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Abstract

This paper addresses the problem of the detection and isolation
of the input and output sensor faults on a general aviation aircraft,
characterised by a non–linear model, in the presence of wind gust
disturbance and measurement errors. In particular, this work inves-
tigates the design of residual generators in order to realise complete
diagnosis schemes when additive faults are present. The use of an
input–output description for the linearised model of the aircraft al-
lows to compute in a straightforward way the residual generators for
fault detection and isolation. These tools lead to dynamic filters that
can achieve both good disturbance signal de–coupling and robustness
properties with respect to both linearisation error and measurement
noise. Mathematical descriptions of the aircraft measurement sensors
are also taken into account. The results obtained in the simulation of
the faulty behaviour of a PIPER PA30 aircraft are finally reported.

Keywords: Fault detection and isolation, aerospace application, flight
control, filter design, polynomial methods.
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1 Introduction

There is a growing demand for higher reliability of aircraft and aerospace
systems. Sensors are the most important components for flight control and
aircraft safety and, as they work in a harsh environment, fault probabili-
ties are high thus making these devices the least reliable components of the
system.

In order to improve the reliability of the system sensors hardware and
software (analytical) redundancy schemes have been investigated over the
last twenty years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Traditional approaches to fault detection in the wider application context
are based on hardware redundancy methods which use multiple lanes of sen-
sors, computers and software to measure and/or control a particular variable
[1, 12, 13, 14, 15, 16, 17, 18, 8, 19].

For small aircraft systems, as considered in this paper, multiple hardware
redundancy is harder to achieve due to lack of operating space. Such schemes
would also be costly and very complex to engineer and maintain.

Analytical redundancy makes use of a mathematical model of the moni-
tored process and is therefore often referred to as the model–based approach
to Fault Detection and Isolation (FDI). The model–based FDI is normally
implemented in software form as a computer algorithm.

The fault diagnosis of aircraft or aerospace systems has become a very
active research topic for theoretical and practical reasons. As an example,
special sessions on fault diagnosis in aircraft systems in the recent IFAC
Symposium ACA 2004 [20] has covered most international research activities
on this topic. A number of investigators have studied the use of analytical
redundancy methods for FDI in aircraft and aerospace systems and several
papers cover most of the previous and current research programs.

It is worth noting how all model–based methods use a model of the moni-
tored system to produce residuals for fault detection and isolation. If the
system is described accurately by the mathematical model, FDI is very
straightforward. In real complex systems, however, modelling uncertainty
arises inevitably for example process noise, turbulence, parameter variations
and modelling errors. The detection of incipient faults presents a challenge
to model–based FDI techniques due to unseparatable mixture between fault
effects and modelling uncertainty [21, 22, 12, 15, 16, 17, 23, 18].

An important approach to achieve robustness in dynamic process FDI is
the use of optimisation to minimise the effect of modelling uncertainty, whilst
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maximising some fault effects.
In order to achieve robust FDI solutions, intelligent techniques [24, 25, 26]

or adaptive methods [27, 3, 28, 29] can also be exploited.
Although many approaches have been developed, robust FDI for the case

of aircraft systems and aerospace applications is still an open problem for
further research.

This work deals with the residual generator design for the FDI of on–
board sensors of a general aviation aircraft subject to disturbance signals
(wind gusts) and measurement noise processes.

The system under diagnosis is modelled in terms of input–output poly-
nomial description, so that the design of disturbance de–coupled residual
generators can be reduced to the determination of the null–space of a spe-
cific polynomial matrix associated to the process model. In particular, the
use of input–output forms allows to design in a straightforward fashion the
analytical description for the disturbance de–coupled residual generators.

These dynamic fault detection filters, organised into bank structures, are
able to achieve fault isolation properties. An appropriate choice of their
parameters allows to maximise robustness with respect to both measurement
noise and modelling errors, while optimising fault sensitivity characteristics.

The proposed FDI approach has been applied to a non–linear model
of a PIPER PA30 aircraft. The residual generators have been designed
on the basis of linearised models in different flight conditions and exper-
imented with the data from non–linear flight simulator, implemented in
Matlab/Simulink r© environment. With respect to the previous work [30]
by the same authors, the flight simulator has been improved in order to take
into account the model of the measurement sensors and a Dryden turbulence
description.

An important aspect of the approach to FDI suggested in this paper is the
simplicity of structure of the technique used to generate the residual functions
for detection and isolation, when compared with traditional schemes e.g.
based on banks of unknown input observers (UIO) and Kalman filters [31,
32, 33].

