lezione 1

Sistemi di Controllo Digitale

Introduzione

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione1

• PROCESSO:

Un insieme di operazioni o di trasformazioni che devono avvenire in sequenza opportuna in un impianto o in un sistema fisico

• CONTROLLO DEI PROCESSI:

Insieme di metodologie, tecniche e tecnologie orientate alla conduzione automatizzata di impianti industriali

• SISTEMI DI CONTROLLO DIGITALE:

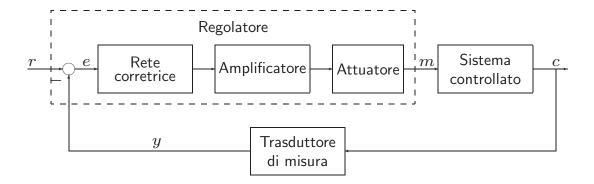
Sistemi di controllo in retroazione in cui è presente un calcolatore digitale e quindi una elaborazione a tempo discreto della legge di controllo

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

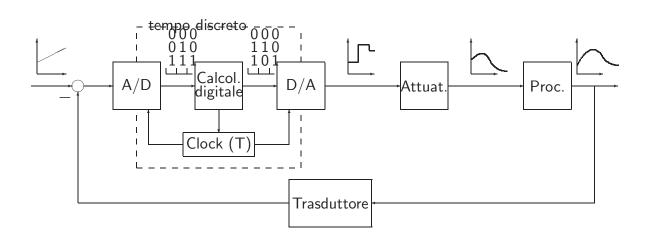
Sistemi di Controllo Digitale

Silvio Simani - Lezione1

SCHEMA TIPICO DI UN SISTEMA DI CONTROLLO ANALOGICO



SCHEMI TIPICI DI UN SISTEMA DI CONTROLLO DIGITALE (1)

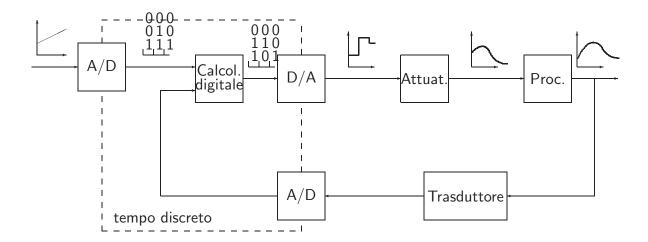


Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione1

SCHEMI TIPICI DI UN SISTEMA DI CONTROLLO DIGITALE (2)



• CONTROLLO DIGITALE / CONTROLLO ANALOGICO :

- + Maggiore capacità e precisione di elaborazione
- + Maggiore flessibilità
- + Maggiore affidabilità e ripetibilità
- + Maggiore trasmissibilità dei segnali
- Progettazione più difficile e articolata
- Stabilizzabilità più precaria
- Possibilità di arresti non previsti
- Necessità di utilizzare energia elettrica

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione1

DISPOSITIVI DI INTERFACCIA

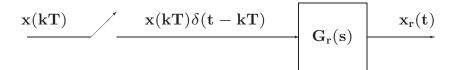
• A/D, convertitore Analogico/Digitale

Con campionamento modellato ad impulsi di Dirac:

• D/A, convertitore Digitale/Analogico

$$\xrightarrow{\mathbf{x(kT)}} \mathbf{D/A} \xrightarrow{\mathbf{x_r(t)}}$$

Modello:



Caso dell'Hold:

$$G_r(s) = \frac{1-e^{-sT}}{s}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione1 10

ANELLO DI CONTROLLO DIGITALE

- Parte tempo continua: processo/impianto
- Parte tempo discreta: sistema di controllo
- Campionamento regolare di periodo T
- Trasformata Zeta

lezione 2

Modelli per Sistemi a Tempo Discreto

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione2

• Equazione alle differenze:

$$u_k=f(e_0,e_1,\ldots,e_k;u_0,u_1,\ldots,u_{k-1})$$

Se $f(\cdot)$ è lineare:

$$u_k = -a_1 u_{k-1} - \ldots - a_n u_{k-n} + b_0 e_k + \ldots + b_m e_{k-m}$$

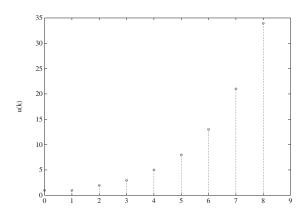
Esempio:

$$u_k = -a_1 u_{k-1} - a_2 u_{k-2} + b_0 e_k$$

• Soluzione di equazioni alle differenze a coefficienti costanti

$$u_k=u_{k-1}+u_{k-2} \qquad \qquad k\geq 2$$

$$\mathbf{u}_0 = \mathbf{u}_1 = \mathbf{1}.$$



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione2

ullet Soluzione elementare tipo \mathbf{z}^k :

$$cz^k = cz^{k-1} + cz^{k-2}$$

$${f z}^2 - {f z} - 1 = 0$$
 ${f z}_{1,2} = (1 \pm \sqrt{5})/2$

quindi in generale vale:

$$u_k = c_1 \mathbf{z}_1^k + c_2 \mathbf{z}_2^k$$

con c_1,c_2 determinate dalle condizioni iniziali per $k=0,\ 1.$ Infine si ha

$$\mathrm{u_k} = rac{1+\sqrt{5}}{2\sqrt{5}}\left(rac{1+\sqrt{5}}{2}
ight)^\mathrm{k} + rac{-1+\sqrt{5}}{2\sqrt{5}}\left(rac{1-\sqrt{5}}{2}
ight)^\mathrm{k}$$

Andamento divergente, dunque sistema instabile.

 Se almeno una delle radici della equazione caratteristica ha modulo maggiore di uno, la corrispondente equazione alle differenze è instabile, cioè la sua soluzione divergerà al crescere del tempo per condizione iniziale finita

• Se **tutte** le radici dell'equazione caratteristica sono **entro** in cerchio unitario, allora la corrispondente equazione alle differenze è **stabile**, cioè la sua soluzione convergerà a zero al crescere del tempo per ogni condizione iniziale finita

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione2

• Sia data una sequenza di valori $x_k \in \Re$, definita per $k=0,1,2,\ldots$ e nulla per k<0. La \mathcal{Z} -trasformata (unilatera) della sequenza x_k è la funzione di variabile complessa z definita come

$$\begin{array}{rcl} \mathbf{X}(\mathbf{z}) = \mathcal{Z}[\mathbf{x}_k] & = & \mathbf{x}_0 + \mathbf{x}_1 \, \mathbf{z}^{-1} + \dots + \mathbf{x}_k \, \mathbf{z}^{-k} + \dots \\ & = & \sum_{k=0}^{\infty} \mathbf{x}_k \mathbf{z}^{-k} \end{array}$$

Nel caso in cui la sequenza di valori \mathbf{x}_k sia ottenuta campionando uniformemente con periodo \mathbf{T} un segnale continuo descritto dalla funzione $\mathbf{x}(\mathbf{t}),\,\mathbf{t}\geq \mathbf{0}$, si avrà che $\mathbf{x}_k=\mathbf{x}(\mathbf{k}\mathbf{T})$:

$$\mathbf{X}(\mathbf{z}) = \sum_{k=0}^{\infty} \mathbf{x}(k) \mathbf{z}^{-k}$$

L'espressione estesa

$$X(z) = x(0) + x(T)\,z^{-1} + x(2\,T)\,z^{-2} + \dots + x(k\,T)\,z^{-k} + \dots$$

implica la specificazione del **parametro periodo di campionamento** T, da cui dipendono i valori dei campioni della sequenza, cioè i coefficienti della serie.

