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Abstract: This paper addresses the problem of the detection and isolation of
actuator faults on a general aviation aircraft, characterised by a nonlinear
model, in the presence of wind gust disturbances. In particular, this work
investigates the design of residual generators in order to realise complete diagnosis
schemes when additive faults are present. The use of a canonical input–output
polynomial description for the linearised model of the aircraft allows to compute
in a straightforward way minimal order residual generators. These tools lead
to dynamic filters that can guarantee both disturbance signal decoupling and
robustness properties with respect to linearisation errors. The results obtained
in the simulation of the faulty behaviour of a Piper PA30 are finally reported.
Copyright c© 2004 IFAC.

Keywords: Fault detection and isolation, aerospace application, flight control,
filter design, polynomial methods

1. INTRODUCTION

Actuator and sensor faults on aircraft are quite
frequent, so that aircraft flight control has to
exploit fault tolerant strategies in order to en-
sure system safety and reliability. The detection
and isolation of these faults can be achieved by
means of analytical redundancy schemes. Today in
flight control systems, especially for the category
of small commercial aircrafts, such approach is
typically employed.

Analytical redundancy methods using linear or
linearised models for Fault Detection and Iso-
lation (FDI) in complex systems have received
considerable attention during the last 25 years
(Isermann, 1984; Gertler, 1998; Chen and Pat-

ton, 1999; Simani et al., 2002; Frank, 1990; Bas-
seville and Nikiforov, 1993). In recent years a great
deal of works have been carried on to the synthesis
of residual generators with geometric approach
(Massoumnia, 1986; Chen and Patton, 1999; Balas
and Bokor, 2000). It is worth observing that Balas
and Bokor have developed the project of robust
detection filters by means of an LPV approach.

This work investigates the residual generator com-
putation on the basis of a linearised model of
a multivariable nonlinear system with additive
faults and disturbances, by following the minimal
polynomial approach suggested in (Frisk and Ny-
berg, 2001). The system under diagnosis is mod-
elled in terms of input–output polynomial descrip-
tion, so that the residual generation problem can



be reduced to the determination of the null–space
of a specific polynomial matrix associated to the
process model. In particular, the use of canoni-
cal input–output forms allows to compute in a
straightforward fashion an analytical expression
for the basis of such a null–space and upper and
lower bounds for the order of the dynamic residual
generator. The proposed FDI approach has been
applied to a nonlinear model of a Piper PA30.
The residual generators have been designed on the
basis of linearised models in different flight condi-
tions and experimented with the data from non-
linear model flight simulator in Matlab/Simulink
environment.

2. AIRCRAFT MATHEMATICAL
DESCRIPTION

In order to adopt the linear FDI technique that
will be presented in the following, a nonlinear
model of the aircraft is used for computing trim
values and linearised models corresponding to
different flight conditions.

The mathematical description of the PA30 is a
classical nonlinear six degree of freedom aircraft
model (rigid body) whose motion occur as a con-
sequence of applied forces and moments (aerody-
namic, thrust and gravitational). The parameters
in the analytic representation of the aerodynamic
actions have been obtained from wind tunnel ex-
perimental data of a Piper PA30, as reported e.g.
in (Koziol, 1971), and the aerodynamic actions
are expressed along the axes of the wind reference
system. The nonlinear attitude model is given by
following relations (using nomenclature of Table
(2)):
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Moreover, the model has been completed by
means of a first order dynamic model of a 4-
pistons aspirated engine with the throttle aper-
ture as input and the thrust intensity as output.
The atmosphere model consists of a stochastic
mathematical description of gusts which are mod-
elled air velocity components along body axes wu,
wv and ww. Their correlation times and variances
are τu = 2.326[s], τv = 7.143[s], τw = 0.943[s],
E[w2

u] = E[w2
v] = E[w2

w] = 0.7[(m/s)2] respec-
tively. It is worth observing that in the PA30 Mat-
lab/Simulink model the servo-actuator descrip-
tion of elevator, aileron rudder and throttle have
been included.