The paper is organised as follows. The mathematical description of the
monitored aircraft with the models of the input and output aircraft sensors
are outlined in Section 2. Section 3 presents the approach exploited for the
design of residual generators. Structural characteristics of such filters are also
investigated in order to achieve disturbance de–coupling, sensitivity optimi-
sation of the residual functions and robustness with respect to measurement
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noise and modelling errors. Section 4 addresses the problem of the design of
a bank of residual generators for the isolation of faults affecting the input and
the output sensors. In order to show the effectiveness of the proposed filter
design, the developed FDI scheme is applied to a model of a PIPER PA30
and some numerical results are reported in Section 5. Concluding remarks
are finally summarised in Section 6.

2 Aircraft and Sensor Mathematical Descrip-

tion

V True Air Speed (TAS) δe elevator deflection angle
α angle of attack δa aileron deflection angle
β angle of sideslip δr rudder deflection angle
P roll rate δth throttle aperture percentage
Q pitch rate X,Y horizontal coordinates
R yaw rate (inertial reference system)
φ bank angle H altitude
θ elevation angle (inertial reference system)
ψ heading angle γ flight path angle
n engine shaft angular rate m airplane mass


Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz


 airplane inertia moments matrix

Fx, Fy, Fz total force components along body axes
Mx, My, Mz total moment components along body axes
VAx, VAy, VAz inertial velocity components of the atmosphere

Table 1: Nomenclature

The mathematical synthesis model of the PIPER PA30 is a classical non–
linear six degrees of freedom aircraft model (rigid body), whose motion occurs
as a consequence of applied forces and moments (aerodynamic, thrust and
gravitational). A set of local approximations for this forces has been com-
puted and scheduled depending on the values assumed by True Air Speed
(TAS), flap, altitude, curve radius and flight path angle. In this way, it
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is possible to obtain a mathematical model for each flight condition. This
model is suitable for a state–space representation, as it can be made explicit.

The parameters in the analytic representation of the aerodynamic actions
have been obtained from wind tunnel experimental data, as reported in [34,
35], and the aerodynamic actions are expressed along the axes of the wind
reference system.

The non–linear model is given by following relations (using nomenclature
of Table 1):

V̇ = Fx
cosα cosβ

m
+ Fy

sinβ

m
+ Fz

sinα cosβ

m

α̇ =
−Fx sinα + Fz cosα

mV cosβ
+Q − (P cosα +R sinα) tanβ

β̇ =
−Fx cosα sinβ + Fy cosβ − Fz sinα sinβ

mV
+ P sinα +

−R cosα

Ṗ =
MxIz + MzIxz + PQIxz (Ix − Iy + Iz)

IxIz − I2
xz

+

+
QR

(
IyIz − I2

xz − I2
z

)
IxIz − I2

xz

Q̇ =
My + PR (Iz − Ix)− P 2Ixz +R2Ixz

Iy

Ṙ =
MxIxz +MzIx + PQ

(
I2
x − IxIy + I2

xz

)
IxIz − I2

xz

+

+
QR Ixz (−Ix + Iy − Iz)

IxIz − I2
xz

φ̇ = P +Q sinφ tan θ +R cosφ tan θ

θ̇ = Q cosφ − R sinφ

ψ̇ =
Q sinφ +R cosφ

cos θ

Ḣ = V cosα cosβ sin θ − V cos θ( sinβ sinφ+ sinα cosβ cosφ)− VAz

This synthesis model has been completed by means of a first order dynamic
model of a 4–pistons aspirated engine with the throttle aperture as input
and the thrust intensity as output. A mathematical description of gusts
as air velocity components, wu, wv and ww, along body axes has been also
considered.

The linearised model used for FDI purposes embeds the linearisation of
the synthesis model, of the engine, of the wind actions and of the guidance
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variables H and ψ. Hence, it can be written as follows:

ẋ(t) = Ax(t) + Bc(t) + Ed(t) (1)

with

x(t) =
[

∆V (t) ∆α(t) ∆β(t) ∆P (t) ∆Q(t) ∆R(t) ∆φ(t) ∆θ(t) ∆ψ(t) ∆H(t) ∆n(t)
]T

c(t) =
[

∆δe(t) ∆δa(t) ∆δr(t) ∆δth(t)
]T

d(t) =
[
wu(t) wv(t) ww(t)

]T

(2)
where ∆ denotes the variations of the considered variables and c(t) and d(t)
are the control inputs and the disturbances, respectively. The output equa-
tion associated to the model of Eq. (1) is of the type y(t) = C x(t) where
the rows of C correspond to rows of the identity matrix, depending on the
measured variables.

In the following, the mathematical description of the subsystems used by
the simulator model are given.

Command Surfaces Deflection Measurements
It is assumed that the deflection angles δe, δa, δr and δth are acquired with a
sample rate of 100Hz by means of potentiometers. These sensors are affected
by errors modelled by two additive components: bias and white noise. The
bias values and the variance of the noises are given in Table (2).

