848 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 5, SEPTEMBER 2000

Diagnosis Techniques for Sensor Faults of Industrial Processes
S. Simani, C. Fantuzzi, and S. Beghelli

Abstract—in this paper a model-based procedure exploiting In recent years, there is also a clear trend toward an enlarged
analytical redundancy for the detection and isolation of faults in jnvolvement of knowledge-based and artificial intelligence
input-output control sensors of a dynamic system is presented. pathads, including qualitative models concerning the residual

The diagnosis system is based on state estimators, namely dy- . f loai d | networks for th luati
namic observers or Kalman filters designed in deterministic and generation, fuzzy logic and neural networks for the evaluation

stochastic environment, respectively, and uses residual analysisOf the residuals [12], [7], [15].
and statistical tests for fault detection and isolation. The state esti-  State-space descriptions provide general and mathematically
mators are obtained from input—output data process and standard  rigorous tools for system modeling and residual generation
identification techniques based on ARX or errors-in-variables \ynich may be used in sensor fault detection of industrial
models, depending on signal to noise ratio. In the latter case t both for the det inisti the state ob d
the Kalman filter parameters, i.e., the model parameters and systems, O_ orthe determinis 'Clcase( e; ate observer) an
input—output noise variances, are obtained by processing the the stochastic case (the Kalman flltel’). Residuals should then
noisy data according to the Frisch scheme rules. The proposed be processed to detect an actual fault condition, rejecting any
fault detection and isolation tool has been tested on a single-shaft false alarms caused by noise or spurious signals.
|ndqstrlal gas turbine model. Results from S|mulat|pn shqw that This paper aims to define a comprehensive methodology for
minimum detectable faults are perfectly compatible with the fault detection b . tat timati hoi
industrial target of this application. sensor fault detection by using a state estimation approach, in
conjunction with residual processing schemes which include a
simple threshold detection, in deterministic case, as well as sta-
tistical analysis when data are affected by noise. The final result
consists in a fault FDI strategy based on fault diagnosis methods
well known in literature to generate redundant residuals.
. INTRODUCTION The diagnosis procedure may be further specialized for input

The control devices which are currently exploited to improv@” Output sensors. In particular the fault diagnosis of input sen-
the overall performance of the industrial processes involve bgtl's uses an unknown input observer (UIO) in high signal to
sophisticated digital system design techniques and complise ratio conditions or a Kalman filter with unknown inputs
hardware (sensors, actuators, processing units). In such a Weji<F), otherwise. Theth UIO or UIKF is designed to be in-
the probability of failure occurrence on such equipment m&gnsitive to théth input of the system. On the other side, output
result significant and an automatic supervision control shouf§nsor faults affecting a single residual are detected by means

be used to detect and isolate anomalous working conditions%& Luenberger observer or a classical Kalman filter, driven by
early as possible. a single output and all the inputs of the system.

The problem of fault detection and isolation (FDI) in linear The suggested method does not require the physical knowl-
time-invariant dynamic processes has received great attentfstg€ of the process under observation since the input-output
during the last two decades and a wide variety of model-bagéitks are obtained by means of an identification scheme which
approaches has been proposed [1]-[14]. uses ARX models in case of high signal to noise ratios, or er-

These different methods, however, can be brought down t4s-in-variables models, otherwise. In last situation the identi-
few basic concepts such as the parity space approach [1]-[3], fi§ation technique is based on the rules of the Frisch scheme,
state estimation approach [4]-[9], the fault detection filter afraditionally exploited to analyze economic systems. This ap-
proach [7], [10], [11], and the parameter identification approadtioach gives a reliable model of the plant under investigation,
[4], [6], [12]. In every case, for the detectability and distin@S Well as the variances of the input-output noises, which are
guishability of faults, mathematical models of the process und&duired in the design of the Kalman filters.
investigation are required, either in state-space or input—output "€ FDI technique presented in this paper is applied to the
form. input—output sensor fault detection of a single-shaft industrial

Frequency domain representations are typically applied wh@as tqrbipe whpsellinear mathematical description is obtained
the effects of faults have frequency characteristics which diffe using identification procedures.
from each other and thus the frequency spectra serve as criterion
to distinguish faults [13], [14]. [I. MODEL DESCRIPTION

Index Terms—Fault detection and isolation, industrial gas tur-
bine, Kalman filter, model-based approach, unknown input ob-
servers.

