations, using an external scene based system may yield

fewer computations.

Transformations between coordinate frames generally require a precise model of the entire sensing

process. This description, often called a “sensor model”,  is essential to transform a prediction into

the observation coordinates, or to transform an observation into a model based coordinate system.

Determining and maintaining the parameters for such a “sensor model” is an important problem

which is not addressed in this paper.

Principle 3)  Observation and model should be expressed in a common vocabulary.

A perceptual model may be thought of as a data base. Each element of the data base is a collection

of associated  properties. In order to match or to add information to a model, an observation needs

some be transformed to the terms of the data base in order to serve as a key. It is possible to

calculate such information as needed. However since the information is used both in matching and

in updating, it makes more sense to save it between phases. Thus we propose expressing the

observation in a subset of the properties used in the model.

An efficient way to integrate information from different sensors is to define a standard "primitive"

element which is composed of the different properties which may be observed or inferred from

different sensors. Any one sensor might supply observations for only a subset of these properties.

Transforming the observation into the common vocabulary allows the fusion process to proceed

independent of the source of observations.

6



Principle 4) Properties should include an explicit representation of uncertainty.

Dynamic world modeling involves two kinds of uncertainty: precision and confidence. Precision

can be thought of as a form of spatial uncertainty. By explicitly listing the precision of an observed

property, the system can determine the extent to which an observation is providing new information

to a model. Unobserved properties can be treated as observations which are very imprecise. Having

a model of the sensing process permits an estimate of the uncertainties to be calculated directly

from the geometric situation.

Principle 5) Primitives should be accompanied by a confidence factor.

Model primitives are never certain; they should be considered as hypotheses. In order to best

manage these hypotheses, each primitive should include an estimate of the likelihood of its

existence. This can have the form of a confidence factor between -1 and 1 (such as in MYCIN [8]),

a probability, or even a symbolic state from a finite set of confidence state.

A confidence factor provides the world modeling system with a simple mechanism for non-

monotonic reasoning.  Observations which do not correspond to expectations may be initially

considered as uncertain. If confirmation is received from further observation, their confidence is

increased. If no further confirmation is received, they can be eliminated from the model.

The application of these principles leads to a set of techniques for the processes of dynamic world

modeling. In the next section we discuss the techniques for the case of numerical properties, and

provide examples from systems in our laboratory. This is followed by a discussion of the case of

symbolic properties.

3. Techniques for Fusion of Numerical Properties

In the case of numerical properties, represented by a primitive composed of a vector of property

estimates and their precisions,  a well defined set of techniques exists for each of the phases of the

modeling process. In this section we show that the Kalman filter prediction equations provides the

means for predicting the state of the model,  the Mahalanobis Distance provides a simple measure

for matching, and the Kalman filter update equations provide the mechanism to update the property

estimates in the model.  We also discuss the problem of maintaining the confidence factor of the

property vectors which make up the model.

3.1 State  Representation: A Vector of Properties
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A dynamic world model, M(t), is a list of primitives which describe the "state" of a part of the

world at an instant in time t.

Model: M(t) ≡  { P1(t), P2(t),... , Pm(t)}

A model may also include "grouping" primitives which assert relations between lower level

primitives. Examples of such groupings include connectivity, co-parallelism, junctions and

symmetry. Such groupings constitute abstractions which are represented as symbolic properties.

Each primitive, Pi(t), in the world model, describes a local part of the world as a conjunction of

estimated properties, X^ (t), plus a unique ID and a confidence factor, CF(t).

Primitive : P(t) ≡ {ID, X^ (t), CF(t)}

The ID of a primitive acts as a label by which the primitive may be identified and recalled. The

confidence factor, CF(t),  permits the system to control the contents of the model. Newly observed

segments enter the model with a low confidence. Successive observations permit the confidence to

increase, where as if the segment is not observed in the succeeding cycles, it is considered as noise

and removed from the model. Once the system has become confident in a segment, the confidence

factor permits a segment to remain in existence for several cycles, even if it is obscured from

observations. Experiments with have lead us to use a simple set of confidence "states" represented

by integers. The number of confidence states depends on the application of the system.

A primitive represents an estimate of the local state of a part of the world as an association of a set

of N properties,  represented by a vector , X^ (t).

X^ (t)  ≡ { x̂ 
1(t), x̂2(t),... x̂n(t)}.

The actual state of the external world, X(t), is estimated by an observation process YHX which

projects the world onto a observation vector Y(t). The observation process is generally corrupted by

random noise, N(t).

Y(t) = YHX  X(t) + N(t).

The world state, X(t),  is not directly knowable, and so our estimate is taken to be the expected

value X^ (t) built up from observations. At each cycle, the modeling system produces an estimate

X^(t) by combining a predicted observation, Y*(t),  with an actual observation Y(t). The difference

between the predicted vector Y*(t) and the observed vector Y(t) provides the basis for updating the

estimate X^ (t), as described below.
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In order for the modeling process to operate, both the primitive, X^ (t) and the observation, Y(t) must

be accompanied by an estimate of their uncertainty. This uncertainty may be seen as an expected

deviation between the estimated vector,  X^ (t), and the true vector, X(t). Such an expected deviation

is approximated as a covariance matrix C^ (t) which represents the square of the expected difference

between the estimate and the actual world state.

C^ (t) ≡ E{[X(t) – X^ (t)] [X(t) – X^ (t)}] T}

Modeling this precision as a covariance makes available a number of mathematical tools for

matching and integrating observations. The uncertainty estimate is based on a model of the errors

which corrupt the prediction and observation processes. Estimating these errors is both difficult and

essential to the function of such a system.

The uncertainty estimate provides two crucial roles:

1)  It provides the tolerance bounds for matching observations to predictions, and

2)  It provides the relative strength of prediction and observation when calculating a
new estimate.