• Si usa:

$$X(z) = \mathcal{Z}[X(s)]$$

intendendo:

$$\mathbf{X}(\mathbf{z}) = \mathcal{Z} \Big[\Big\{ \mathcal{L}^{-1}[\mathbf{X}(\mathbf{s})] \Big|_{\mathbf{t} = kT} \Big\} \Big]$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione2

ullet Nelle applicazioni ingegneristiche la funzione $\mathbf{X}(\mathbf{z})$ assume in generale una espressione **razionale** fratta del tipo

$$\mathbf{X}(\mathbf{z}) = rac{\mathbf{b}_0 \, \mathbf{z}^{\mathrm{m}} + \mathbf{b}_1 \, \mathbf{z}^{\mathrm{m}-1} + \dots + \mathbf{b}_{\mathrm{m}}}{\mathbf{z}^{\mathrm{n}} + \mathbf{a}_1 \, \mathbf{z}^{\mathrm{n}-1} + \dots + \mathbf{a}_{\mathrm{n}}}$$

che si può esprimere anche in potenze di z^{-1} :

$$\begin{split} X(z) &=& \frac{z^n \left(b_0 \, z^{-(n-m)} + b_1 \, z^{-(n-m+1)} + \cdots + b_m \, z^{-n}\right)}{z^n \left(1 + a_1 \, z^{-1} + \cdots + a_n z^{-n}\right)} \\ \\ &=& \frac{b_0 \, z^{-(n-m)} + b_1 \, z^{-(n-m+1)} + \cdots + b_m \, z^{-n}}{1 + a_1 \, z^{-1} + \cdots + a_n z^{-n}} \end{split}$$

• Esempio:

$$X(z) = \frac{z(z+0.5)}{(z+1)(z+2)} = \frac{1+0.5\,z^{-1}}{(1+z^{-1})(1+2\,z^{-1})}$$

• Impulso discreto unitario, detta anche funzione di Kronecker $\delta_0(\mathbf{t})$:

$$\mathbf{x}(\mathbf{t}) = \left\{ egin{array}{ll} 1 & \mathbf{t} = 0 \ 0 & \mathbf{t}
eq 0 \end{array}
ight.$$

da cui:

$$\begin{split} \mathbf{X}(\mathbf{z}) &= & \mathcal{Z}[\mathbf{x}(\mathbf{t})] = \sum_{k=0}^{\infty} \mathbf{x}(kT)\mathbf{z}^{-k} \\ &= & 1 + 0\mathbf{z}^{-1} + 0\mathbf{z}^{-2} + 0\mathbf{z}^{-3} + \dots = 1 \end{split}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione2

• Gradino unitario: Sia data la funzione gradino unitario

$$\mathbf{x}(\mathbf{t}) = \mathbf{h}(\mathbf{t}) = \left\{ egin{array}{ll} 1 & & \mathbf{t} \geq 0 \ 0 & & \mathbf{t} < 0 \end{array}
ight.$$

La funzione h(k) definita come

$$h(k) = \left\{ \begin{array}{ll} 1 & \quad k = 0, 1, 2, \dots \\ 0 & \quad k < 0 \end{array} \right.$$

è detta **sequenza unitaria**. Si ha che

$$\begin{split} H(z) &=& \mathcal{Z}[h(t)] = \sum_{k=0}^{\infty} h(kT)z^{-k} = \sum_{k=0}^{\infty} z^{-k} \\ &=& 1 + z^{-1} + z^{-2} + z^{-3} + \cdots \\ &=& \frac{1}{1 - z^{-1}} = \frac{z}{z - 1} \end{split}$$

La serie è convergente per $|\mathbf{z}| > 1$.

• Rampa unitaria. Si consideri la funzione rampa unitaria:

$$\mathbf{x}(\mathbf{t}) = \left\{ egin{array}{ll} \mathbf{t} & \mathbf{t} \geq \mathbf{0} \ \mathbf{0} & \mathbf{t} < \mathbf{0} \end{array}
ight.$$

Poichè $\mathbf{x}(\mathbf{kT}) = \mathbf{kT}, \ \mathbf{k} = 0, 1, 2, \ldots$, la \mathcal{Z} -trasformata è

$$\begin{split} \mathbf{X}(\mathbf{z}) &=& \mathcal{Z}[\mathbf{t}] = \sum_{k=0}^{\infty} \mathbf{x}(kT)\mathbf{z}^{-k} = T \sum_{k=0}^{\infty} k\mathbf{z}^{-k} \\ &=& \mathbf{T}(\mathbf{z}^{-1} + 2\mathbf{z}^{-2} + 3\mathbf{z}^{-3} + \cdots) \\ &=& \mathbf{T}\mathbf{z}^{-1}(1 + 2\mathbf{z}^{-1} + 3\mathbf{z}^{-2} + \cdots) \\ &=& \mathbf{T}\frac{\mathbf{z}^{-1}}{(1 - \mathbf{z}^{-1})^2} = \mathbf{T}\frac{\mathbf{z}}{(\mathbf{z} - \mathbf{1})^2} \end{split}$$

convergente per $|\mathbf{z}| > 1$.