In the following we assume that the dynamic process under
, _ , observation is described by a discrete-time time-invariant linear
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where u¥(1) y¥(®)

z(t) e R*  state vector; System

y*(t) € ™  output vector of the system; o

u*(t) € R control input vector. 3O, L0 ¥ 5 5O
A, B, andC are constant matrices of appropriate dimensions
obtained by means of modeling techniques or identification pro- u® y®
cedures. In real applications variabtest) andy*(¢) are mea- Input sensors Output sensors
sured by means of sensors whose outputs, due to technological
reasons, are affected by noise. Fig. 1. Structure of the plant sensors.

The measured signalgt) andy(¢), by neglecting sensor dy-
namics, are modeled as v*(t)

u*(t)
w(t) =u*(t) + a(t) System :
y(®) =y () +4(t) ) ; %

in which the sequenceg¢) andg(t) are usually described as u(t) ‘ g e
white, zero-mean, uncorrelated Gaussian noises. Descriptions > Device, — .. u(ty=u*(t)+(t)
of types (1) and (2) are known as errors-in-variables (EIV) 12’! yi(t)=yi*(t)+§ir(t)+f;i(t)
models. Y, (i=1, ...m)

The input—output sensors my be affected by faults which de- > Devi L, e

. - . evice,

grade their reliability. In this case (2) must be replaced by I

9

¥ - Yin

u(t) =u™(t) +a(t) + fu(t)

y(t) =y () +y(t) + fy (1) 3 »  Device.
where the vectorsf,(t) = [fu,(t)---fu.. @®)]* and R
fu@® = [fu () f,..(®)]" are additive signals which Output

. . Sensors
assume values different from zero only in the presence of

faults. Usually these signals are described by step and ragy 2. Bank of estimators for output residual generation.
functions representing abrupt and incipient faults (bias or
drift), respectively. The problem treated in this work regards

the detection and isolation of the sensor faults on the basisThe nextstep is the transformation of linear input—output dis-

Crete-time models into state-space representations. The state-
of the knowledge of the measured sequene@s and y(t). P b

Moreover, it is assumed that only a single fault may occur ance systems obtained by the equation errors models are useful

. : 0 design dynamic observers, while the ones coming from the

the input or output sensors. Fig. 1 shows the structure of the . . .
risch scheme can be used in order to build Kalman filters.
measurement process.
The FDI device is implemented by means of dynamic ob-
servers in high signal to noise ratio conditions or Kalman filters
otherwise, in order to produce a set of signals from which it will
be possible to isolate faults associated to input—output sensorslo univocally isolate a fault concerning one of th&put sen-
The design of these state estimators requires the knowledgesafs under the hypothesis that input sensors are fault-free, a
a state-space model (1) of the system under investigation drahk of classical dynamic observers or Kalman filters is used
of the statistics of the noises affecting the data. When classi¢@lg. 2). The number of these estimators is equal to the number
modeling techniques cannot be used since the complete physiaaif system outputs, and each device is driven by a single output
knowledge of the system is not available or the model paransnd all the inputs of the system. In this case a fault onithe
ters are unknown, an identification approach can be consideredtput sensor affects only the residual function of the output
In case of high signal to noise ratios, equation error identificabserver or filter driven by thé&h output.