Because C^ (t) determines the tolerance for matching, system performance will degrade rapidly if we

under-estimate C^ (t). On the other hand, overestimating C^ (t) may increase the computing time for

finding a match.

3.2 Prediction: Discrete State Transition Equations

The prediction phase of the modeling process projects the estimated vector X^ (t) forward in time to

a predicted value, X*(t+∆T). This phase also projects the estimated uncertainty C^ (t) forward to a

predicted uncertainty C*(t+∆T). Such projection requires estimates of the temporal derivatives for

the properties in X^ (t), as well as estimates of the covariances between the properties and their

derivatives. These estimated derivatives can be included as properties in the vector X^ (t).

In the following, we will describe the case of a first order prediction; that is, only the first temporal

derivative is estimated. Higher order predictions follow directly by estimating additional

derivatives.  We will illustrate the techniques for a primitive composed of two properties, x1(t) and

x2(t). We employ a continuous time variable t to mark the fact that the prediction and estimation

may be computed for a time interval,  ∆T, which is not necessarily constant.

Temporal derivatives of a property are represented as additional components of the vector X(t).

Thus, if a system estimates N properties, the vector X(t) is composed of 2N components: the N

properties and N first temporal derivatives. It is not necessary that the observation vector, Y(t),
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contain the derivatives of the properties to be estimated. The Kalman filter permits us to iteratively

estimate the derivatives of a property using only observations of its value. Furthermore, because

these estimates are developed by integration, they are more immune to noise than instantaneous

derivatives calculated by a simple difference.

Consider a property, x̂ (t), of the vector X^ (t), having variance σ̂ 2x. A first order prediction of the

value x*(t+∆T) requires an estimate of the first temporal derivative, x̂ '(t).

x̂ ' (t)  ≡ 
∂x̂ (t)

∂t

The evolution of  X(t) can be predicted by a Taylor series expansion. To apply a first order

prediction, all of the higher order terms are grouped into an unknown random vector V(t),

approximated by an estimate, V^ (t). The term V^ (t) models the effects of both higher order

derivatives and other unpredicted phenomena.  V(t) is defined to  have a variance (or energy) of

Q(t).

Q(t) = E{V(t) V(t)T}

When V(t) is unknown, it is assumed to have zero mean, and thus is estimated to be zero. However,

in some situation it is possible to estimate the perturbation from knowledge of commands by an

associated control system.  In this case, an estimated perturbation vector V^ (t) and its uncertainty,

Q^(t)  may be included in the prediction equations.

Thus each term is predicted by:

x*(t+∆T)  =  x̂ (t) +  
∂x̂ (t)

∂t  ∆T  + v̂ (t)

Let us consider a vector,  X^ (t), composed of the properties x̂ 1(t) and x̂ 2(t)  and their derivatives.

 X^ (t) ≡  







x̂1(t)
x̂1'(t)
x̂2(t)
x̂2'(t)

 In matrix form, the prediction can be written as:

X*(t+∆T) :=  ϕ X^ (t) + V^ (t)

The time increment ∆T is included in the transition matrix, ϕ.
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ϕ  ≡    








1  ∆T  0  0 

 0  1  0  0 
 0  0 1  ∆T
 0  0  0  1 

 This gives the prediction equation in matrix form:

X*(t+∆T)  :=  ϕ X^ (t) + V^ (t) (1)

Predicting the uncertainty of X*(t+∆T) requires an estimate of the covariance between each

property, x̂ (t) and its derivative.

An estimate of this uncertainty,  Q^ 
x(t),  permits us to account for the effects of unmodeled

derivatives when determining matching tolerances. This gives the second prediction equation:

 Cx*
 (t+∆T) := ϕ  C^ 

x(t) ϕT  + Q^ 
x(t) (2)

3.3 Matching Observation to Prediction: The Mahalanobis Distance

The predict-match-update cycle presented in this paper simplifies the matching problem by

applying the constraint of temporal continuity. That is, it is assumed that during the period ∆T

between observations, the deviation between the predicted values and the observed values of the

estimated primitives is small enough to permit a trivial "nearest neighbor" matching.

Let us define a matrix YHX which transforms the coordinate space of the estimated state, X(t), to the

coordinate space of the observation.

Y(t) =  YHX  X(t) + W(t)

The matrix YHX  constitutes a "model" of the sensing process which predicts an observation, Y(t)

given knowledge of the properties X(t). Estimating  YHX  is a crucial aspect of designing a world

modeling system. The model of the observation process, YHX,  can not be assumed to be perfect. In

machine vision, the observation process is typically perturbed by photo-optical, optical and

electronic effects. Let us define this perturbation as W(t). In most cases, W(t) is unknown, leading

us to estimate:

 W^ (t) ≡ E{W(t)} = 0

and:
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 C^ 
y(t) ≡ E{ W(t) W(t) T}

To illustrate this process, suppose that we can observe the current value of two properties but not

their  derivatives. In this case YHX, can be used to yield a vector removing the derivatives  from the

predicted properties. The two-property, first order vector used in the example from the previous

section would give a prediction YHX of:

 



y1*(t)

y2*(t)
  =    [ ]1  0  0  0 

 0  0  1  0      







x1*(t)
x1*'(t)
x2*(t)
x2*'(t)

Of course YHX may represent any linear transformation. In the case where the estimated state and

the observation are related by a transformation, F(X), which is not linear,  YHX  is approximated by

the first derivative, or Jacobian,  of the transformation, YJX.