The linearised model used for FDI purposes em-
bed the linearisation of the attitude model, of the
engine and of the guide variables H and ψ so that
it can be written as follows

ẋ(t) = Ax(t) + Bc(t) + Ed(t) (1)

with

x(t) =
[
∆V ∆α ∆β ∆P ∆Q ∆R . . .

∆φ ∆θ ∆ψ ∆H ∆n
]T

c(t) =
[
∆δe ∆δa ∆δr ∆δth

]T

d(t) =
[
wu wv ww

]T
(2)

where ∆ denotes the variations of the considered
variables and c(t) and d(t) are the control inputs
and the disturbances, respectively. The output
equation corresponding to model (1) is of the type
y(t) = Cx(t) where the rows of C correspond
to rows of the identity matrix, depending on the
measured variables.

3. RESIDUAL GENERATOR FUNCTIONS
FOR FDI

Let us consider a linear, time–invariant, continuous–
time system described by the following input–
output equation

P (s) y(t) = Q(s)u(t) (3)

where s is the derivative operator and P (s) and
Q(s) are polynomial matrices with dimension
(m×m) and (m× �) respectively, with P (s) non-
singular. The terms u(t) and y(t) are, respectively,
the �–dimensional and m–dimensional input and
output vectors of the considered multivariable sys-
tem. Models of type (3) can be frequently found
in practice by applying well–known physical laws
to describe the input–output dynamical links of
various systems and are a powerful tool in all
fields where the knowledge of the system state



Table 1. Nomenclature

V True Air Speed (TAS) δe elevator deflection angle
α angle of attack δa aileron deflection angle
β angle of sideslip δr rudder deflection angle
P roll rate δth throttle aperture percentage
Q pitch rate X,Y horizontal coordinates
R yaw rate (inertial reference system)
φ bank angle H altitude
θ elevation angle (inertial reference system)
ψ heading angle γ flight path angle
n engine shaft angular rate m airplane mass
 Ix 0 −Ixz

0 Iy 0
−Ixz 0 Iz


 airplane inertia moments matrix

Fx, Fy, Fz total force components along body axes
Mx, My, Mz total moment components along body axes

does not play a direct role, such as residual genera-
tor design, identification, decoupling, output con-
trollability, etc. Algorithms to transform state–
space models to equivalent input–output polyno-
mial representations and vice versa are available
(Beghelli and Guidorzi, 1976).

A constructive proof of the existence and unique-
ness of a canonical form for a given pair

{
P (s), Q(s)

}
can be found in (Beghelli and Guidorzi, 1976). In
the same work an efficient and simple algorithm
for transforming a generic polynomial represen-
tation to the equivalent canonical one is also de-
scribed.

Remark 1. Note that the integers νi = deg p̃ii(s)
(i = 1, . . . ,m) equal the corresponding row–
degrees. Because of the canonical form, matrix
P̃ (s) is row–reduced, i.e.

P̃ (s) = D(s)M + L(s) , (4)

where D(s) = diag
[
sν1 , sν2 , . . . , sνm

]
and the

highest–row–degree coefficient matrix M is non
singular since it is a triangular matrix with ones
along the main diagonal. Moreover the canonical
representation

{
P̃ (s), Q̃(s)

}
leads directly to a

correspondent canonical state–space realization

ẋ(t) = Ã x(t) + B̃ u(t)
y(t) = C̃x(t) + D̃u(t) .

(5)

The integers νi are the ordered set of Kronecker
invariants associated to the pair

{
Ã, C̃

}
of every

observable realization of
{
P (s), Q(s)

}
.

In order to design residual generators of minimal
order, model (3) can be firstly transformed into its
canonical representation

{
P̃ (s), Q̃(s)

}
; this step

can be omitted if the minimal order constraint is
relaxed. Then, matrix Q̃(s) can be decomposed
according to the following structure

P̃ (s) y(t) =
[
Q̃c(s) Q̃d(s) Q̃f (s)

]

 c(t)
d(t)
f(t)


(6)

where c(t) is the �c–dimensional known–input
vector, d(t) is the �d–dimensional disturbance
vector, f(t) is the �f–dimensional monitored fault
vector and �c + �d + �f = �.

