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Diagnosis Techniques for Sensor Faults of Industrial Processes
S. Simani, C. Fantuzzi, and S. Beghelli

Abstract—In this paper a model-based procedure exploiting
analytical redundancy for the detection and isolation of faults in
input–output control sensors of a dynamic system is presented.
The diagnosis system is based on state estimators, namely dy-
namic observers or Kalman filters designed in deterministic and
stochastic environment, respectively, and uses residual analysis
and statistical tests for fault detection and isolation. The state esti-
mators are obtained from input–output data process and standard
identification techniques based on ARX or errors-in-variables
models, depending on signal to noise ratio. In the latter case
the Kalman filter parameters, i.e., the model parameters and
input–output noise variances, are obtained by processing the
noisy data according to the Frisch scheme rules. The proposed
fault detection and isolation tool has been tested on a single-shaft
industrial gas turbine model. Results from simulation show that
minimum detectable faults are perfectly compatible with the
industrial target of this application.

Index Terms—Fault detection and isolation, industrial gas tur-
bine, Kalman filter, model-based approach, unknown input ob-
servers.

I. INTRODUCTION

The control devices which are currently exploited to improve
the overall performance of the industrial processes involve both
sophisticated digital system design techniques and complex
hardware (sensors, actuators, processing units). In such a way,
the probability of failure occurrence on such equipment may
result significant and an automatic supervision control should
be used to detect and isolate anomalous working conditions as
early as possible.

The problem of fault detection and isolation (FDI) in linear
time-invariant dynamic processes has received great attention
during the last two decades and a wide variety of model-based
approaches has been proposed [1]–[14].

These different methods, however, can be brought down to a
few basic concepts such as the parity space approach [1]–[3], the
state estimation approach [4]–[9], the fault detection filter ap-
proach [7], [10], [11], and the parameter identification approach
[4], [6], [12]. In every case, for the detectability and distin-
guishability of faults, mathematical models of the process under
investigation are required, either in state-space or input–output
form.

Frequency domain representations are typically applied when
the effects of faults have frequency characteristics which differ
from each other and thus the frequency spectra serve as criterion
to distinguish faults [13], [14].
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In recent years, there is also a clear trend toward an enlarged
involvement of knowledge-based and artificial intelligence
methods, including qualitative models concerning the residual
generation, fuzzy logic and neural networks for the evaluation
of the residuals [12], [7], [15].

State-space descriptions provide general and mathematically
rigorous tools for system modeling and residual generation
which may be used in sensor fault detection of industrial
systems, both for the deterministic case (the state observer) and
the stochastic case (the Kalman filter). Residuals should then
be processed to detect an actual fault condition, rejecting any
false alarms caused by noise or spurious signals.

This paper aims to define a comprehensive methodology for
sensor fault detection by using a state estimation approach, in
conjunction with residual processing schemes which include a
simple threshold detection, in deterministic case, as well as sta-
tistical analysis when data are affected by noise. The final result
consists in a fault FDI strategy based on fault diagnosis methods
well known in literature to generate redundant residuals.

The diagnosis procedure may be further specialized for input
or output sensors. In particular the fault diagnosis of input sen-
sors uses an unknown input observer (UIO) in high signal to
noise ratio conditions or a Kalman filter with unknown inputs
(UIKF), otherwise. Theth UIO or UIKF is designed to be in-
sensitive to theth input of the system. On the other side, output
sensor faults affecting a single residual are detected by means
of a Luenberger observer or a classical Kalman filter, driven by
a single output and all the inputs of the system.

The suggested method does not require the physical knowl-
edge of the process under observation since the input–output
links are obtained by means of an identification scheme which
uses ARX models in case of high signal to noise ratios, or er-
rors-in-variables models, otherwise. In last situation the identi-
fication technique is based on the rules of the Frisch scheme,
traditionally exploited to analyze economic systems. This ap-
proach gives a reliable model of the plant under investigation,
as well as the variances of the input–output noises, which are
required in the design of the Kalman filters.

The FDI technique presented in this paper is applied to the
input–output sensor fault detection of a single-shaft industrial
gas turbine whose linear mathematical description is obtained
by using identification procedures.

II. M ODEL DESCRIPTION

In the following we assume that the dynamic process under
observation is described by a discrete-time time-invariant linear
dynamic model of the type

(1)
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where
state vector;
output vector of the system;
control input vector.

and are constant matrices of appropriate dimensions
obtained by means of modeling techniques or identification pro-
cedures. In real applications variables and are mea-
sured by means of sensors whose outputs, due to technological
reasons, are affected by noise.