YJX =  
∂F(X)

∂X

Let us assume a predicted model M*(t) composed of a list of primitives, P*n(t), each containing a

parameter vector, X*(t), and an observed model O(t) composed of a list of observed primitives,

Pm(t), each containing the parameters Y(t). The match phase determines the most likely association

of observed and predicted primitives based on the similarity between the predicted and observed

properties. The mathematical measure for such similarity is to determine the difference of the

properties, normalized by their covariance. This distance, normalized by covariance, is a quadratic

form known as the squared Mahalanobis distance.

The predicted parameter vector is given by:

Yn* := YHX  Xn*

with covariance

Cyn*
  := YHX  Cxn *   YHX

T

The observed properties are Ym with covariance Cym. The squared Mahalanobis distance between

the predicted and observed properties is given by:

Dnm
2    =    

1
2 { (Yn* – Ym)T (Cyn*  + Cym)-1 (Yn* – Ym)}

For the case where a single scalar property is compared, this quadratic form simplifies to:
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Dnm
2   =  

1
2   

(yn* – ym)2

(σyn
*2+σym

2 )

In the predict-match-update cycles described below, matching involves minimizing the normalized

distance between predicted and observed properties or verifying that the distance falls within a

certain number of standard deviations.

The rejection threshold for matching depends on the trade-off between the risk of rejecting a valid

primitive, as defined by the Χ2 square distribution and the desire to eliminate false matches. For

example, for a single 1-D variable, to be sure to not reject 90% of true matches, the normalized

distance should be smaller than 2.71. For 95% confidence, the value is 3.84. As the probability of

not rejecting a good match goes up, so does the probability of false alarms.

3.4 Updating: The Kalman Filter Update Equations

Having determined that an observation corresponds to a prediction, the properties of the model can

be updated. The extended Kalman filter permits us to estimate a set of properties and their

derivatives, X̂n(t), from the association of a predicted set of properties, Yn*(t),  with an observed set

of properties, Ym(t). It equally provides an estimate for the precision of the properties and their

derivatives. This estimate is equivalent to a recursive least squares estimate for Xn(t). The estimate

and its precision will converge to a false value if the observation and the estimate are not

independent.

The crucial element of the Kalman filter is a weighting matrix known as the Kalman Gain, K(t).

The Kalman Gain may be defined using the prediction  uncertainty Cy*
 * (t).

K(t) :=  Cx*
 (t)   YHX

T [ Cy*
 (t) + Cy(t)] -1 (3)

The Kalman gain provides a relative waiting between the prediction and observation, based on their

relative uncertainties. The Kalman gain permits us to update the estimated set of properties and

their derivatives from the difference between the predicted and observed properties:

X̂(t)  :=  X*(t) + K(t) [Y(t) – Y*(t)] (4)

The precision of the estimate is determined by:

Ĉ(t) := C*(t) – K(t) YHX C*(t) (5)
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Equations (1) through (5) constitute the 5 equations of the Kalman Filter. For primitives composed

of numerical properties, the Kalman filter equations provide the tools for our framework.

3.5 Eliminating Uncertain Primitives and Adding New Primitives  to the Model

Each primitive in the world model should contain a confidence factor. In most of our systems we

represent confidence by a discrete set of five states labelled as integers. This allows us to emulate a

temporal decay mechanism, and to use arbitrary rules for transitions in confidence.

During the update phase, the confidence of all model primitives is reduced by 1. Then, during each

cycle, if one or more observed token is found to match a model token, the confidence of the model

token is incremented by 2, to the maximum confidence state.  After all of the model primitives have

been updated, and the model primitives with CF = 0 removed from the model, new model

primitives are created for each unmatched observed primitives.

When no model primitive is found for an observed primitive, the observed primitive is added to the

model with the observed property estimates and a temporal derivative of zero. The covariances are

set to large default values and the confidence factor is set to 1.  In the next cycle, a new primitive

has a significant possibility of finding a false match. False matches are rapidly eliminated,

however, as they lead to incorrect predictions for subsequent cycles and a subsequent lack of

matches.  Because an observed primitive can be used to update more than one model primitive,

such temporary spurious model primitives do not damage the estimates of properties of other

primitives in the model.

In this section we have seen that in the case of numerical properties, estimation theory provides the

mathematical tools for the processes which make up our perceptual framework. However, many

perceptual problems require that a system be able to reason with properties which are abstracted

from numerical measurements. How does this perceptual framework map onto the problem of

fusing  symbolic properties? This is the subject of the next section.

4. Fusion of Symbolic Properties

The framework for fusion of perceptual information described above can also be applied to

symbolic properties. In this section we describe the symbolic equivalent of a dynamic world model

and then present techniques for symbolic forms of the predict-match-update cycle. Such a system

can be used to describe the external environment in terms of objects, relations and events.

We begin our discussion with by recalling certain basic principles about perception. We then

develop the symbolic equivalent for each of the five principles which were presented in section 2.
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We complete the section by considering techniques for a symbolic form of predict-match-update

cycle. These techniques are illustrated with a system which is presented in section 5.5.

4.1 Philosophical Foundations

In 1781, Emanuel Kant [33]  presented a theory of intelligence which has found increasing

relevance as we build systems which interpret sensor data.  At the lowest level, Kant distinguished

the unknowable external world (called “noumena”) from perceptual stimuli resulting from that

world (phenomena).  Noumena are the source of perceptual stimuli and are not directly knowable.

Noumena include such stable things as physical objects, as well as processes such as fire or a river.

According to Kant, knowledge of the external world is limited to perceptual manifestations of

noumena. Such manifestations, called phenomena, represent a partial projection of noumena. For

example, our perception of the moon is limited to the pattern of light which reflects from one side

of the moon to our eyes.

Kant proposed that humans organise their perceived phenomena into schemata. Schemata can

represent individual phenomena as well as abstractions.  Properties measured by sensors are

phenomena. A vector of such properties is a form of schemata. To be faithful to Kant we should

also include temporal sequences  and images in our schemata.