tion can be exploited and, in particular, different equation error To univocally isolate a fault concerning one of theut sen-
models can be extracted from the data. A specific linear disers under the assumption that output sensors are fault-free, a
crete-time model, e.g., ARX or ARMAX, can be selected onligank of UIO or UIKF is used (Fig. 3). The number of these de-
inside an assumed family of models. On the other side, if théces is equal to the numberof control inputs. Théth device
signal to noise ratios on the input and output of the process &alriven by all but theth input sensor and all outputs of the
low, the Frisch scheme can be applied to perform the dynansigstem and generates a residual function which is sensitive to
system identification [16]. Such a scheme allows to determiadl but theith input sensor fault. In this way the detection of
the linear discrete-time system which has generated the nagsygle input measurement sensor faults is possible, since a fault
sequences as well as the variances of the naiggsandy(¢) af-  on theith input sensor affects all the residual functions except
fecting the data. In the Frisch scheme these signals are assuthatlof the device which is insensitive to tftl input.
zero-mean white noises, mutually uncorrelated and uncorrelatedn order to summarize the FDI capabilities of the presented
with every component o&*(¢) andy™*(t). schemes, Table | shows the “fault signatures” in case of a single

I1l. RESIDUAL GENERATION FORFAULT DETECTION AND
ISOLATION OF INPUT-OUTPUT SENSORS
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u*(t) TABLE |
T YR FAULT SIGNATURES
: 1 System uy Uz .. Ur Y1 Y2 o Ym
i ﬁ ryio, | 0 1 ... 1 1 1 ... 1
: TU10, 1 0 cel 1 1 1 e 1
[‘Z T y® : : : : : T : :
AT " : : : : : : : : :
- . AN rvre, |11t ... 0 1 1 1
@ Device, HOTTORORO ro, |1 1 ... 1 1 0 0
- 1 1 ... 1 o 1
I y(O=y*(O+¥(t) T?2 _ ?
L I _ : : : : : : : : :
" Device, > (=L, 1) ro, |1 1 .. 1 0 0 .. 1
T ]
h—' under the assumptiongt) = 0, (t) = 0 and f,(t) = 0, is the
— Ir following:
Devicer =

— Z(t+1)= (T"A— K'C) 2'(t) + J'u(t) + S'y(t)
Input RIS A i
Sensors r(t) = L12'(t) + Lyy(t) 5)
. . where
Fig. 3. Scheme for input sensor FDI. i (t) c Rjn observer state vector:
ri(t) € ®™  residual vector;

fault in each input-output sensor. The residuals which are af-I", K*, J*,  matrices to be designed with appropriate di-
fected by input and output faults are marked with the presenceS*, L1, Ly~ mensions [10], [12], [17].

of “1”in the correspondent table entry, while an entry “0” meangnder the hypothesis of observability of the system (1) and in
that the input or output fault does not affect the corresponddhe absence of input sensor fayft,(¥) = 0), it can be seen that
residual. Note how multiple faults in the output sensors can Bteith residual vector reaches zerotapproaches infinity and
isolated since a fault on thgh output sensor affects only thethe rate of convergence depends on the position of the eigen-
residual functionvo, of the output observer driven by thith  values ofI” A — K*C matrix inside the unit circle. In the pres-
output, but all the UIO or UIKF residual functiong;;o,. On ence of a fault on théth input sensor théth residual reaches
the other hand, multiple faults on the input sensors cannot &ymptotically zero while the residuals of the- 1 remaining
isolated by means of this technique since all the residual fur@servers are sensitive to the fault signal and this situation leads
tions are sensitive to faults regarding different inputs. to a complete fault diagnosis for the input sensors.

With reference to Fig. 2, in order to diagnose a fault on the The design of these UIO requires the knowledge of a minimal
ith output sensowhen the measurement noises are negligibferm model(A, B, C) for the system (1). Such a triple can be
(@(t) = 0, g(t) = 0) and f,(t) = 0 the model of theith computed by using a realization procedure from a multi-input
observer{=1, 2, ---, m) has the form multi-output (MIMO) identified model. On the other hand, if
the process in mathematically described/hyMISO models,
the triple (4, B, C) can be directly obtained by grouping the
(A?, BY, C*) representations & 1, 2, ---, m).