The measured signals and , by neglecting sensor dy-
namics, are modeled as

(2)

in which the sequences and are usually described as
white, zero-mean, uncorrelated Gaussian noises. Descriptions
of types (1) and (2) are known as errors-in-variables (EIV)
models.

The input–output sensors my be affected by faults which de-
grade their reliability. In this case (2) must be replaced by

(3)

where the vectors and
are additive signals which

assume values different from zero only in the presence of
faults. Usually these signals are described by step and ramp
functions representing abrupt and incipient faults (bias or
drift), respectively. The problem treated in this work regards
the detection and isolation of the sensor faults on the basis
of the knowledge of the measured sequences and .
Moreover, it is assumed that only a single fault may occur in
the input or output sensors. Fig. 1 shows the structure of the
measurement process.

The FDI device is implemented by means of dynamic ob-
servers in high signal to noise ratio conditions or Kalman filters
otherwise, in order to produce a set of signals from which it will
be possible to isolate faults associated to input–output sensors.
The design of these state estimators requires the knowledge of
a state-space model (1) of the system under investigation and
of the statistics of the noises affecting the data. When classical
modeling techniques cannot be used since the complete physical
knowledge of the system is not available or the model parame-
ters are unknown, an identification approach can be considered.

In case of high signal to noise ratios, equation error identifica-
tion can be exploited and, in particular, different equation error
models can be extracted from the data. A specific linear dis-
crete-time model, e.g., ARX or ARMAX, can be selected only
inside an assumed family of models. On the other side, if the
signal to noise ratios on the input and output of the process are
low, the Frisch scheme can be applied to perform the dynamic
system identification [16]. Such a scheme allows to determine
the linear discrete-time system which has generated the noisy
sequences as well as the variances of the noisesand af-
fecting the data. In the Frisch scheme these signals are assumed
zero-mean white noises, mutually uncorrelated and uncorrelated
with every component of and .

Fig. 1. Structure of the plant sensors.

Fig. 2. Bank of estimators for output residual generation.

The next step is the transformation of linear input–output dis-
crete-time models into state-space representations. The state-
space systems obtained by the equation errors models are useful
to design dynamic observers, while the ones coming from the
Frisch scheme can be used in order to build Kalman filters.

III. RESIDUAL GENERATION FORFAULT DETECTION AND

ISOLATION OF INPUT–OUTPUT SENSORS

To univocally isolate a fault concerning one of theoutput sen-
sors, under the hypothesis that input sensors are fault-free, a
bank of classical dynamic observers or Kalman filters is used
(Fig. 2). The number of these estimators is equal to the number

of system outputs, and each device is driven by a single output
and all the inputs of the system. In this case a fault on theth
output sensor affects only the residual function of the output
observer or filter driven by theth output.

To univocally isolate a fault concerning one of theinput sen-
sors, under the assumption that output sensors are fault-free, a
bank of UIO or UIKF is used (Fig. 3). The number of these de-
vices is equal to the numberof control inputs. Theth device
is driven by all but the th input sensor and all outputs of the
system and generates a residual function which is sensitive to
all but the th input sensor fault. In this way the detection of
single input measurement sensor faults is possible, since a fault
on the th input sensor affects all the residual functions except
that of the device which is insensitive to theth input.

In order to summarize the FDI capabilities of the presented
schemes, Table I shows the “fault signatures” in case of a single
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Fig. 3. Scheme for input sensor FDI.

fault in each input–output sensor. The residuals which are af-
fected by input and output faults are marked with the presence
of “1” in the correspondent table entry, while an entry “0” means
that the input or output fault does not affect the correspondent
residual. Note how multiple faults in the output sensors can be
isolated since a fault on theth output sensor affects only the
residual function of the output observer driven by theth
output, but all the UIO or UIKF residual functions . On
the other hand, multiple faults on the input sensors cannot be
isolated by means of this technique since all the residual func-
tions are sensitive to faults regarding different inputs.

With reference to Fig. 2, in order to diagnose a fault on the
th output sensorwhen the measurement noises are negligible

( , ) and the model of the th
observer ( ) has the form

(4)

where is the observer state vector and the triple
( ) is a minimal state-space representation (com-
pletely observable) of the link among the inputs of the process
and its th output . Such a triple can be obtained by
means of a realization procedure, starting from a multi-input
single-output (MISO) identified model.