Reasoning about the world requires an abstraction from phenomena. Abstractions can represent

such things as categories of objects, relations between objects, action or events. Abstractions are

represented by labels, commonly called symbols. A symbol is a "sign" which represents some

"thing". The thing which is represented may be a raw perceptual phenomena  or an abstraction from

perceptual phenomena.

Symbols may be organised into networks connected by relations. Minsky's "frames" and many

other AI tools provide modern examples of this idea.  Networks of symbols and relations may also

be represented by more abstract symbols. A basic problem is the definition of the vocabulary of

symbols and relations for a domain. In most AI tools, the vocabulary of symbols and relations are

specified by the programmer.  Researchers who apply AI tools to perception usually discover that

the design of the a-priori "knowledge" for a domain is an expensive and difficult task.

A popular philosophical problem in Cognitive Science and AI is the so called "symbol grounding

problem". Simply stated, this problem asks: “what is the relation between the abstract symbols in a

symbolic reasoning system and real world?”. In perception, this relation is provided by recognition

procedures.  Numerous pattern recognition techniques exist for detecting predefined categories of

objects. Many vision techniques exist to detect objects and their relations.
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Fusion of symbolic information is a problem of associating (or grouping) symbols which represent

perceptual phenomena. As with numerical properties, an internal “symbolic” model is composed of

a vector of properties. In modern terms such an association of properties is called a  "schema" or

frame or a unit. We will use the term "schema".

A schema is a named association of numeric and symbolic properties. A schema may contain

relations to other schema (such as ISA and Part-Of hierarchies),  as well as procedures for operating

on its properties. A dynamic world modeling system for symbolic information is concerned with

instantiating and maintaining a collection of schema which describe and predict the external

environment. The maintenance process can be formed using a predict-match-update cycle. Let us

examine how the principles enumerated in section 2 can be applied to symbolic interpretation.

4.2  Principles for Symbolic Fusion.

The first of our principles was stated as:

Principle 1) Primitives in the world model should be expressed as a set of properties.

Schema provide just such a representation. The properties may be symbolic labels or numerical

measures.

Principle 2) Observation and Model should be expressed in a common coordinate system.

For numerical data, a common coordinate system serves as a basis for data association. In a

symbolic description, this principle translates to saying that the information must somehow be

associated. This association may be on the basis of spatial or temporal coordinates, or it may be on

the basis of a relationship between properties. Spatial location remains a powerful technique for

associating information.

Principle 3)  Observation and model should be expressed in a common vocabulary.

The equivalent to a common coordinate system and common vocabulary at the symbolic level is a

"context". A context is a collection of symbols and relations which are used to describe a situation.

Knowing the context provides a set of symbols and relations which can be expected. This permits

description to proceed by a process of prediction and verification.

Principle 4) Properties should include an explicit representation of uncertainty.

As with numerical properties, symbolic properties have two kinds of uncertainties: precision and

confidence. The classic AI method for representing precision is to provide a list of possible values.
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Such lists are used both for symbolic properties and for relations. Constraints are applied by

intersecting lists of possible values.

Principle 5) Primitives should be accompanied by a confidence factor.

A schema is an assertion about the external environment. This assertion may be more or less

certain. The degree of confident in the truth of a schema can be represented by a confidence factor.

As with numerical techniques, this confidence factor applies to the association of symbols, and

increases or decreases as supporting or conflicting evidence is detected. Numeric techniques for

estimating confidence include probabilistic techniques [42], the MYCIN style confidence factors

[8], and fuzzy logic [48]. Many researchers define a set of ad-hoc discrete confidence "states".

4.3 A Symbolic Form of the Predict, Match and Update Cycle

In this section we examine techniques for the cyclic process of predict-match and update for a

symbolic description composed of schema. Our discussion is based on the use of a production

system to dynamically maintain an internal model composed of schema. A similar architecture may

be implemented with various other AI tools.

Prediction

The key to prediction is context. The prediction phase applies a-priori information about the context

to predict the evolution of schemas in the model as well as the existence and location of new

schema.  An important role of the prediction phase is to select the perceptual actions which can

detect the expected phenomena.

The prediction phase can be used with both pre-attentive and post-attentive recognition. In pre-

attentive recognition, the prediction phase can be used to "enable" or "arm" the set of pre-attentive

cues which will be processed. In post-attentive recognition, prediction triggers procedures for

detecting and locating instances of expected phenomena [2].

Match

The match phase associates new perceptual phenomena with predictions from the internal model.

As with numerical properties, a primary tool for matching is spatial location. Matching may also be

an association based on similar properties.

Update
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The update phase combines the results of prediction and observation in order to reconstruct the

internal model. Production rules provide one method to express the world knowledge needed to

update the internal model.

Control of Perception.

The internal model may be thought  of as a form of short term memory. The computational cost of

the predict, match and update phases depends on the quantity of information in this model.

Imposing a fixed cycle time on the model update process has the effect of determining a limit on

the quantity of information (the number of schema) that can be placed in the model at any time.

This problem of controlling the contents of the model is sometimes called the problem of "control

of perception [22].

Prediction plays a crucial role in control of perception. Expectations generated by the context

determine what objects and relations will be fed back into the match and update cycle. But context

alone is not sufficient. The current task of the system determines what information is needed and

thus which part of the context is attended to by prediction, matching and updating. Pre-attentive

information must also be controlled based on prediction, or else the match and update phases would

be flooded with too much information.

To illustrate the use of this framework to construct a symbolic description system, in the next

section we describe an object recognition system which we have recently constructed. More

detailed discussions of control of perception are presented in [20] and [22].

5 Example Systems Constructed in the Framework.

The perceptual framework presented above has been refined and demonstrated through the

construction of several perceptual and robotic systems over the last 10 years.