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione2

• Funzione potenza ak. Sia data la funzione

$$x(k) = \left\{ \begin{array}{ll} a^k & \quad k = 0, 1, 2, \dots \\ 0 & \quad k < 0 \end{array} \right.$$

con a costante reale o complessa. Dalla definizione di ${\mathcal Z}$ -trasformata si ha che

$$\begin{split} \mathbf{X}(\mathbf{z}) &= & \mathcal{Z} \Big[\mathbf{a}^{k} \Big] = \sum_{k=0}^{\infty} \mathbf{x}(k) \mathbf{z}^{-k} = \sum_{k=0}^{\infty} \mathbf{a}^{k} \mathbf{z}^{-k} \\ &= & 1 + \mathbf{a} \, \mathbf{z}^{-1} + \mathbf{a}^{2} \, \mathbf{z}^{-2} + \mathbf{a}^{3} \, \mathbf{z}^{-3} + \cdots \\ &= & \frac{1}{1 - \mathbf{a} \, \mathbf{z}^{-1}} = \frac{\mathbf{z}}{\mathbf{z} - \mathbf{a}} \end{split}$$

Questa serie geometrica converge per $|\mathbf{z}|>|\mathbf{a}|$.

• Funzione esponenziale. Sia data la funzione

$$\mathbf{x}(t) = \left\{ egin{array}{ll} \mathbf{e}^{-at} & & t \geq 0 \ 0 & & t < 0 \end{array}
ight.$$

dove a è una costante reale o complessa. Poichè $x(kT)=e^{-akT}, k=0,1,2,\ldots$, si ha

$$\begin{split} \mathbf{X}(\mathbf{z}) &= & \mathcal{Z}\Big[e^{-at}\Big] = \sum_{k=0}^{\infty} e^{-akT}\mathbf{z}^{-k} \\ &= & 1 + e^{-aT}\,\mathbf{z}^{-1} + e^{-2aT}\,\mathbf{z}^{-2} + e^{-3aT}\,\mathbf{z}^{-3} + \cdots \\ &= & \frac{1}{1 - e^{-aT}\,\mathbf{z}^{-1}} = \frac{\mathbf{z}}{\mathbf{z} - e^{-aT}} \end{split}$$

che converge per $|\mathbf{z}| > e^{-Re(a)T}.$ Si noti che per a=0 si ha il gradino unitario.

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione3

lezione 3

Trasformata \mathcal{Z}

- Esempio: $X(s) = \frac{1}{s(s+1)}$
- ullet Calcolare $\mathbf{X}(\mathbf{z}) = \mathcal{Z}[\mathbf{X}(\mathbf{s})]$
- ullet Prima tecnica: $\mathbf{x}(\mathbf{t}) = \mathbf{1} \mathbf{e}^{-\mathbf{t}}$

$$\begin{split} \mathbf{X}(\mathbf{z}) &=& \mathcal{Z} \Big[\mathbf{1} - \mathbf{e}^{-t} \Big] = \frac{1}{1 - \mathbf{z}^{-1}} - \frac{1}{1 - \mathbf{e}^{-T} \mathbf{z}^{-1}} \\ &=& \frac{(1 - \mathbf{e}^{-T}) \mathbf{z}^{-1}}{(1 - \mathbf{z}^{-1})(1 - \mathbf{e}^{-T} \mathbf{z}^{-1})} = \frac{(1 - \mathbf{e}^{-T}) \mathbf{z}}{(\mathbf{z} - 1)(\mathbf{z} - \mathbf{e}^{-T})} \end{split}$$