Remark 2. Eq. (6) considers also the cases of
additive faults fc(t) on the input and output
sensors. In particular when additive faults fc(t)
on the input are considered, the input vector
measurements can be written as

c∗(t) = c(t) + fc(t) (7)

and Eq. (6) with f(t) = 0, becomes P̃ (z)y(t) =
Q̃c(s)c∗(t) + Q̃d(s)d(t)− Q̃c(s)fc(t). Analogously,
when additive faults fo(t) on the output sensors
of the system are considered the output vector
measurements can be written as

y∗(t) = y(t) + fo(t) . (8)

In this case, it results that P̃ (s)y∗(t) = Q̃c(s)c(t)+
Q̃d(s)d(t) + P̃ (s)fo(t).

A general linear residual generator for the fault
detection process of system (6) is a filter of type

R(s) r(t) = Sy(s) y(t) + Sc(s) c(t) . (9)

System (9) processes the known input–output
data and generates the residual r(t), i.e. a signal
which is “small” (ideally zero) in the fault–free
case and is “large” when a fault is acting on the
system. Without loss of generality, r(t) can be
assumed to be a scalar signal. In such condition
R(s) is a polynomial with degree greater than
or equal to the row–degree of Sc(s) and Sy(s),



in order to guarantee the physical realisability of
the filter. Moreover, if R(s) has all roots in the
left half complex plane, filter (9) is asymptotically
stable. An important aspect of the design concerns
the decoupling of the disturbance d(t) in order
to produce a correct diagnosis in all operating
conditions. Equation (6) can be rewritten in the
form

P̃ (s) y(t)− Q̃c(s) c(t) + Q̃f (s) f(t) =
= Q̃d(s) d(t) .

(10)

Premultiplying all the terms in (10) by a row
polynomial vector L(s) belonging to the left null–
space of Q̃d(s), N�(Q̃d(s)), we obtain

L(s) P̃ (s) y(t)− L(s) Q̃c(s) c(t)+
−L(s)Q̃f (s) f(t) = 0 .

(11)

Starting from Eq. (11) with f(t) = 0, it is possible
to obtain a residual generator of type (9) by
setting:

Sy(s) = L(s) P̃ (s)
Sc(s) = −L(s) Q̃c(s)
R(s) = (s+ p1)(s+ p2)..(s+ pnf

) =
= snf + a1s

nf−1 + ..+ anf
,

(12)

where nf is the maximal row–degree of the pair{
L(s) P̃ (s), L(s) Q̃c(s)

}
. The polynomial R(s)

can be arbitrarily selected. The choice R(s) = (s+
p1)(s+p2) . . . (s+pnf

) leads to an asymptotically
stable filter when the real parts of the nf poles
pi(i = 1, 2, . . . ,m) are negative. In this way, in
absence of fault, equation (9) can be rewritten also
in the form

R(s) r(t) = L(s) P̃ (s) y(t)+
−L(s) Q̃c(s) c(t) = 0

(13)

When a fault is acting on the system the residual
generator is governed by the relation

R(s)r(t) = −L(s) Q̃f (s) f(t) (14)

and r(t) assumes values that are different from
zero if L(s) does not belong to the N�(Q̃f (s)). In
these conditions the design freedom in the choice
of the matrix L(s) can be used to optimise the
sensitivity properties of r(t) to the fault f(t), for
example by maximising the steady-state gain of
the transfer function L(s) Q̃f (s). Another design
choice regards the location of the roots of the
polynomial R(s) in the left–half s–plane, which
influences the frequency response of the resid-
ual generator and, consequently, its robustness
with respect to input–output measurement noises,
modelling errors, parameter uncertainties, etc. In
other words the diagnostic capabilities of a resid-
ual generator strongly depend on an accurate se-
lection of the terms L(s) and R(s). In order to de-
termine all possible residual generators of minimal

order it is necessary to compute a minimal basis
of N�(Q̃d(s)). Under the assumption that matrix
Q̃d(s) is of full normal rank, i.e. rank Q̃d(s) = �d,
N�(Q̃d(s)) has dimension m − �d and a minimal
basis of it can be computed easily. It can be
noted that in absence of disturbances �d = 0, so
that N�(Q̃d(s)) coincides with the whole vector
space. Consequently, a set of residual generators
for system (6) with f(t) = 0 can be expressed as