Mobile Robotics

The framework was originally developed for dynamic world modeling for a mobile robot. The first

such system maintained a model of the local environment for a mobile robot using a rotating

ultrasonic range sensor [14]. Shortly thereafter, the framework was adapted to the problem of

surface modeling using the light-stripe data [15], leading to a 3D composite surface model based on

the use of estimation theory. These techniques were then refined and used to model the

environment for a mobile robot equipped with 24 ultrasonic range sensors mounted in fixed

positions around a robot vehicle [19].  This  system, which fuses ultrasound, odometry and a-priori

information, is briefly described in section 5.1.
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Passive Vision

In the construction of a real time vision system, we applied a variation of this framework to the

problem of tracking edge segments in image sequences [18]. The result was a real-time "token

tracker", which is described in section 5.2. The token tracking system was generalized to provide a

system which incrementally models a 3D scene using 3-D edge segments [23]. The token tracker

was equally adapted to provide the input to a vertical line stereo system [21], described in section

5.3.  The vertical 3-D edges from the vertical line stereo system have been combined with

horizontal edges from ultrasonic modeling  to maintain a description of the  local environment. This

system is described in section 5.4.

Integrated Active Vision

Very recently, similar techniques have been demonstrated in an integrated active vision system

[22]. Edge segments from the right and left image are tracked using the token tracking process. The

edge models are then fed into a stereo matching process to maintain a 3-D scene model composed

of edges of all orientation. Both the 2-D and 3-D models are used by a object recognition process.

The 2-D, 3-D and symbolic descriptions are each based on the perceptual framework described

above. The integrated active vision system is briefly described in section 5.5.

5.1 Dynamic World Modeling Using Ultrasound

In this section we briefly describe a dynamic world modeling system for a mobile robot based on

24 ultrasonic range sensors. This system is described in greater detail in [19]. The architecture of

the system is shown in figure 2.
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Figure 2   Dynamic World Modeling by Fusing Ultrasound, Odometry and A-priori Information

The modeling system was implemented for a rectangular mobile robot equipped with a ring of 24

ultrasonic range sensors.   Each of the four sides of the vehicle carries a set of three parallel sensors.

Each corner also carries a set of three sensors mounted with orientations of 30°, 45° and 60°. Range

data from all 24 sensors are acquired continuously acquired and projected to "points" in world

coordinates, accompanied by an uncertainty covariance. This raw range data is used as the basis for

reactive obstacle detection and avoidance.

The position and orientation of the sensors with respect to the origin of the robot are defined in a

sensor configuration table. For each sensor, the sensor configuration table gives:

r The distance from the robot's origin to the sensor.

γ The angle from the robot's axis to the sensor

β The orientation of the sensor with respect to the robot's axis.
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Figure 3 Projection of a Range Reading to External Coordinates.

A sensor data description process reads range measurements from the sonar table, as well as the

estimated position of the robot from the vehicle controller. With this information, the depth
measure, D, for each  sensor, s, is projected to external coordinates,  (xs, ys),  using the estimated

position of the robot, (x, y, α), as shown in figure 3.

xs = x + r  Cos(γ+ α) +  D Cos(β + α)

ys = y + r  Sin(γ+ α) +  D Sin(β + α)

All three of the angles, α, β and γ are imprecise. To simplify the analysis, let us define the absolute

angle of the sensor as φ.

φ = α + β + γ

In order to combine data from different viewpoints and sensors, we must estimate the inherent

precision of the data. We have developed a model of an ultrasonic range sensor which predicts that
an echo comes from an arc shaped region defined by an uncertainty in orientation, σφ, and an

uncertainty in depth σD.

This crescent shaped uncertainty region may be approximated by a covariance which approximates

σφ and σD. This covariance is be expressed in Cartesian coordinates. The transformation  from a

circular coordinate system to a Cartesian coordinate system is given by:

X = [ ]x
y  = 







 D Cos(α+β)

  D Sin(α+β)

To map the covariance from circular to Cartesian coordinates, we need the Jacobian of this

transformation :

 XJDφ    
∂ [ ]x

y

 ∂(D, φ)
   = 







 Cos(φ)  –DSin(φ) 

 Sin(φ)     DCos(φ) 

The transformation of this elliptical region to Cartesian coordinates is given by:

Cs  = 



 σx2 σxy 

 σxy σy2 
   =  XJDα

Τ
  



 σD 0 

 0 σφ 
  XJDα
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From the needs of local modeling, the most important criteria for the sensor data uncertainty is that

it be larger than any true errors. Thus each reading in the sonar horizon is represented by the triple
(xs, ys,  Cs)  expressed in external coordinates.

The modeling process begins by constructing a description of the raw sensor data. This description

serves to filter sensor noise by detecting range measurements which are mutually consistent. It also

provides a representation with which the estimated position and orientation of the robot may be

constrained. Finally, it provides a form of "object constancy" at the level of the geometric

description of the environment. Such object constancy makes it possible for the mobile vehicle to

react to a number of situations without requiring a symbolic interpretation of the model.

Raw ultrasonic range data, the local model and the pre-stored global model are each described as

parametric line segments [16], represented with a data structure, illustrated in figure 4. This

parametric representation contains a number of redundant parameters which are useful during

matching and updating.

A parametric line segment is a structure composed of a minimal set of parameters and a set of

redundant parameters. The minimal set of parameters are:

c: The perpendicular distance from the segment to the origin.

d: The distance from the perpendicular projection

of the origin to the mid-point of the segment.

θ:    The orientation of the line segment.

h:    The half-length of the line segment.
σθ: The uncertainty (standard deviation) in the orientation.

σc: The uncertainty in position perpendicular to  line segment.

The redundant parameters for a line segment are:

P:    The mid-point of the line segment in external coordinates (x, y).
Pr: The end-point to the right of the segment.