• Seconda tecnica:

$$\begin{split} \mathbf{X}(\mathbf{s}) &= \frac{1}{\mathbf{s}(\mathbf{s}+1)} = \frac{1}{\mathbf{s}} - \frac{1}{1+\mathbf{s}} \\ \mathbf{X}(\mathbf{z}) &= \frac{1}{1-\mathbf{z}^{-1}} - \frac{1}{1-\mathbf{e}^{-T}\mathbf{z}^{-1}} \end{split}$$

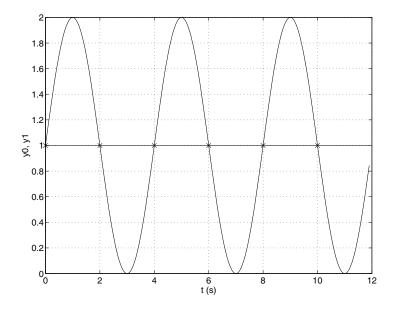
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione3

- ullet La \mathcal{Z} -trasformata $\mathbf{X}(\mathbf{z})$ e la sua sequenza corrispondente $\mathbf{x}(\mathbf{k})$ sono legate da una corrispondenza univoca
- \bullet Questo non avviene in genere tra la $\mathcal{Z}\text{-trasformata }\mathbf{X}(\mathbf{z})$ e la sua "inversa" $\mathbf{x}(\mathbf{t})$
- $\bullet~$ Data una $\mathbf{X}(\mathbf{z})$ si possono in genere avere molte $\mathbf{x}(t)$
- ullet Questa ambiguità **non** sussiste se sono verificate le condizioni restrittive su ${f T}$ dettate dal **Teorema di Shannon**

ullet Diverse funzioni tempo continuo possono avere gli stessi valori $\mathbf{x}(\mathbf{k})$



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione3

PROPRIETÀ E TEOREMI DELLA Z-TRASFORMATA

Linearità:

$$x(k) = af(k) + bg(k)$$
$$X(z) = aF(z) + bG(z)$$

• Moltiplicazione per ${f a}^k$. Sia ${f X}({f z})$ la ${\cal Z}$ -trasformata di ${f x}({f t})$, ${f a}$ una costante.

$$\mathcal{Z}\Big[a^kx(k)\Big]=X(a^{-1}z)$$

$$\begin{split} \mathcal{Z}\Big[a^kx(k)\Big] &= &\sum_{k=0}^{\infty}a^kx(k)z^{-k} = \sum_{k=0}^{\infty}x(k)(a^{-1}z)^{-k} \\ &= &X(a^{-1}z) \end{split}$$

 \bullet Teorema della traslazione nel tempo. Se $x(t)=0, t<0, \ X(z)=\mathcal{Z}[x(t)],$ e $n=1,2,\ldots$, allora

$$\mathcal{Z}[x(t-nT)] = z^{-n}X(z)$$
 (ritardo)

$$\mathcal{Z}[x(t+nT)] = z^n \left[X(z) - \sum_{k=0}^{n-1} x(kT)z^{-k} \right] \tag{anticipo}$$

Operativamente:

$$z^{-1}x(k) = x(k-1)$$

 $z^{-2}x(k) = x(k-2)$
 $z x(k) = x(k+1)$

e così via.

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione3 3

Caso di ritardo:

$$\begin{split} \mathcal{Z}[\mathbf{x}(\mathbf{t} - \mathbf{nT})] &= \sum_{k=0}^{\infty} \mathbf{x}(\mathbf{kT} - \mathbf{nT})\mathbf{z}^{-k} \\ &= \mathbf{z}^{-n} \sum_{k=0}^{\infty} \mathbf{x}(\mathbf{kT} - \mathbf{nT})\mathbf{z}^{-(k-n)} \end{split}$$

da cui, ponendo m = k - n,

$$\mathcal{Z}[x(t-nT)] = z^{-n} \sum_{m=-n}^{\infty} x(mT)z^{-m}$$

Poichè x(mT)=0 per m<0, allora si può scrivere che

$$\mathcal{Z}[x(t-nT)] = z^{-n} \sum_{m=0}^{\infty} x(mT) z^{-m} = z^{-n} X(z)$$

• Caso dell'anticipo:

$$\mathcal{Z}[\mathbf{x}(\mathbf{t} + \mathbf{nT})] =$$

$$\begin{split} &= & \sum_{k=0}^{\infty} x(kT+nT)z^{-k} = z^n \sum_{k=0}^{\infty} x(kT+nT)z^{-(k+n)} \\ &= & z^n \left[\sum_{k=0}^{\infty} x(kT+nT)z^{-(k+n)} + \sum_{k=0}^{n-1} x(kT)z^{-k} \right. \\ &\left. - \sum_{k=0}^{n-1} x(kT)z^{-k} \right] \\ &= & z^n \left[\sum_{k=0}^{\infty} x(kT)z^{-k} - \sum_{k=0}^{n-1} x(kT)z^{-k} \right] \\ &= & z^n \left[X(z) - \sum_{k=0}^{n-1} x(kT)z^{-k} \right] \end{split}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione3

Teorema del valore iniziale.

Se X(z) è la \mathcal{Z} -trasformata di x(t) e se esiste il $\lim_{z\to\infty} X(z)$, allora il valore iniziale x(0) di x(t) è dato da:

$$\mathbf{x}(\mathbf{0}) = \lim_{\mathbf{z} \to \infty} \mathbf{X}(\mathbf{z})$$

Infatti, si noti che

$$X(z) = \sum_{k=0}^{\infty} x(k)z^{-k} = x(0) + x(1)z^{-1} + x(2)z^{-2} + \cdots$$

• Teorema del valore finale. Siano tutti i poli di X(z) all'interno del cerchio unitario, con al più un polo semplice per z=1.

$$\lim_{k \to \infty} \mathbf{x}(k) = \lim_{\mathbf{z} \to 1} \left[(1 - \mathbf{z}^{-1}) \mathbf{X}(\mathbf{z}) \right]$$

Infatti

$$\begin{split} \sum_{k=0}^{\infty} x(k) z^{-k} - \sum_{k=0}^{\infty} x(k-1) z^{-k} &= X(z) - z^{-1} X(z) \\ \lim_{z \to 1} \left[\sum_{k=0}^{\infty} x(k) z^{-k} - \sum_{k=0}^{\infty} x(k-1) z^{-k} \right] &= \\ &= \sum_{k=0}^{\infty} \left[x(k) - x(k-1) \right] \\ &= \left[x(0) - x(-1) \right] + \left[x(1) - x(0) \right] + \left[x(2) - x(1) \right] + \cdots \\ &= \lim_{k \to \infty} x(k) \end{split}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione3 34

• Esempio: Si consideri il segnale descritto da

$$\mathbf{X}(\mathbf{z}) = \frac{\mathbf{T}\mathbf{z}(\mathbf{z}+1)}{2(\mathbf{z}-0.5)(\mathbf{z}-1)}$$

Il valore finale della sequenza x(kT) è quindi dato da

$$\begin{array}{lcl} \lim_{k \to \infty} x(kT) & = & \lim_{z \to 1} (1-z^{-1}) \frac{Tz(z+1)}{2(z-0.5)(z-1)} \\ \\ & = & \lim_{z \to 1} \frac{T(z+1)}{2(z-0.5)} \\ \\ & = & 2T \end{array}$$

 \bullet Teorema della convoluzione reale. Siano date due funzioni $x_1(t)$ e $x_2(t)$, con $x_1(t)=x_2(t)=0,\ t<0$ e \mathcal{Z} -trasformate $X_1(z),X_2(z).$ Allora

$$X_1(\mathbf{z})X_2(\mathbf{z}) = \mathcal{Z}\left[\sum_{h=0}^k x_1(hT)x_2(kT-hT)\right]$$

Per la dimostrazione, si noti che

$$\begin{split} \mathcal{Z} \left[\sum_{h=0}^k x_1(h) x_2(k-h) \right] &= \sum_{k=0}^\infty \sum_{h=0}^k x_1(h) x_2(k-h) z^{-k} \\ &= \sum_{k=0}^\infty \sum_{h=0}^\infty x_1(h) x_2(k-h) z^{-k} \end{split}$$

poichè $\mathbf{x}_2(\mathbf{k}-\mathbf{h})=\mathbf{0},\ \mathbf{h}>\mathbf{k}$. Definendo $\mathbf{m}=\mathbf{k}-\mathbf{h}$ si ha

$$\mathcal{Z}\!\left[\sum_{h=0}^k x_1(h)x_2(k-h)\right] = \sum_{h=0}^\infty x_1(h)z^{-h}\sum_{m=0}^\infty x_2(m)z^{-m}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione4