Table 2: Input sensor errors parameters.
Input sensor Bias White Noise Std

Elevator deflection angle 0.0052 rad 0.0053 rad
Aileron deflection angle 0.0052 rad 0.0053 rad
Rudder deflection angle 0.0052 rad 0.0053 rad

Throttle aperture 1% 1%

Angular Rate Measurement
It is assumed that the angular rate measures are given by a set of three
gyroscopes of an Inertial Measurement Unit (IMU) with a sample rate of
100Hz.

The errors affecting this measurement unit can be classified as follows
[36]:
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• Errors due to non unitary scale factor, modelled by a multiplicative
factor belonging to the range [0.99, 1.01].

• Alignment error of spin axes with respect to body (reference) axes.
These errors can be modelled by considering each spin axis oriented in
a 3D space by means of an azimuth and elevation angle with respect to
its reference axis. It this way, the alignment errors can be described by
six error angles up to 1 deg. It is worth observing that the errors previ-
ously considered are generated by means of uniform random variables
updated every simulation.

• Limited bandwidth of the considered gyro (10 Hz).

• g–sensitivity (72 deg
h g

).

• Additive white noise (216 deg/h).

• Gyro drift, described by a coloured stochastic process characterised by
a standard deviation of 1080 deg/h and a decay time of 20 min.

Attitude Angle Measurement
The angles are actually generated by a digital filtering system based on a
DSP that processes both the angular rate and the accelerations provided by
the IMU with a sample rate of 100Hz.

The angle generation system has been considered equivalent to a mechan-
ical vertical gyro for aeronautical purposes (artificial horizon). As reported
in Chapter 11 of [37], the measurement errors are due to the sum of two
causes:

• A systematic error generated by the apparent vertical. This effect can-
not be neglected because the fault diagnosis, as it will be shown in the
following, has to be performed in coordinated turn flight condition.

• A white noise modelling the imperfection of both the system and the
environment influences.

The behaviour of this angle measurement system is such that the previous
two effects are correlated by a first order filter system with time constant
equal to 60 sec [37]. Therefore, the resulting attitude angle measurements
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are affected by an additive coloured noise characterised by a standard devi-
ation of 1 deg.

Air Data System (ADS)
It is assumed that the ADS unit consists of an Air Data Computer (ADC)
providing measures with a sample rate of 1 Hz. The errors affecting the TAS
can be classified as follows:

• Calibration error affecting the differential pressure sensor. This error
leads to a TAS computation systematic error, performed the ADC, ful-
filling the ARINC (Aeronautical Radio Inc.) [38] accuracy requirements
(2 m/sec) [37].

• Additive coloured noise due to wind gusts (std 1 and correlation time
2.3 sec).

• Additive white noise (std 0.5 m/sec) modelling the imperfection of the
system and the environment influences.

With regards to the altitude, errors can be classified as:

• Calibration error affecting the static pressure sensor. This error leads to
an altitude computation systematic error, performed the ADC, fulfilling
the ARINC accuracy requirements (5 m) [38];

• Additive White noise (std 1 m) modelling the imperfection of the sys-
tem and the environment influences.

Heading Reference System (HRS)
This unit is assumed to consist of a magnetic compass coupled to a directional
gyro. As reported in [37] the measurement errors are due to the sum of two
causes:

• a systematic error generated by a bias of the magnetic compass (1 deg),

• a white noise modelling the imperfection of the system and the envi-
ronment influences.
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The behaviour of the HRS system is such that the two previous effects are
correlated by a first order filter with time constant equal to 60 sec [37]. Hence,
the resulting heading measurement is affected by an additive coloured noise
characterised by a std 1 deg.

Engine Shaft Rate Measurement
The engine shaft rate is measured by mean of an incremental encoder whose
errors are modelled as a white noise. The quantisation error of the encoder
is determined by a resolution of 10000 pulse/rev.

Servo Actuator Models
The servo–actuator description of elevator, aileron, rudder and throttle con-
sist of second order linear models with saturations.

Dryden Atmosphere Model
The Dryden Turbulence Model block of the Aerospace Blockset of Matlab r©
6.5 has been used. The Dryden spectral representation adds turbulence ob-
tained by an appropriate forming filter excited by a band–limited white noise.
This block implements the mathematical representation in the U.S. Military
Specification MIL–F–8785C.

3 Residual Generator Design

Let us consider a linear, time–invariant, continuous–time system described
by the following input–output equation in the form:

P (s) y(t) = Q(s)u(t), (3)

where s is the derivative operator and P (s) and Q(s) are polynomial matrices
with dimensions (m × m) and (m × �) respectively, with P (s) nonsingular.
The terms u(t) and y(t) are the �–dimensional and m–dimensional input and
output vectors of the considered multivariable system.

Models of type (3) can be frequently found in practice by applying well–
known physical laws to describe the input–output dynamical links of various
systems and are a powerful tool in all fields where the knowledge of the system
state does not play a direct role, such as residual generator design, identi-
fication, de–coupling, output controllability, etc. Algorithms to transform
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state–space models to equivalent input–output polynomial representations
and vice versa are available [39].