When the signal to noise ratiofu* (t)||§/||a(t)||§ and

* 2 ~ 2 .
where z'(t) is the observer state vector and the triplgy (Bll2/1|5()|l; are low, a bank of Kalman filters must be

(A", Bi, C) is a minimal state-space representation (Corﬁ_mployed to improve the performance of the FDI system. Even

pletely observable) of the link among the inputs of the proce@sthis situation, the mathematical formulation of the classical
and its ith output:(¢). Such a triple can be obtained b alman filter and of the UIKF is similar to the one described

means of a realization procedure, starting from a multi-inp (4)~(5). The essential difference regards the feedback matrix
single-output (MISO) identified mo,del * which becomes time-dependent and is computed by solving

The entries of® must be designed in order to assign to th Riccati equation. The _solution of _this equation requires the
(AP — KiC") matrix stable eigenvalues chosen suitably withi nowledge of the covariance matrices of the input and the

the unit circle. In this situation and in the absence of faults, i. utput noises which can be identified by means of the dynamic

f4(t) = 0, it can be verified that for théth output residual fisch scheme.
limy oo 7(t) = limy—oo (i (t) — C'2%(¢)) = 0 and the rate of
convergence depends on the position of the eigenvalues of the
(A* — K*C") matrix inside the unit circle. In the presence of The technique for input—output sensor FDI presented in this
a fault (step or ramp signal) on thith output sensor only the paper was applied to a model of a real single-shaft industrial
ith output residual reaches a value different from zero and thjas turbine with variable inlet guide vane (IGV) angle working
situation leads to a complete failure diagnosis. in parallel with electrical mains.

With reference to the devices for the FDI ioput sensors Fig. 4 shows the gas turbine layout and the main features
depicted in Fig. 3, the structure of tib UIO (: = 1, 2, ---, 7), under ISO disign conditions. The input control sensors are used

' (t+1) = A2 (t) + B'ut) + K’ (y:(t) — C'5'(t))  (4)

IV. FDI TECHNIQUE FORINDUSTRIAL GAS TURBINE
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for the measurement of the angular positioof the IGV (u;(¢)) u=M
and of the fuel mass flow raté/; (u»(¢)). The output sen- %=0,
sors are those used for the measurement of the pregsuaé Y= Toe CC

the compressor inle((¢)), the pressurg,. at the compressor
outlet (y=(t)), the pressure,; at the turbine outlety(t)), the
temperaturel,. at the compressor outlei{(¢)), the tempera-
tureT,, at the turbine outlety;(¢)) and the electrical powe?.
at the generator terminadid(?)).

The time series of data used to identify the models were gen-
erated with a nonlinear dynamic model in SIMULINK environ-
ment. The nonlinear model was previously validated by means
of measurements taken during transients on a gas turbine in op-
eration [18] and presents an accuracy of less than 1% for aII
the measured variables and for a range of ambient temperatunge
0 + 40°C and load conditiong0 -+ 100%.

Fig. 5 reports the plots of the control input variabigét) and uH
u2(t). The time series of data simulate measurements taken on 038 ‘ ‘
the machine with a sampling rate of 0.1 s and without noise due
to measurement uncertainty which, instead, is always present ¢3¢}
in the real measurement systems. Zero-mean white Gaussian
measurement noisegt) and g(t) were generated bgrand
function in the MATLAB environment. Their typical standard
deviations are reported in Table II.

The FDI problem was at first approached by using a bank 032
of dynamic observers. The design of output observers requires
the identification of a number of Auto Regressive eXogenous 0.3
(ARX) MISO models equal to the number of the output vari-
ables. The ARX models are usually represented as follows:

Layout of the single-shaft industrial gas turbine.

0.34¢

0.28; 1000 2000 3000 4000 5000

Samples
u(t)

2 n-—1
vt +n) Za7ky7 (t+ k) +Z Birjui(t + k) 110
j=1 k=0
+ Ei(t +n) (6) 105}
wheren, a;1, andg;,; are the parameters to be determined and

£;(t) is the model error. In the following this term will be ne-
glected.

100}

Theith model ¢ = 1, -- -, 6) is driven by, (¢) andus(t) 951
and gives the prediction of thiéh outputy; (¢). Each model was
tested in different operating conditions and it has always pro- 90

vided an output reconstruction error lower than 0.1%.