The entries of must be designed in order to assign to the
matrix stable eigenvalues chosen suitably within

the unit circle. In this situation and in the absence of faults, i.e.,
, it can be verified that for theth output residual

and the rate of
convergence depends on the position of the eigenvalues of the

matrix inside the unit circle. In the presence of
a fault (step or ramp signal) on theth output sensor only the
th output residual reaches a value different from zero and this

situation leads to a complete failure diagnosis.
With reference to the devices for the FDI ofinput sensors,

depicted in Fig. 3, the structure of theth UIO ( ),

TABLE I
FAULT SIGNATURES

under the assumptions , and , is the
following:

(5)

where
observer state vector;
residual vector;

, , ,
, ,

matrices to be designed with appropriate di-
mensions [10], [12], [17].

Under the hypothesis of observability of the system (1) and in
the absence of input sensor fault ( ), it can be seen that
the th residual vector reaches zero asapproaches infinity and
the rate of convergence depends on the position of the eigen-
values of matrix inside the unit circle. In the pres-
ence of a fault on theth input sensor theth residual reaches
asymptotically zero while the residuals of the remaining
observers are sensitive to the fault signal and this situation leads
to a complete fault diagnosis for the input sensors.

The design of these UIO requires the knowledge of a minimal
form model for the system (1). Such a triple can be
computed by using a realization procedure from a multi-input
multi-output (MIMO) identified model. On the other hand, if
the process in mathematically described byMISO models,
the triple can be directly obtained by grouping the

representations ( ).
When the signal to noise ratios and

are low, a bank of Kalman filters must be
employed to improve the performance of the FDI system. Even
in this situation, the mathematical formulation of the classical
Kalman filter and of the UIKF is similar to the one described
by (4)–(5). The essential difference regards the feedback matrix

which becomes time-dependent and is computed by solving
a Riccati equation. The solution of this equation requires the
knowledge of the covariance matrices of the input and the
output noises which can be identified by means of the dynamic
Frisch scheme.

IV. FDI TECHNIQUE FORINDUSTRIAL GAS TURBINE

The technique for input–output sensor FDI presented in this
paper was applied to a model of a real single-shaft industrial
gas turbine with variable inlet guide vane (IGV) angle working
in parallel with electrical mains.

Fig. 4 shows the gas turbine layout and the main features
under ISO disign conditions. The input control sensors are used
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for the measurement of the angular positionof the IGV ( )
and of the fuel mass flow rate ( ). The output sen-
sors are those used for the measurement of the pressureat
the compressor inlet ( ), the pressure at the compressor
outlet ( ), the pressure at the turbine outlet ( ), the
temperature at the compressor outlet ( ), the tempera-
ture at the turbine outlet ( ) and the electrical power
at the generator terminal ( ).

The time series of data used to identify the models were gen-
erated with a nonlinear dynamic model in SIMULINK environ-
ment. The nonlinear model was previously validated by means
of measurements taken during transients on a gas turbine in op-
eration [18] and presents an accuracy of less than 1% for all
the measured variables and for a range of ambient temperature

C and load conditions %.
Fig. 5 reports the plots of the control input variables and

. The time series of data simulate measurements taken on
the machine with a sampling rate of 0.1 s and without noise due
to measurement uncertainty which, instead, is always present
in the real measurement systems. Zero-mean white Gaussian
measurement noises and were generated bynrand
function in the MATLAB environment. Their typical standard
deviations are reported in Table II.

The FDI problem was at first approached by using a bank
of dynamic observers. The design of output observers requires
the identification of a number of Auto Regressive eXogenous
(ARX) MISO models equal to the number of the output vari-
ables. The ARX models are usually represented as follows:

(6)

where , , and are the parameters to be determined and
is the model error. In the following this term will be ne-

glected.
The th model ( ) is driven by and

and gives the prediction of theth output . Each model was
tested in different operating conditions and it has always pro-
vided an output reconstruction error lower than 0.1%.

The parameters of each ARX model have shown remarkable
properties of robustness with respect to the amplitudes of the
noises corrupting the data. As an example, Table III shows the
parameter variations of the ARX model (6) relative to the
( ) measurement versus the measurement noise. In this
situation, the different measurement noises were assumed all of
equal size.

Moreover, different time series of data generated by the gas
turbine nonlinear model were exploited in order to validate the
ARX models. These models have always provided in full simu-
lation an output reconstruction error lower than 1%.