In order to design the residual generators, Q(s) can be decomposed ac-
cording to the following structure:

P (s) y(t) =
[
Qc(s) Qd(s) Qf (s)

] 


c(t)
d(t)
f(t)


 (4)

where c(t) is the �c–dimensional known–input vector, d(t) is the �d–dimensional
disturbance vector, f(t) is the �f–dimensional monitored fault vector and
�c + �d + �f = �.

A general linear residual generator for the fault detection process of sys-
tem (4) is a filter of type:

R(s) r(t) = Sy(s) y(t) + Sc(s) c(t) (5)

that processes the known input–output data and generates the residual r(t),
i.e. a signal which is “small” (ideally zero) in the fault–free case and is
“large” when a fault is acting on the system.

Without loss of generality, r(t) can be assumed to be a scalar signal. In
such condition R(s) is a polynomial with degree greater than or equal to the
row–degree of Sc(s) and Sy(s), in order to guarantee the physical realisability
of the filter.

An important aspect of the design concerns the de–coupling of the dis-
turbance d(t) to produce a correct diagnosis in all operating conditions.

Equation (4) can be rewritten in the form:

P (s) y(t) −Qc(s) c(t) −Qf (s) f(t) = Qd(s) d(t) . (6)

Premultiplying all the terms in (6) by a row polynomial vector L(s) ∈
N�(Qd(s)), that is to the left null–space of Qd(s), we obtain:

L(s)P (s) y(t) − L(s)Qc(s) c(t) − L(s)Qf (s) f(t) = 0 . (7)

Starting from Eq. (7) with f(t) = 0, it is possible to obtain a residual
generator of type (5) by setting:

Sy(s) = L(s)P (s)
Sc(s) = −L(s)Qc(s)
R(s) = (1 + τ1s)(1 + τ2s)..(1 + τnf

s) =
= a1s

nf + a2s
nf−1 + .. + 1 ,

(8)

10



where nf is the maximal row–degree of the pair {L(s)P (s), L(s)Qc(s)}. The
polynomial R(s) can be arbitrarily selected. The choice R(s) = (1+ τ1s)(1+
τ2s) . . . (1 + τnf

s) leads to an asymptotically stable filter when the real parts
of the nf roots 1/τi(i = 1, 2, . . . , nf ) are negative. In this way, in absence of
fault, equation (7) can be rewritten also in the form:

R(s) r(t) = L(s)P (s) y(t) − L(s)Qc(s) c(t) = 0 . (9)

When a fault is acting on the system the residual generator is governed by
the relation:

R(s) r(t) = L(s)Qf (s) f(t) (10)

and r(t) assumes values that are different from zero if L(s) does not belong
to the N�(Qf (s)).

In order to determine all possible residual generators of minimal order it is
necessary to transform Eq. (3) into a minimal input-output polynomial rep-
resentation, that is an equivalent representation with the polynomial matrix
P (s) row reduced [40]:

P (s) = D(s)N + E(s), (11)

where D(s) = diag [sν1 , sν2 , . . . , sνm ] and the highest–row–degree coefficient
matrix N is non singular.

In this condition the integers νi represent the set of the Kronecker output
invariants associated to the pair {A, C} of every observable realization of
{P (s), Q(s)} in the state-space. This step can be omitted if the designer is
not interested in using minimal order residual generators.

Moreover, it is necessary to compute a minimal basis of N�(Qd(s)). Under
the assumption that matrix Qd(s) is of full normal rank, i.e. rankQd(s) = �d,
N�(Qd(s)) has dimension m − �d and a minimal basis of such subspace can
be computed as suggested in [40].

It can be noted that in absence of disturbances �d = 0, so that N�(Qd(s))
coincides with the whole vector space. Consequently, a set of residual gener-
ators for system (4) with f(t) = 0 can be expressed as

Rri(s) ri(t) = Pri(s) y(t) −Qcri
(s) c(t)

(i = 1, 2, . . . ,m),
(12)

where Pri(s) and Qcri
(s) are the i–th rows of matrices P (s) and Qc(s), re-

spectively, νi is the degree of Pri(s) and Rri(s) is an arbitrary polynomial
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with degree equal to νi and with all the roots with negative real part. Since
Qcri

(s) cannot show a degree greater than νi, the physical realisability of the
residual generator is guaranteed.

In general, for 0 < �d < m matrix Qd(s) can be partitioned in the follow-
ing way:

Qd(s) =

[
Qd1(s)
Qd2(s)

]
, (13)

where matrices Qd1(s) and Qd2(s) have dimension �d × �d and (m− �d) × �d
respectively.

It can be assumed, without loss of generality, that matrix Qd1(s) is non
singular. In this case it can be easily verified that a basis of N�(Qd(s)) is
given by the polynomial matrix:

B(s) = [Qd2(s) adjQd1(s) . . .