Rri(s)ri(t) = P̃ri(s) y(t)− Q̃cri
(s) c(t)

(i = 1, 2, . . . ,m)
(15)

where P̃ri(s) and Q̃cri
(s) are the i–th rows of ma-

trices P̃ (s) and Q̃c(s), respectively, νi is the degree
of P̃ri(s) and Rri(s) is an arbitrary polynomial
with degree equal to νi and with all the roots
with negative real part. Since Q̃cri

(s) cannot show
a degree greater than νi, the physical realisability
of the residual generator is guaranteed. In general,
for 0 < �d < m matrix Q̃d(s) can be partitioned
in the following way

Q̃d(s) =
[
Q̃d1(s)
Q̃d2(s)

]
, (16)

where matrices Q̃d1(s) and Q̃d2(s) have dimension
�d × �d and (m − �d) × �d respectively. It can be
assumed, without loss of generality, that matrix
Q̃d1(s) is non singular. In this case it can be easily
verified that a basis of N�(Q̃d(s)) is given by the
polynomial matrix

B(s) =
[
Q̃d2(s) adj Q̃d1(s) . . .

−det Q̃d1(s) Im−�d

] (17)

by assuming adj Q̃d1(s) = 1 for �d = 1. By
partitioning P̃ (s) and Q̃c(s) as Q̃d(s) in (16)

P̃ (s) =
[
P̃1(s)
P̃2(z)

]
Q̃c(s) =

[
Q̃c1(s)
Q̃c2(s)

]
(18)

a basis of the residual generators (9) for the
system (6) with f(t) = 0 is obtained by replacing
in relation (12) the row polynomial vector L(s)
with the polynomial matrix B(s), i.e.

Sy(s) = Q̃d2(s) adj Q̃d1(s) P̃1(s)+
−det Q̃d1(s) P̃2(s)

Sc(s) = −Q̃d2(s) adj Q̃d1(s) Q̃c1(s)+
+det Q̃d1(s) Q̃c2(s)

R(s) = diag
[
R1(s)R2(s) . . . Rm−�d

(s)
]
,

(19)

where the degree of the polynomial Ri(s) is nfi

(i = 1, . . . ,m− �d), that is the degree of the i− th
row of the matrix Sy(s). By denoting with n∗

f the
minimal value of the integers nfi

(i = 1, . . . ,m−
�d) the following theorem can be stated.



Theorem 1. The order n∗
f of a minimal order

residual generator for the system (6) is con-
strained in the following range

νmin ≤ n∗
f ≤ (

�d + 1
)
νmax (20)

where νmin and νmax are the least and the greatest
Kronecker invariant respectively.

The lower bound can be obtained in the no–
disturbance case (�d = 0) from relation (15)
by selecting the row of P̃ (s) associated to the
least Kronecker invariant. The upper bound can
be obtained by taking into account the maximal
degree of the polynomials of the matrices in (19).

4. APPLICATION EXAMPLE

To show the advantages brought by the applica-
tion of the proposed fault detection and isolation
scheme to the the general aviation PIPER PA–30
aircraft model addressed in Section 2, some nu-
merical results obtained in the Matlab/Simulink
environment are reported.

The computation of disturbance decoupling resid-
ual generators described in Section 3 for actuator
FDI has been performed by considering the lin-
earised model for the aircraft presented in Section
2. Such linearised model of the aircraft corre-
sponds to a flight condition branch of a complete
trajectory described by:

• radius of curvature 1000[m]
• speed V = 50[ms ]• altitude H = 330[m]
• flap = 0o.

The residual generator filters are therefore fed
by the 4 input – 8 output data acquired from
the continuous time, time invariant, nonlinear dy-
namic aircraft Matlab/Simulink model described
in Section 2.

In particular, a bank of 4 residual generator fil-
ters have been used to detect actuator faults
regarding the 4 input control variables c(t) =
[∆δe,∆δa,∆δr,∆δth]

T .