When the measurement noises exceed the 20%, ARX
input–output models are not suitable to describe the dynamics
of the process and an EIV identification procedure (e.g., Frisch
scheme) must be used. The design of input observers require
the knowledge of a state-space representation of

Fig. 4. Layout of the single-shaft industrial gas turbine.

Fig. 5. (a)u (t) and (b)u (t) control inputs of the gas turbine.

TABLE II
STANDARD DEVIATIONS OF MEASUREMENTNOISES

the gas turbine, which has been computed by grouping the
representation associated to the ARX identified

models (6).
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TABLE III
PARAMETER VARIATIONS OF THEP ARX MODEL VERSUSMEASUREMENT

NOISE STANDARD DEVIATIONS

TABLE IV
FAULT DETECTABILITY THRESHOLDS

Faults in single input–output sensors were generated by pro-
ducing positive and negative variations (step and ramp func-
tions of different amplitudes and slopes, respectively) in the
input–output signals. A positive and negative fault occurring, re-
spectively, at the instant of the minimum and maximum values
of the observer residuals were chosen, since these conditions
represent the worst case in failure detection. Moreover, it was
decided to consider a fault during a transient since, in this case,
the residual error due to ARX model approximation is max-
imum and therefore it represents the most critical case.

The fault occurring on the single sensor causes alteration of
the sensor signal and of the residuals given by observers and
filters using this signal as input. These residuals indicate a fault
occurrence when their values are lower or higher than the thresh-
olds fixed in fault-free conditions.

In order to determine these thresholds, the simulation of dif-
ferent amplitude faults in the sensor signals was performed. The
threshold value depends on the residual error amount due to the
ARX model approximation and on the measurement noises
and . In Table IV, the values fixed for the observer residual
thresholds are shown. The positive and negative thresholds were
settled on the basis of fault-free residuals generated by different
time series of simulated data. A margin of 10% between the pos-
itive and negative thresholds and the maximum and minimum
values, respectively, were imposed.

In order to analyze the diagnostic effectiveness of the FDI
system in the presence of abrupt changes in measurements,
faults modeled by step functions were generated.

Fig. 6 shows the fault-free residual generated by the UIO
driven by the signal and insensitive to the IGV signal.
The thresholds regarding the sensor are also depicted.
The eigenvalues of the state distribution matrix [matrix

in (5)] of the UIO are placed with a trial and
error procedure near to 0.2 in order to maximize the fault
detection sensibility and promptness and to minimize the
occurrence of false alarms.

Fig. 7 shows how a fault of % on the mean value of
signal at the instant of maximal residual value causes an abrupt
change of the residual. Figs. 8 and 9 illustrate an example of

Fig. 6. Fault-free residual function of the UIO driven by theM signal.

Fig. 7. Residual function of the UIO driven by theM signal with negative
failure.

Fig. 8. Fault-free residual function of output observer driven byp signal.

the diagnostic technique for output sensor fault regarding the
signal. In particular, Fig. 8 shows the fault-free residual ob-

tained from the difference between the values computed by the
observer related to the output ( signal) and the ones
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given by the sensor. Obviously, the nonzero value of the residual
is due to the ARX model approximation and measurement noise.
Also in this case, the eigenvalues of the state distribution matrix
of output observer (matrix in (4), ) are placed
with a trial and error procedure between zero and 0.2 in order
to maximize the fault detection sensibility and promptness and
to minimize the occurrence of false alarms.

In Fig. 9, the abrupt change of residual caused by a fault of
% on the mean value of signal occurring at the instant of

the minimum residual value is shown. The instantaneous peaks
which appear in Figs. 8 and 9 are generated by the abrupt change
related to the fault occurrence and may be used as incipient de-
tector of anomalous behavior of the sensors.

In order to analyze the diagnostic effectiveness of the FDI
system in the presence of drifts in measurements, faults mod-
eled by ramp functions were generated. In Figs. 10 and 11 the
residual of the UIO driven by and the residual of the output
observer regarding are shown as an example. The two ramp
faults start at the sample 2500 and reach constant final values at
the sample 4000. The final values are equal to 4% of the mean
value of and to 5% of the mean value of .

To summarize the performance of the FDI technique, the min-
imal detectable faults on the various sensors, expressed as per
cent of the mean values of the relative signals, are collected in
Table V, in case of step faults, and in Table VI, in case of ramp
faults.