Pl: The end-point to the left of the segment.

22



x •

 c  d 

lh

θ

y

Figure 4.  The Parametric Representation for a Line Segment.

The parameters (c, d) are equivalent to rotating the segment by an angle of -θ about the origin so

that the mid-point lies on the x axis. That is:

d =  x Cos(θ)  –  y Sin(θ)

c =  x Sin(θ)  +  y Cos(θ)

The advantage of this representation is that it allows us to represent each parameter and its time

derivative as a scalar estimate and a scalar variance in the composite model. In addition to the

above parameters, line segments contain a "type" field.  Type fields may contain one of the

following values:

Observed: The segment was generated uniquely by observation and does not correspond to a
segment in the global model.

Fixed: A segment from the global model which is known to be unmovable. The label
"fixed" is used to represent walls and heavy furniture.

Movable: A segment from the global model which is known to be movable. Typically used
for light furniture which might be displaced in the environment.

The type field is included on both recalled and observed line segments so that the update process

can propagate this label to the composite model segments. It is expected that the vocabulary of

types will evolve with the robot's functionalities.

Segments which are recalled or observed have no temporal component. Thus, by default, the

temporal derivatives are zero and are not explicitly represented. In order to track segments in the

composite model, it is necessary to be able to predict the location of the segments at a specific time
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interval. Such tracking requires an estimate of the temporal derivative of the position and

orientation of segments.

Let us express a minimum set of parameters for a segment as the vector:

S   =  [c, d, θ, h].

The parameters of S are each represented by a vector a, and its covariance, Ca. The vector A is

composed of an estimate of the parameter, a, plus the estimate of the first temporal derivative, a'.

The covariance Ca composed of the variance of the estimate, σa2, the covariance between the

estimate and its temporal derivative, σaa',  and the variance of the temporal derivative, σa'2.

A   =   



a
a'

         CA  =     














σ
2

a

σaa'

   σaa'

  σa'

2

where

a' = ------
∂a
∂t

The confidence of existence of segments is represented by a set of confidence states, noted CF, and

labelled by the integers 1 through 5, as described above in section 3.5. Segments are also labelled

with a unique "ID". The ID of a segment provides a label by which segments may be "referenced"

by processes outside of the modeling cycle.

In summary, the non-redundant parameters of a segment in the composite model are:

Perpendicular Position:     [ c, c', σc2, σcc', σc'2 ]

Tangential Position:      [ d, d', σd2, σdd', σd'2 ]

Orientation:      [ θ, θ', σθ2, σθθ', σθ'2 ]

Half Length:      [h, h', σh2, σhh', σh'2]

Type: One of {Observed, Fixed, Movable}

Confidence Factor: CF

Identity: ID
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Figure 5  A vehicle (rectangle with cross) with an circular uncertainty in position of 40 cm (circle

surrounding cross) is shown detecting a line segment. The top image shows a set of range data in

which a line segment has been detected. The projections of ultrasound readings are illustrated as
circles of radius σD. The projections provide the vertices of the sonar horizon. The detected

segment is illustrated by a pair of parallel line at ± σc.

 Figure 6. Continuing the example begun in figure 5, this crop from a screen dump shows three

segments from the composite local model just before the model was updated by the segment

detected in figure 5. An integer number indicates the identity of each segment. The width indicates

the confidence (CF = 3 for all segments in this example).

5.2  2D Edge Segment Following

The problem of tracking edge lines can be solved with the same framework and the same

mathematics as world modeling using ultra-sound.  Our process for 2-D edge tracking has been

described in [18]. This tracking process  has been used in a number of our projects over the last few

years. Real time hardware, capable of tracking up to 256 segments at 10 cycles per second, has

recently been constructed using this algorithm [12].
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Edge lines in this system are expressed in the"midpoint-Distance-Length" representation described

above. For edge tracking,  this representation corresponds to the uncertainty in position due to the

well known  aperture effect. That is, for a segment, perpendicular velocity, 
∂c
∂t  may be precisely

determined, while tangential velocity, 
∂d
∂t  is inherently imprecise. Separating the mid-point position

into c and d parameters allows us to represent each parameter and its time derivative as a scalar

estimate and a scalar variance.  Segments are represented with:

Pm The mid-point, (x,y) of the segment.

c The perpendicular distance of the segment from the origin.

d The distance from the perpendicular intercept of the origin to the mid-point

of the segment.

θ The orientation of the segment.

h  The half-length of the segment.

During the update phase, we update a minimum set of of parameters:

S =  {c, d, θ,  h}.

A problem with this representation is that the parameters c and d depend on the orientation θ. The

further a point is from the origin, the more an error in θ can lead to errors in c and d. For this

reason we shift the origin of our image coordinates to the center of the image. We also employ a

similarity measure based on the (x, y) coordinates of a segment during matching.

Prior to matching, the position of the mid-point (x, y), is computed from (c, d), to provide a

redundant set of parameters. For segments to match they must have similar orientation, be roughly

co-linear and overlap. The variances provide the tolerance for similarity of orientation and

colinearity. The segment half length provides the tolerance for overlap.  Each model token searches

the list of observed tokens for its best match by testing for similar values orientation, alignment and

overlap. If any test is failed, matching proceeds to the next observed token. The tests for orientation

and alignment are made by testing to see if the difference in attributes is less than three standard

deviations. For overlap, the half length of the segments is used as a tolerance region.

For model segment Ym* ≡ { xm, ym, cm, θm, hm, am, bm}, and observation segment Yo ≡ {xo,

yo, co, θo, ho,  ao, bo}, the test for similarity of orientation is:

(θm - θo)2  ≤  2 ( σθm2 + σθo2).
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If the test is true, then the observed segment is tested for colinearity with the model token by

comparing the distance from the mid-point of each segment to the line of the other segment:

(am xo + bm yo + cm)2 <  σcm2)  AND

 (ao xm + boym + co)2 <  σco2)

If the observed segment passes this test then the segments are tested to see if they overlap. The test

for overlap is made using the half length of the segments as an uncertainty along the line segment.