The actuator faults fa(t) are modelled in the
following way:

c(t) = ch(t) + fa(t) (21)

where ch(t) are the fault–free inputs that feed the
residual generators and fa(t) are step functions.
In this situation, Eq. (6) becomes P̃ (s)y(t) =
Q̃c(s)ch(t) + Q̃d(s)d(t) + Q̃c(s)fa(t). Moreover,
in order to obtain fault isolation properties,
each residual generator function of the considered
bank is fed by all but one the 4 control input

signals and by the 8 output variables y(t) =
[∆V,∆Q,∆θ,∆H,∆P,∆R,∆φ,∆ψ]T .

Hence, each filter of the bank is independent of
one of the 4 input signals and then is also insensi-
tive to the corresponding fault signals. Obviously,
the residual generator bank has been designed to
be decoupled from 3 wind gust signals d(t) =
[wu, wv, ww]

T , that represent disturbance terms
acting on the aircraft system.

The capabilities of the fault detection and isola-
tion system are hence related to the properties of
the residual generator functions in the presence of
disturbance and nonlinearity that cannot be de-
coupled. In particular, according to Section 3, the
synthesis of the filters for FDI has been performed
by choosing a linear combination of residual gen-
erator {Sc(s), Sy(s)} functions that maximise the
steady–state gain of the transfer matrix between
fault signals fa(t) and residual functions r(t).
Moreover, for each residual generator, the poles
connected to the polynomial R(s) have been cho-
sen in order to optimise fault isolation properties
of the filter bank, i.e. by minimising linearisation
error effects on the residual functions.

As an example, the 4 residual functions generated
by the filter bank under both fault–free and faulty
conditions are shown in Figures (1) and (2),
respectively. Continuous lines represent the fault–

Fig. 1. Residuals of the bank for the isolation of
the aileron actuator fault

free residual functions, while the dotted lines
depict the faulty residual signals. The faults have
been added to the aileron (Figure (1)) and to
the rudder (Figure (2)) actuator signals of the
considered aircraft, commencing at time t = 150s.

It is worth noting that the second residual func-
tion of Figure (1), for the isolation of a fault
regarding the aileron, does not depend on a fault
affecting aileron itself, as the corresponding resid-
ual filter has been designed to be insensitive to



Fig. 2. Residuals of the bank for the isolation of
the rudder actuator fault.

that input signal. On the other hand, Figure (2)
depicts the third residual function for the isolation
of a fault regarding the rudder. This function is
independent of a fault affecting rudder signal, as
the related filter has been designed to be decou-
pled from that input signal.

In order to determine the range out of which
the fault is detectable, the maximum and mini-
mum values assumed by r(t) in fault–free condi-
tions must be computed with an acceptable false–
alarms rate. Table (2) collects the minimal de-
tectable fault amplitudes on the actuators, when
r(t) is monitored in order to perform the isola-
tion of the considered fault cases. The minimal

Table 2. Minimal detectable actuator
faults.

Actuator variable Fault Size

Elevator deflection angle 0.28o

Aileron deflection angle 0.7o

Rudder deflection angle 4.5o

Throttle aperture % 8%

detectable fault values in Table (2) are expressed
in the unit of measure of the actuator signals and
are relative to the case in which the occurrence of
a fault must be detected and isolated as soon as
possible.

Finally, the performance of the residual genera-
tors seems to assess the diagnostic capabilities of
the suggested technique. Moreover, the proposed
strategy for the FDI on the actuators appear to
be promising for diagnostic application to general
aviation aircrafts.

5. CONCLUSIONS

In this paper a residual generation technique for a
general aviation aircraft, described by a nonlinear

model, with additive actuator faults and distur-
bance signals has been analysed. The proposed
approach has shown robustness properties against
linearisation errors and disturbance decoupling.
The use of a canonical input–output polynomial
representation for a linearised model of the con-
sidered nonlinear dynamic model leads to a simple
computation of the minimal order residual genera-
tors in polynomial form. Minimal detectable fault
sizes are comparable those achievable with other
classical FDI schemes. The robustness properties
of the suggested approach with respect to both
measurement noises and parameter variations of
the system require further investigations.
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