−detQd1(s) Im−�d ],
(14)

by assuming adjQd1(s) = 1 for �d = 1.
By partitioning P (s) and Qc(s) as Qd(s) in (13):

P (s) =

[
P1(s)
P2(z)

]
Qc(s) =

[
Qc1(s)
Qc2(s)

]
, (15)

a basis (not necessarily of minimal order) of the residual generators (5) for
the system (4) with f(t) = 0 is obtained by replacing in relation (8) the row
polynomial vector L(s) with the polynomial matrix B(s), i.e.:

Sy(s) = Qd2(s) adjQd1(s)P1(s)+
−detQd1(s)P2(s)

Sc(s) = −Qd2(s) adjQd1(s)Qc1(s)+
+detQd1(s)Qc2(s)

R(s) = diag [R1(s)R2(s) . . . Rm−�d(s)] ,

(16)

where the degree of the polynomial Ri(s) is nfi (i = 1, . . . ,m − �d), that is
the degree of the i− th row of the matrix Sy(s).

Remark 1 By denoting with n∗
f the minimal value of the integers nfi (i =

1, . . . ,m−�d) it is easy to prove that the order n∗
f of a minimal order residual

generator for the system (4) is constrained in the following range:

νmin ≤ n∗
f ≤ (�d + 1) νmax (17)
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where νmin and νmax are the least and the greatest Kronecker invariant re-
spectively.
The lower bound can be obtained in the no–disturbance case (�d = 0) from
relation (12) by selecting the row of P (s) associated to the least Kronecker
invariant. The upper bound can be obtained by taking into account the maxi-
mal degree of the polynomials of the matrices. A similar result, obtained with
a different approach can be found in [41, 42].

The diagnostic capabilities of a residual generator of the type of Eqs. (9)
and (10) strongly depend on an accurate choice of the terms L(s) and R(s).
The design freedom in the selection of the matrix L(s), when m − �d > 1,
can be used to optimise the sensitivity properties of r(t) to the fault f(t),
for example by maximising the steady–state gain of the transfer function
L(s)Qf (s)/R(s) given in Eq. (10). By denoting with bi(s)(i = 1, 2, . . . ,m−
�d) the row vectors of the basis B(s) of the N�(Qd(s)), L(s) can be chosen
as a linear combination of these vectors:

L(s) =
m−�d∑
i=1

kibi(s), (18)

with the real constants ki which maximise:

lim
s→0

1

R(s)
[
m−�d∑
i=1

kibi(s)]Qf (s) = [
m−�d∑
i=1

kibi(0)]Qf (0) (19)

under the constraint
m−�d∑
i=1

k2
i = 1. (20)

In this way, when the fault f(t) is a step–function of magnitude F , it results:

lim
t→∞ r(t) = lim

s→0
s
L(s)Qf (s)

R(s)

F

s
= [

m−�d∑
i=1

kibi(0)]Qf (0)F. (21)

Another design choice regards the location of the roots of the polynomial
R(s) in the left–half s–plane, which influences the transient characteristics
(maximum overshoot, delay time, rise time, settling time, etc.) of the filter
of Eq. (10) with respect to unit–step response. In many applications these
characteristics must be kept within tolerable or prescribed limits in order to
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guarantee good performance of the filter in terms of fault detection times and
false alarm identification. This leads to define a reference transfer function
Gr(s) and an approximation criterion in order to obtain, with an appropriate
choice of R(s), a satisfactory similarity between the frequency responses of
the two filters Gr(s) and Gf (s) = L(s)Qf (s)/R(s), that is

|Gf (jω)|2
|Gr(jω)|2 = 1, (22)

for every ω belongs to a given frequency range.
Moreover, it is important to note that, in general, the requirement of

fast transient responses for disturbance de–coupling residual generators can
lead to large bandwidths. As a consequence, residual generator robustness
with respect to both input–output measurement noises and modelling errors
might deteriorate.

On the other hand, the design of the fault detection and isolation scheme
must take into account the knowledge of the frequency spectra of such signals,
by achieving, if necessary a good compromise solution among the different
specifications that have to be satisfied.

Remark 2 Finally, it must be noted that Eq. (4) considers also the cases of
additive faults on the input and output sensors, fc(t) and fo(t) respectively.
In this situations only the measurements:

c∗(t) = c(t) + fc(t) , (23)

y∗(t) = y(t) + fo(t) , (24)

are available for the residual generators so that Eq. (9) becomes:

R(s) r(t) = L(s)P (s) y∗(t) − L(s)Qc(s) c
∗(t) = 0 (25)

in absence of faults and

R(s) r(t) = L(s)Qc(s) fc(t) − L(s)P (s) fo(t) (26)

when faults on input-output sensors are considered.
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4 Residual Generation for Fault Isolation

This section addresses the problem of the design of a bank of residual gener-
ators for the isolation of faults affecting the input and output sensors. The
design is performed by using the disturbance de–coupling method suggested
in the previous section. It is assumed in the following that m > �d + 1.