The parameters of each ARX model have shown remarkable 85 ‘ ‘ , ,
properties of robustness with respect to the amplitudes of the 0 1000 20%) 13000 4000 5000
noises corrupting the data. As an example, Table Il shows the amples
parameter variations of the ARX model (6) relative to the Fig. 5. (a)us (t) and (b)us() control inputs of the gas turbine.
(¢ = 1) measurement versus the measurement noise. In this
situation, the different measurement noises were assumed all of

equal size. STANDARD DEVIATI(;rNASBIO_II:EMIIIEASUREMENTNOISES
Moreover, different time series of data generated by the gas

turbine nonlinear model were exploited in order to validate the o My Pic Poc

ARX models. These models have always provided in full simu- 1.08 deg [ 0.0076 kg/s | 0.41 KPa | 3.66 kPa

lation an output reconstruction error lower than 1%. o 4’1'°1‘(Pa 3_€§°K 5.??1{ 23‘91;‘kw

When the measurement noises exceed the 20%, ARX
input—output models are not suitable to describe the dynamics
of the process and an EIV identification procedure (e.g., Friste gas turbine, which has been computed by grouping the
scheme) must be used. The design of input observers requité, B?, C?) representation associated to the ARX identified
the knowledge of a state-space representatiénB, C) of models (6).
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TABLE Il Residual
PARAMETER VARIATIONS OF THE P;. ARX MODEL VERSUSMEASUREMENT 0.3 . . : .
NO|SESTANDARDDEV|AT|ONS + o+ + o+ + o+ 4+ A R
Noise 0% 2 % 10 % 20 %
[P —0.9963 | —0.9941 | ~0.9513 | —0.9325
11 1.9963 1.9949 1.9712 1.9486
Bi 0.9205 0.9368 0.9680 0.9458
Bi12 —0.9176 | —0.9455 | —0.9682 | —0.9864
Bi21 0.0044 0.0178 0.0176 0.0220
Biz2 —0.0044 { —0.0092 | —0.0108 [ —0.0197
TABLE IV
FAULT DETECTABILITY THRESHOLDS
measurement M Toc T Tot T pot | poc 05 ) ‘ ) )
positive threshold +0.85 [ +0.20 | +0.022 [ +0.55 0 1000 2000 3000 4000 5000
negative threshold || -0.85 | -0.22 | -0.024 | -0.65 Samples
measurement pic | Pe M o
positive threshold || +0.022 | +2.0 +1.1 10.27 Fig. 6. Fault-free residual function of the UIO driven by thg signal.
negative threshold || -0.0225 -2.2 -1.1 -0.41

Residual

Faults in single input—output sensors were generated by pro- 041
ducing positive and negative variations (step and ramp func-
tions of different amplitudes and slopes, respectively) in the
input—output signals. A positive and negative fault occurring, re-
spectively, at the instant of the minimum and maximum values
of the observer residuals were chosen, since these conditions
represent the worst case in failure detection. Moreover, it was
decided to consider a fault during a transient since, in this case,
the residual error due to ARX model approximation is max-
imum and therefore it represents the most critical case.

The fault occurring on the single sensor causes alteration of
the sensor signal and of the residuals given by observers and

R e e T I N T T A T

0 1000 2000 3000 4000 5000

filters using this signal as input. These residuals indicate a fault Samples

occurrence when their values are lower or higher than the thresh-

olds fixed in fault-free conditions. Fig. 7. Residual function of the UIO driven by the,; signal with negative
In order to determine these thresholds, the simulation of dffilure.

ferent amplitude faults in the sensor signals was performed. The

threshold value depends on the residual error amount due to the Res(Pot)

ARX model approximation and on the measurement naiégs ]

andg(t). In Table 1V, the values fixed for the observer residual
thresholds are shown. The positive and negative thresholds were
settled on the basis of fault-free residuals generated by different ¢ 5| 1
time series of simulated data. A margin of 10% between the pos-
itive and negative thresholds and the maximum and minimum or
values, respectively, were imposed.

In order to analyze the diagnostic effectiveness of the FDI
system in the presence of abrupt changes in measurements, 4}
faults modeled by step functions were generated.