The minimum values shown in Table V are relative to the case
in which the fault must be detected as soon as it occurs. If a delay
in detection is tolerable the amplitude of the minimal detectable
fault is lower. Table VI shows how faults modeled by ramp func-
tions may not be immediately detected, since the delay in the
corresponding alarm normally depends on fault mode. An im-
provement of the FDI performance has been obtained by using
a bank of Kalman filters designed on the basis of the model pa-
rameters and the noise variances identified under the assump-
tions of the Frisch scheme. In particular, since the Kalman filter
produces zero-mean and independent white residuals when the
system is operating normally, the failure detection and isolation
is implemented by analyzing the whiteness of the sequence of
innovations. The tests performed on the innovations are the clas-
sical ones for zero-mean and variance, as cumulative sum al-
gorithms and independence, as-type computed in a growing
window. The comparison of the mean-value and whiteness of
the residuals with the thresholds fixed under no fault conditions
remains the detection rule. In particular, these thresholds can be
settled as in the examples previously suggested or with the aid of
chi-squared tables as a function of the false-alarms probability.

In Figs. 12 and 13 the examples of the statistical tests re-
garding the residual generated by the UIKF for the detection
of abrupt faults regarding the input sensor are shown.

Fig. 12 shows the mean value computed on a growing window
and generated by the UIKF driven by the signal ofinput sensor
and insensitive to the signal of input sensor. A fault of 3% on
the mean value of signal causes an abrupt change of the mean
value of the residual computed on a growing window. Finally,
Fig. 13 shows how such a fault causes a change of the white-
ness of the same residual computed on a growing window. The
threshold whiteness value of 20.1 was calculated by assuming

Fig. 9. Residual function of output observer driven byp signal with positive
failure.

Fig. 10. Residual function in the presence of a drift in the� measurement.

Fig. 11. Residual function in the presence of a drift in theT measurement.

a false-alarms probability of 5%. The residual corresponding to
the most sensible filter to a failure on theinput was selected.
Tables VII and VIII summarize the performance of the enhanced
fault detection and isolation technique and collect the minimal
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TABLE V
MINIMAL DETECTABLE STEP FAULTS

TABLE VI
MINIMAL DETECTABLE RAMP FAULTS

Fig. 12. Mean value of the residual computed by using Kalman filter with
unknown input.

detectable fault on the various sensors. The fault sizes are ex-
pressed as per cent of the signal mean values.

The values shown in these tables VII and VIII are relative to
the case in which the occurrence of a fault must be detected as
soon as possible. Tables VII and VIII depicts the fault values ob-
tained by monitoring the variations in the mean value and in the
residual whiteness, respectively. It results that the values of the
faults obtained by using statistical tests on Kalman filter resid-
uals, collected in Tables VII and VIII, are lower than the ones
reported in Table V. Moreover, the minimal detectable faults on
the various sensors seem to be adequate to the industrial diag-
nostic applications, by considering also that the minimal de-
tectable faults can be reduced if a delay in detection prompt-
ness is tolerable. However, these improvements are not free of
charge: they have been obtained with a procedure of greater
complexity and, consequently, with a growing computational
cost.

V. CONCLUSIONS

A complete design procedure for fault detection and isola-
tion in input–output control sensors of industrial processes is
described in this paper. The fault diagnosis is performed by
using a bank of dynamic observers or, when the measurement
noises are not negligible, a bank of Kalman filters. Single fault
on the input sensors and multiple faults on the output sensors
have been considered. The suggested method does not require

Fig. 13. Whiteness of the residual computed by using Kalman filter with
unknown input.

TABLE VII
MINIMUM DETECTABLE FAULTS BY MONITORING THE MEAN VALUE OF

THE RESIDUALS

TABLE VIII
MINIMUM DETECTABLE FAULTS BY MONITORING THE WHITENESS OF

THE RESIDUALS

the physical knowledge of the process under observation since
the input–output links are obtained by means of an identifica-
tion scheme, which uses ARX models in case of high signal
to noise ratios or errors-in-variables models, otherwise. In last
situation the identification technique (Frisch scheme) gives the
variances of the input–output noises, which are required in the
design of the Kalman filters. The procedure has been applied to
a model of a real single-shaft industrial gas turbine with vari-
able inlet guided vane angle working in parallel with electrical
mains. In order to analyze the diagnostic effectiveness of the
FDI system in the presence of abrupt changes or drifts in mea-
surements, faults modeled by step or ramp functions have been
generated. The results obtained by this approach indicate that
the minimal detectable faults on the various sensors are of in-
terest for the industrial diagnostic applications.
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