To univocally isolate a fault concerning one of the input sensors, under
the hypotheses that the remaining input sensors and all output sensors are
fault–free, a bank of residual generator filters is used, according to Figure
(1).

The number of these generators is equal to the number �c of system control
inputs, and the i–th device (i = 1, . . . , �c) is driven by all but the i–th input
and all the outputs of the system.

In this case, a fault on the i–th input sensor affects all but the i–th
residual generator.

Figure 1: Scheme for input sensor fault isolation.

With reference to Figure (1), c∗i(t) represents the �c − 1 dimensional vector
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obtained by deleting from c∗(t) the i–th component, and

c∗(t) = c(t) + fci(t) , (27)

with
fci(t) =

[
0 . . . 0 hci(t) 0 . . . 0

]T
. (28)

Note that c∗i(t) = ci(t) when the fault on the i–th input sensor hci(t) is
considered.

In these conditions, Eq. (6) of the system becomes:

P (s) y(t) = Qc(s) c(t) + Qd(s) d(t) + qci(s)hci(t) , (29)

where qci(s) represents the i–th column of the matrix Qc(s).
Hence, by multiplying Eq. (29) by the matrix Lci(s), where Lci(s) is

a row vector belonging to the basis for the left null space of the matrix
[Qd(s) | qci(s)], and Qic(s) is the matrix obtained by deleting from Qc(s) the
i–th column, the equation of the i–th filter becomes:

Rci(s) rci(t) = Lci(s)P (s) y(t) − Lci(s)Q
i
c(s) c

∗i(t) = 0, (30)

while, for the j–th filter, with j �= i, it results:

Rcj(s) rcj(t) = Lcj(s)P (s) y(t) − Lcj(s)Q
j
c(s) c

∗j(t) =
= Lcj(s) qci(s)hci(t).

(31)

Rci(s) and Rcj(s) are arbitrary polynomials with all the roots with negative
real part.

In a similar way, in order to univocally isolate a fault concerning one of
the output sensors, under the hypotheses that all the input sensors and the
remaining output sensors are fault–free, a bank of residual generator filters
is used, according to Figure (2).

The number of these generators is equal to the number m of system
outputs, and the i–th device (i = 1, . . . ,m) is driven by all but the i–th
output and all the inputs of the system. In this case, a fault on the i–th
output sensor affects all but the i–th residual generator.
With reference to Figure (2), y∗i(t) represents the m− 1 dimensional vector
obtained by deleting from y∗(t) the i–th component, where

y∗(t) = y(t) + foi(t) (32)
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Figure 2: Bank of residual generators for output sensor fault isolation.

and with
foi(t) =

[
0 . . . 0 hoi(t) 0 . . . 0

]T
. (33)

In these conditions, Eq. (6) of the system becomes:

P (s) y(t) = Qc(s) c(t) + Qd(s) d(t) − pi(s)hoi(t) , (34)

where pi(s) represents the i–th column of the matrix P (s).
Note that y∗i(t) = yi(t) when a fault on the i–th output sensor hoi(t) is

considered.
Hence, by multiplying Eq. (34) by the matrix Loi(s), where Loi(s) is

a row vector belonging to the basis for the left null space of the matrix
[Qd(s) | pi(s)], and denoting P i(s) the matrix obtained by deleting from P (s)
the i–th column, the equation of the i–th filter becomes:

Roi(s) roi(t) = Loi(s)P
i(s) y∗i(t) − Loi(s)Qc(s) c(t) = 0, (35)

while, for the j–th filter, with j �= i, it results:

Roj(s) roj(t) = Loj(s)P
j(s) y∗j(t) − Loj(s)Qc(s) c(t) = (36)

= −Loj(s) pi(s)hoi(t). (37)
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Roi(s) and Roj(s) are arbitrary polynomials whose roots have negative real
part.

In order to summarise the FDI capabilities of the presented schemes,
Table (3) shows the “fault signatures” in case of a single fault in each input
and output sensor.

The residuals which are affected by input and output faults are marked
with the presence of ‘1’ in the correspondent table entry, while an entry
‘0’ means that the input or output fault does not affect the correspondent
residual.

Table 3: Fault signatures.
Residual / Fault fc1 fc2 . . . fc�c

fo1 fo2 . . . fom
rc1 0 1 . . . 1 1 1 . . . 1
rc2 1 0 . . . 1 1 1 . . . 1
...

...
...

...
...

...
...

...
...

rc�c
1 1 . . . 0 1 1 . . . 1

ro1 1 1 . . . 1 0 1 . . . 1
ro2 1 1 . . . 1 1 0 . . . 1
...

...
...

...
...

...
...