Fig. 6 shows the fault-free residual generated by the UIO  -0.6
driven by theM; signal and insensitive to the IGV signal. ~ |------- T oo
The thresholds regarding th&/; sensor are also depicted. o 1000 2000 3000 4000 5000
The eigenvalues of the state distribution matrix [matrix Samples
(T"A — K*C) in (5)] of the UIO are placed with a trial and
error procedure near to 0.2 in order to maximize the fadiio- 8 Fault-free residual function of output observer drivepbysignal.
detection sensibility and promptness and to minimize the
occurrence of false alarms. the diagnostic technique for output sensor fault regarding the

Fig. 7 shows how a fault of4% on the mean value a¥{; p,, signal. In particular, Fig. 8 shows the fault-free residual ob-
signal at the instant of maximal residual value causes an abrtgihed from the difference between the values computed by the
change of the residual. Figs. 8 and 9 illustrate an example aifserver related to the outpyt(t) (p.: signal) and the ones
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given by the sensor. Obviously, the nonzero value of the residual
is due to the ARX model approximation and measurement noise.
Also in this case, the eigenvalues of the state distribution matrix
of output observer (matrid‘ — K*C" in (4),4 = 3) are placed
with a trial and error procedure between zero and 0.2 in order
to maximize the fault detection sensibility and promptness and
to minimize the occurrence of false alarms.

InFig. 9, the abrupt change pf; residual caused by a fault of
+5% on the mean value @f,; signal occurring at the instant of
the minimum residual value is shown. The instantaneous peaks
which appear in Figs. 8 and 9 are generated by the abrupt change
related to the fault occurrence and may be used as incipient de-
tector of anomalous behavior of the sensors.

In order to analyze the diagnostic effectiveness of the FDI
system in the presence of drifts in measurements, faults mod-

eled by ramp functions were generated. In Figs. 10 and 11 ql_q& 9.
residual of the UIO driven by and the residual of the outputfailure.

observer regarding,,. are shown as an example. The two ramp
faults start at the sample 2500 and reach constant final values at
the sample 4000. The final values are equal to 4% of the mean
value ofa and to 5% of the mean value @f..

To summarize the performance of the FDI technique, the min-
imal detectable faults on the various sensors, expressed as per
cent of the mean values of the relative signals, are collected in
Table V, in case of step faults, and in Table VI, in case of ramp
faults.

The minimum values shown in Table V are relative to the case
in which the fault must be detected as soon as it occurs. If a delay
in detection is tolerable the amplitude of the minimal detectable
faultis lower. Table VI shows how faults modeled by ramp func-
tions may not be immediately detected, since the delay in the
corresponding alarm normally depends on fault mode. An im-
provement of the FDI performance has been obtained by using
a bank of Kalman filters designed on the basis of the model pa-

853

Res(Pot)

L i A S T

-1t

2000 3000 4000

Samples

0 1000 5000

Residual function of output observer driveryhyy signal with positive

Residual

1.5

R T A e T S S S S

1+
0.5r

-1.5¢t
2F
25 : : : -
0 1000 2000 3000 4000 5000
Samples

rameters and the noise variances identified under the assu'lﬁ%_lo. Residual function in the presence of a drift in thseasurement.

tions of the Frisch scheme. In particular, since the Kalman filter
produces zero-mean and independent white residuals when the
system is operating normally, the failure detection and isolation
is implemented by analyzing the whiteness of the sequence of
innovations. The tests performed on the innovations are the clas-
sical ones for zero-mean and variance, as cumulative sum al-
gorithms and independence, @stype computed in a growing
window. The comparison of the mean-value and whiteness of
the residuals with the thresholds fixed under no fault conditions
remains the detection rule. In particular, these thresholds can be
settled as in the examples previously suggested or with the aid of
chi-squared tables as a function of the false-alarms probability.

In Figs. 12 and 13 the examples of the statistical tests re-
garding the residual generated by the UIKF for the detection
of abrupt faults regarding the input sensor are shown.

Fig. 12 shows the mean value computed on a growing window
and generated by the UIKF driven by the signakafiput sensor
and insensitive to the signal & ; input sensor. A fault of 3% on
the mean value af signal causes an abrupt change of the mean

Fig. 11.