Thus the test compares the sum of the half lengths to the difference between mid-points.

(xm – xo)2 + (ym – yo)2  ≤  (hm + ho)2

If an observed segment passes all three tests, then a similarity to the model segment is calculated,

using the sum of the differences normalized by the standard deviations for orientation and length.

 Sim(Ym*, Yo) = 
(θo -  θm)2

 σθo2+ σθm2
   +  

(xm – xo)2 + (ym – yo)2 

 (hm + ho)2

+ 
 (amxo + bmyo + cm)2 

σcm2
   +  

 (aoxm + boym + co)2

 σco2

This similarity measure is a form of Mahalanobis distance, that is distance, normalized by variance.

The observed token with the smallest value of the similarity measure is selected as matching the

model token, and is used to update the token state vector and uncertainties.

The flow model is updated by updating the attributes and confidence factor of each token for which

a match was found, and reducing the confidence factor for tokens for which no match was found.

This process is described in this section.

Given an observed edge line which matches a model token, the update process is based on

equations (3), (4)  and (5) above.   For each x ∈ S ≡ {c, d, θ, h} the transformation from the

predicted vector and its derivative to the coordinates of the observation vector is the row vector:

YHX ≡   [ ] 1  0 

For each x ∈ S we compute a Kalman Gain vector as:

K(t) :=  Cx*
  * (t) YHX

T [ YHX  Cx*
 * (t) YHX

T*  + Cy*
 (t)] -1
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A new estimated vector is then obtained by

X̂(t)  :=  X*(t) + K(t) [ Y(t) – YHX X*(t) ]

A new estimated uncertainty is obtained from

Ĉ(t) := C*(t) – K(t) YHX C*(t)

The confidence of tokens is again represented with an confidence state labeled with an integer

value. The confidence of tokens, as well as the inclusion and elimination are managed as described

above in section 4.5.

The token tracking process has become a standard tool in our systems. It has been included in a

process which uses an extended Kalman filter to reconstruct a 3-D model of a scene from a single

moving camera [23]. It has been used to construct a vertical line stereo system which operates at 10

hz [21] described in the following section. It has also been used in an integrated active vision

system described in section 5.5 below.

5.3  Vertical Line Stereo System

The edge segment tracking process described above in section 5.2 has been used to provide input to

a system for world modeling for a mobile robot based on stereo matching of vertical edge

segments. The components of vertical line stereo system are shown in figure 7.

The vertical line stereo system is organized as a pipeline of relatively simple modules, as illustrated

in figure 7.  The first module in the system is concerned with detecting vertical edges. A cascade of

simple filters is used to first smooth the image and then approximate a first vertical derivative.

Filters in this cascade are composed of binomial kernel for smoothing, and a first difference kernel

for calculating the derivative.

The second module in the system is responsible for edge chaining and straight line approximations.

Raster scan based chaining algorithms are well suited to real time implementation. However, such

algorithms are normally greatly complicated by the presence of near horizontal line segments. The

restriction to detecting vertical edges yields a very simple one-pass chaining algorithm. The

resulting chains are expressed as segments by a recursive line splitting algorithm.
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Figure 7  The System Organization for the Vertical line stereo system (from [21]).

The third module in the system describes the maintenance of an image flow model by tracking edge

lines [18]. Tracking allows us to preserve the correspondence between an observed edge and

information in the 3-D scene model.

Stereo matching is performed by a single pass of a dynamic programming algorithm over the entire

image. Dynamic programming is based on matching the ordered sequence of edge lines in the left

and right flow model. The algorithm  determines all possible costs for matching the two image

sequences in order. A cost measure is used based on the Mahalanobis distance for edge direction,

overlap and distance from a default disparity. Matches are saved in a match list and used to

generate the default disparity for subsequent cycles. The result of matching is a vertical 3-D
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segment. Vertical edge segments may be used alone, or they may be fused with the model provided

by ultrasonic range sensors as described in the next section.

5.4  World Modeling Using Ultrasound and Vertical Line Stereo

The vertical line stereo system described above has been combined with the world modeling system

described in section 5.1 to provide a perception system for a mobile robot in an indoor

environment. The architecture of this system is described in figure 8.
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Match

Update
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Translate
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Translate

Common
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Figure 8  A System which Combines Ultrasonic Data and Vertical Line Stereo.

The 3D composite model is expressed in terms of a 3D line segment which is a composition of the

vertical and horizontal line segments from the two sub-systems. These 3D composite line segments

are defined in a reference frame which assume an (x-y) ground plane and notion of vertical (z).

Model elements in this representation are expressed vector composed of the following parameters:

Mid-point:    Pm   = (x, y, z) 

Horizontal Orientation: θ
Vertical Orientation (tilt): γ

 Vertical Half Length: hz
Horizontal Half Length: hxy
Variance of Mid-point:    CD
Co-Variance in horizontal orientation: Cθ
Variance of vertical orientation: Cγ

Redundant Parameters:

Surface Normal  N  = (A, B, C)
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Distance from the Origin: D        (D = –Ax – By – Cz )
Corner Points: P1, P2, P3, P4

Labels:

Filled: {True, False}

Type: {Movable, Fixed, Unknown}

CF: Confidence Factor (For surfaces in model)

This system illustrates the use of different sensors to develop partial descriptions of the perceptual

primitives. Parameters that are not measured by each sensor are given a default value and

uncertainty. Primitives from stereo and ultrasound are matched based on overlapping 3D position.