...
...

rom 1 1 . . . 1 1 1 . . . 0

All the elements out of the main diagonal on Table (3) are ’1’s when both
the following conditions hold:

• For i = 1, . . . , �c, the column vectors of the matrix Qic(s) and the col-
umn vectors of the matrix P (s) are not orthogonal with the row vector
Lci(s).

• For j = 1, . . . ,m, the column vectors of the matrix P j(s) and the
column vectors of the matrix Qc(s) are not orthogonal with the row
vector Loj(s).

It is important to note that when not all the elements out of the main diagonal
of the Table (3) are ’1’s, the fault isolation is still feasible if the columns of
the fault signature table are all different from each other.

Moreover, it is worth noting that when m − (�d + 1) > 1, all the bases
of the left null space of the matrices [Qd(s) | qci(s)] and [Qd(s) | pi(s)] have
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dimension bigger than 1. In these conditions, the degrees of freedom in the
choice of the vectors Lci(s) and Loi(s) belonging to the left null space can be
used as described in Section (3).

5 Experimental Results

To show the diagnostic characteristics brought by the application of the pro-
posed fault detection and isolation scheme to the the general aviation PIPER
PA–30 aircraft model addressed in Section 2, some numerical results obtained
in the Matlab/Simulink r© environment are reported here.

The design of the disturbance de–coupling residual generators described
in Section 3 and 4 for input and output sensor FDI has been performed
by considering the linearised model for the aircraft presented at the end
of Section 2. Such linearised model of the aircraft corresponds to a flight
condition, that can be a branch of a more complex trajectory, described by:

• radius of curvature: 1000 m

• speed: V = 50 m
sec

• altitude: H = 330 m

• flap: = 0o.

The residual generator filters are therefore fed by the 4 component input
vector c(t) and the 9 component output vector y(t) acquired from the non–
linear dynamic aircraft model described in Section 2 and simulated in the
Matlab/Simulink r© environment. Moreover, the input and output sequences
are affected by the measurement errors obtained from the aircraft instrument
models presented in Section 2.

In particular, as presented in Section 3, a bank of 4 residual generator
filters has been used to detect input sensor faults regarding the 4 input control
variables c(t) = [∆δe(t),∆δa(t),∆δr(t),∆δth(t)]

T .
Moreover, in order to obtain the fault isolation properties recalled in

Section 4, each residual generator function of the considered bank is fed by
all but one the 4 control input signals and by the 9 output variables y(t) =
[∆V (t),∆P (t),∆Q(t),∆R(t),∆φ(t),∆θ(t),∆ψ(t),∆H(t),∆n(t)]T . The out-
put variables ∆α(t) and ∆β(t) were not considered as their measurements
are critical to obtain.
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Hence, each filter of the bank is independent of one of the 4 input signals
and then is also insensitive to the corresponding fault signals. Obviously,
as presented in Section 3, the residual generator bank has been designed to
be de–coupled from 3 wind gust signals d(t) = [wu(t), wv(t), ww(t)]

T , that
represent disturbance terms acting on the aircraft system. On the other
hand, the capabilities of the FDI system are hence related to the properties
of the residual generator functions in the presence of measurement errors,
modelling approximations and disturbance signals that cannot be completely
de–coupled.

However, the robustness properties of the filters in terms of fault sensi-
tivity and disturbance insensitivity can be achieved according to Section 3.
The synthesis of the dynamic filters for FDI has been performed by choosing
a suitable linear combination of residual generator functions that maximise
the steady–state gain of the transfer functions of Eqs. (31) between input
sensor fault signals fci(t) and residual functions rcj(t) (i, j = 1, . . . , 4, j �= i).
Moreover, for each residual generator, the roots of the polynomial Rcj(s)
have been optimised numerically [43] in order to obtain suitable transient
dynamics.

In order to assess the technique for diagnosing input and output sensor
faults, aircraft operating conditions with different faults were simulated by
using the non–linear dynamic model of the system. Faults in single input–
output sensors have been generated by producing positive and negative vari-
ations in the input–output signals c(t) and y(t).

The residual signals indicate fault occurrence according to whether their
values are lower or higher than the thresholds fixed in fault–free conditions.
The threshold values depend on the residual error amount due to measure-
ment errors, linearised model approximations and disturbance signals that
are not completely de–coupled. A margin of 10% between the positive and
negative thresholds and the maximum and minimum values of the fault–free
residual signals were respectively imposed, as shown in Figure (3).

As an example, the 4 residual functions rci(t) generated by the filter bank
for input sensor fault isolation, under both fault–free and faulty conditions
are shown in Figure (3).

Continuous lines represent the fault–free residual functions, while the
dotted lines depict the faulty residual signals. As depicted in Figure (3), the
fault has been generated on the 1st input sensor of the considered aircraft,
commencing at time t = 150s.