Res(Toc)

L T

0.5

0_

054

To 1000 2000 3000 4000 5000
Samples

Residual function in the presence of a drift inThe measurement.

value of the residual computed on a growing window. Finally false-alarms probability of 5%. The residual corresponding to
Fig. 13 shows how such a fault causes a change of the whitlee most sensible filter to a failure on thenput was selected.

ness of the same residual computed on a growing window. Thables VIl and VIII summarize the performance of the enhanced
threshold whiteness value of 20.1 was calculated by assumfaglt detection and isolation technique and collect the minimal
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TABLE V Whiteness of the Residual
MINIMAL DETECTABLE STEP FAULTS 60 . T v T
[2] | M | pic I Poc I Pot | Toc I Tot | P, ”J;'
% | 4% | 6% | 7% | 5% | 5% ] 2.5% | 1.7% S0r i
A
L IM
TABLE VI 40 e
MINIMAL DETECTABLE RAMP FAULTS : N_,,»;J".,,v"’"
301 Sy
measurement Toe | Tot Dot Poc w ’
fault 5% | 3% | 55% | 7.5 % f
detection delay [s] 50 100 75 0 20'*******:****"*** AR
measurement Pic | Pe M a
fault 6% | 6% | 4 "/l'o 4% 100
detection delay [s] 50 100 150 100

: 0 1000 2000 3000 4000 5000
,5x1 ot | Re51d1I1a1 Mean' Value | Samples
T Fig. 13. Whiteness of the residual computed by using Kalman filter with
ST e unknown input.
1.5} ]
/ TABLE VII
SRR S j/+ L R A 1 MINIMUM DETECTABLE FAULTS BY MONITORING THE MEAN VALUE OF

THE RESIDUALS

[¢] l M; I Pic Poc Pot Toc I Tot I Pe
3% 3% [ 25% | 4% [15% | 2% [26% | 3%

TABLE VIII
MINIMUM DETECTABLE FAULTS BY MONITORING THE WHITENESS OF
THE RESIDUALS

0 1000 2000 3000 4600 5000
Samples o | My [ Pic | Poc [ Pot | Toc | Tot | Fe

2% |1 2.5% 1 0.75% | 1% [0.75% [ 2% [08% | 1.5%

Fig. 12. Mean value of the residual computed by using Kalman filter with
unknown input.

the physical knowledge of the process under observation since

. : the input—output links are obtained by means of an identifica-
detectable fault on the various sensors. The fault sizes are ex- . : . .
. tion scheme, which uses ARX models in case of high signal
pressed as per cent of the signal mean values.

X . to noise ratios or errors-in-variables models, otherwise. In last
The values shown in these tables VIl and VIII are relative tQ

the case in which the occurrence of a fault must be detectedsggatlon the identification technique (Frisch scheme) gives the

soon as possible. Tables VIl and VIII depicts the fault values og‘?‘”?‘”ces of the mput—_output noises, which are required n the
. o - . . esign of the Kalman filters. The procedure has been applied to
tained by monitoring the variations in the mean value and in the

. . . model of a real single-shaft industrial gas turbine with vari-
residual whiteness, respectively. It results that the values of t : : ST . :
. . L . .able inlet guided vane angle working in parallel with electrical
faults obtained by using statistical tests on Kalman filter resid-_. ) . )
mains. In order to analyze the diagnostic effectiveness of the

uals, collected in Tables VII and VI, are lower than the ones . e
. S DI system in the presence of abrupt changes or drifts in mea-
reported in Table V. Moreover, the minimal detectable faults on .
. . . surements, faults modeled by step or ramp functions have been
the various Sensors seem to. be fadequate o the mdlugtnal dlaeqﬁerated. The results obtained by this approach indicate that
nostic applications, by considering also that the minimal d 1e minimal detectable faults on the various sensors are of in-

tectable faults can be reduced if a delay in detection promQt- . - . o
X : er]est for the industrial diagnostic applications.
ness is tolerable. However, these improvements are not free ©

charge: they have been obtained with a procedure of greater
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