Parameters are merged using a simple form of recursive updating rule based on the Kalman filter.

5.5 An Integrated Active Vision System

In collaboration with the partners of the ESPRIT basic research consortium BR 3038/7108 "Vision

as Process", we have recently demonstrated an integrated active vision system [17]. Our system is

composed of a number of independent processes that dynamically maintain a description of a

limited region of a scene at different levels of abstraction. This section discusses the structure of

this system and uses the object recognition components to illustrate the application of our

framework to the problem of symbolic fusion.

The SAVA active vision system is composed of  distributed processes, as shown in figure 9. This

system includes independent processes for camera control, image acquisition and tracking, 3D

modeling, symbolic interpretation, and system supervision. Each module is a continuously running

cyclic process, implemented as a separate Unix process.
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Figure 9.   Components of an Integrated Active Vision System.

Descriptions of image information are maintained for both the left and right stereo cameras by

tracking edge-segments from a multi-resolution region of interest. The 3-D scene description

module uses information from the 2-D model to infer the 3-D form and position of structures in the

scene. The symbolic scene interpretation module use information from the 2-D image description

and the 3-D image description to describe the scene in terms of known objects.

The modules for maintaining a 2-D description, for maintaining a 3-D description and for

maintaining a symbolic interpretation are all constructed using the predict-match-update cycle

described above. We have developed a standard architecture for such modules based on this cycle.

 In each module, observations are continuously acquired and integrated into a description (or

model). The integration process operates by predicting the state of the model at the time of the

observation. The predicted and observed information are then matched, and the result is used to

update the model. In such a process the prediction from the previous model serves both to

accelerate the description of additional observations, and to reduce the errors in the description.
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The standard module is composed of a number of procedures that are called in sequence by a

scheduler. Between each procedure call, the scheduler tests a mail box to see if any messages have

arrived. Such messages may change the procedures that are used in the process, change the

parameters that are used by the procedures, or interrogate the current contents of the description

that is being maintained.

At the end of each cycle, the scheduler calls a set of demon procedures. Demons are responsible for

event detection, and play a critical role in the control of perception. Some of the demon procedures,

such as motion detection, operate by default, and may be explicitly disabled. Most of the demons,

however, are specifically designed for detecting certain types of structures. These demons are

armed or disarmed by recognition procedures in the interpretation module according to the current

interpretation context.

We have defined a standard protocol for model interrogation based on the  procedures "Find",

"Verify", and "Get".  In each module, these procedures provide a form of post-attentive perceptual

grouping. Object recognition is based on perceptual grouping within the 2-D and 3-D descriptions

using this protocol.

The objects that can be recognized by the system are described in terms of object schema. Each

object schema is composed of:

Properties: A data structure composed of "slots" which can be used to represent
properties of the object.

Procedures: A set of procedures that can detect instances of the object and to post an object
hypothesis to the interpretation model.

A scene description is a list of object instances. Each object instance contains a list of properties for

an object in the scene. The properties are dynamically updated by the recognition procedures

associated with that object class.  Object instances contain a unique ID and a confidence factor.

Each object class is associated with a number of recognition procedures.

A recognition procedure is composed of three parts:

Trigger: A test that causes execution of the procedure.

Condition: A set of measurements based on interrogation of one or more of the description
modules.

Action: A set of actions taken by the procedure, including posting an object hypothesis,
updating an object's properties or changing the current context.

The organisation of the interpretation procedure is illustrated in figure 10.
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Figure 10.  The interaction between the recognition and 2-D Tracking processes. Recognition

procedures are triggered by demons. When triggered, a recognition procedure uses perceptual

grouping to interrogate the 2D image description.

The system's knowledge base about objects is organised as a network of contexts. Each context is a

list of object classes and their associated recognition procedures. For each recognition procedure, a

message is sent to the appropriate demon in one of the description modules (2-D, 3-D or

interpretation). When a demon detects one or more instances of its event, it sends a message to the

interpretation module with information about the events.  A demon continues to monitor the event

in subsequent cycles without generating new messages. If the demon ceases detect its event, a new

message is set to "de-activate" the recognition procedure.
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The condition part of a recognition rule is composed of a set of calls to the relevant model using the

primitives "Find", Verify" and "Get". These recognition rules interrogate the various description

modules using the model interrogation and grouping procedures, and then create or update object

hypotheses based on the result.  The expressive power of the recognition procedures is based on a

vocabulary of primitives for interrogation and grouping of the data in the 2D, 3D and descriptive

modules.

6. Conclusions

In this paper we have presented a framework for perceptual fusion. We have then postulated a set of

five principles for sensor data fusion. These principles are based on lessons learned in the

construction of a sequence of systems.

The framework has been illustrated by briefly describing five systems., including:

1) A system for world modeling using ultrasonic ranging [19].

2) A system for tracking 2D edge Segments [18].

3) A system for dynamic 3D modeling using stereo [21].

4) A system for fusing vertical edges from stereo with horizontal edges from ultrasonic

ranging, and

5) A system which integrates 2-D, 3-D and symbolic interpretation [22].

We have illustrated this framework by presenting techniques from estimation theory for the fusion

of numerical properties. While these techniques provide a powerful tool for combining multiple

observations of a property, they leave open the problem of how to manage the confidence in the

existence of a vector which represents the an association of properties. Speculation that precision

and confidence can be unified through a form of probability theory or minimum entropy theory

have not yet been born out. These remain an important area for research.

We have then  discuss the problem of the fusion of symbolic data. It is clear that there is not yet the

equivalent of a "Kalman Filter" to provide a mathematical formulation for combining symbolic

properties. Many people belive that a constraint based logic may provide such a formulation, but

for the moment this has not yet been demonstrated convincingly. Much research remains to be done

in the area of fusing properties which are represented by systems.
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