It is worth noting that the first residual function of Figure (3), for the
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Figure 3: Bank residuals for the 1st input sensor fault fc1(t) isolation.

isolation of a fault regarding the considered input sensor fc1(t), does not de-
pend on a fault affecting the input sensor itself, as the corresponding residual
rc1(t) filter has been designed to be sensitive to the input signal c∗1(t).

The optimisation of the filter parameters, i.e. the values of the roots
−1/τi(i = 1, 2, . . . , nf ) and of real constants ki, were obtained by means of
the Genetic Algorithm Optimisation Toolbox (GAOT) [43] for Matlab r©, as
it seems to be able to manage the well–known local minima problems.

In particular, in this case, the roots of the Rci(s) polynomial matrix have
been optimised and placed in a range between −1 and −10−2 in order to max-
imise the fault detection promptness, as well as to minimise the occurrence
of false alarms.

In the same way, the 9 residual functions roj(t) have been generated by
the filter bank for the output sensor fault isolation and the results are shown
in Figure (4).
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Figure 4: Residuals of the bank for the isolation of the 9th output sensor
fault fo9(t).

In Figure (4) continuous lines represent the fault–free residual functions,
while the dotted lines depict the faulty residual signals. As depicted in Figure
(4), the fault has been generated on the 9st output sensor of the considered
aircraft, commencing at time t = 150s.

In order to determine the range out of which the input and output sensor
faults are detectable, the maximum and minimum values assumed by the
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rci(t) and roj(t) functions in fault–free conditions must be computed with an
acceptable false–alarms rate.

To summarise the performance of the FDI technique, the minimal de-
tectable step faults on the various sensors are collected in Tables (4) and
(5).

In particular, Table (4) collects the minimal detectable step fault am-
plitudes simulated on the input sensors, when rcj(t) is monitored in order
to perform the isolation of the considered fault case fci(t) (i, j = 1, . . . , 4,
i �= j).

Table 4: Minimal detectable step input sensor faults.
Input Sensor Variable ci(t) Fault Size Detection Delay

Elevator deflection angle 2o 18 sec
Aileron deflection angle 3o 6 sec
Rudder deflection angle 4o 8 sec
Throttle aperture % 2% 15 sec

In the same way, Table (5) collects the minimal detectable step fault am-
plitudes on the output sensors, when roj(t) is monitored in order to perform
the isolation of the considered output sensor fault case foi(t) (i, j = 1, . . . , 9,
i �= j).

Table 5: Minimal detectable step output sensor faults.
Output Sensor Variable yi(t) Fault Size Detection Delay

True Air Speed 8 m/sec 27 sec
Pitch Rate 3 deg/sec 22 sec

Elevation Angle 5 deg 28 sec
Altitude 8 m 12 sec
Roll Rate 2 deg/sec 24 sec
Yaw Rate 3 deg/sec 29 sec
Bank Angle 5 deg 5 sec

Heading Angle 6 deg 25 sec
Engine Angular Rate 20 RPM 30 sec

The minimal detectable fault values in Tables (4) and (5) are expressed in
the unit of measure of the sensor signals and are relative to the case in which
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the occurrence of a fault must be detected and isolated as soon as possible.
The detection delay time, reported in Tables (4) and (5), is evaluated

on the basis of the time taken by the slowest residual function to cross the
settled threshold.

Finally, the performance of the residual generators seems to assess the
diagnostic capabilities of the suggested technique, that has been tested also
with different fault models (e.g. small and large bias with ramp transients
[31] as well as intermittant faults). Moreover, the proposed strategy for the
FDI on the input and output sensors appear to be promising for diagnostic
application to general aviation aircrafts.

It is important to note that similar results could be obtained by means
of equivalent dynamic observers, UIO or Kalman filters, even if the corre-
sponding realisation could require a more complex design and an higher cost
implementation.

6 Conclusion

The paper has provided interesting results in the detection and isolation of
faults on the sensors of a non–linear aircraft system by using a model–based
approach.

The example reported shows that different types of fault which have a
barely detectable effect on anyone measurement, can be detected easily using
a bank of residual generator in the form of dynamic filters.

An important aspect of the approach suggested in this paper to FDI is the
simplicity of structure of the technique used to generate the residual func-
tions for detection and isolation, when compared with traditional schemes
e.g. based on banks of Unknown Input Observers (UIO) and Kalman filters.
Although the method outlined focuses to some extent on input–output or
state–space concepts, the actual algorithm for use in the real–time on–board
application is based only on input–output processing of all measurable sig-
nals, i.e. all measurements as well as control signals.

The algorithmic simplicity is a very important aspect when considering
the need for verification and validation of a demonstrable scheme for air–
worthiness certification. The more complex the computations required to
implement the scheme, the higher the cost and complexity in terms of certi-
fication. This aspect of the work together with the fact that the modelling
uncertainty and the measurement noise have been very well tackled, serve to
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highlight the potential of using such a method in real applications.
Further studies are being carried out to evaluate the effectiveness of the

approach applied to real aircraft system data.
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