Lezione 4

Antitrasformata \mathcal{Z}

• L'ANTITRASFORMATA $\mathcal Z$

• Permette di passare da una \mathcal{Z} -trasformata $\mathbf{X}(\mathbf{z})$ alla corrispondente sequenza \mathbf{x}_k e possibilmente alla funzione continua $\mathbf{x}(t)$ cui corrisponde per campionamento la sequenza \mathbf{x}_k .

• Se è soddisfatto il **Teorema di Shannon** sul campionamento, la funzione continua $\mathbf{x}(\mathbf{t})$ può essere univocamente determinata a partire dalla sequenza \mathbf{x}_k .

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione4 38

- ullet Diversi **metodi per antitrasformare** una funzione $\mathbf{X}(\mathbf{z})$:
 - 1) Metodo della lunga divisione;
 - 2) Metodo computazionale;
 - 3) Metodo della scomposizione in fratti semplici;
 - 4) Metodo dell'integrale di inversione.

• Metodo della scomposizione in fratti semplici

$$X(z) = \frac{b_0z^m + b_1z^{m-1} + \cdots + b_{m-1}z + b_m}{(z-p_1)(z-p_2)\cdots(z-p_n)}$$

• Caso 1. Se tutti i poli sono semplici, si pone

$$X(z) = \frac{c_1}{z-p_1} + \frac{c_2}{z-p_2} + \cdots + \frac{c_n}{z-p_n} = \sum_{i=1}^n \frac{c_i}{z-p_i}$$

dove i coefficienti $\mathbf{c_i}$, detti "residui", sono parametri che vengono calcolati come:

$$\mathbf{c}_i = \left[(\mathbf{z} - \mathbf{p}_i) \mathbf{X}(\mathbf{z}) \right]_{\mathbf{z} = \mathbf{p}_i}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione4 4

ullet Se nella espressione di ${f X}({f z})$ compare almeno **uno zero nell'origine**, si utilizza la funzione ${f X}({f z})/{f z}$ e quindi

$$\frac{X(z)}{z} = \frac{c_1}{z-p_1} + \dots + \frac{c_n}{z-p_n} \qquad \quad c_i = \left[(z-p_i)\frac{X(z)}{z}\right]_{z=p_i}$$

Quando sono presenti **poli complessi coniugati**, i coefficienti $\mathbf{c_i}$ sono anch'essi complessi. In questo caso si ricorre alle formule di Eulero per ottenere funzioni trigonometriche. L'espressione finale cercata è quindi

$$x(k) = \sum_{i=1}^n c_i p_i^k$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

• Caso 2. Se X(z), o X(z)/z, ha poli multipli

$$\mathbf{X}(\mathbf{z}) = rac{\mathbf{B}(\mathbf{z})}{\mathbf{A}(\mathbf{z})} = rac{\mathbf{b_0}\mathbf{z^m} + \mathbf{b_1}\mathbf{z^{m-1}} + \dots + \mathbf{b_{m-1}}\mathbf{z} + \mathbf{b_m}}{(\mathbf{z} - \mathbf{p_1})^{r_1}(\mathbf{z} - \mathbf{p_2})^{r_2} \dots (\mathbf{z} - \mathbf{p_h})^{r_h}}$$

allora si può porre

$$X(z) = \sum_{i=1}^h \sum_{k=1}^{r_i} \frac{c_{ik}}{(z-p_i)^{r_i-k+1}}$$

dove i residui si calcolano come

$$\begin{split} c_{ik} &= \left[\frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} (z-p_i)^{r_i} X(z) \right]_{z=p_i} \\ & i = 1, \dots, h; \ k = 1, \dots, r_i \end{split}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione4 42

• Esempio. Antitrasformare la funzione

$$\mathbf{X}(\mathbf{z}) = rac{1}{\mathbf{z}^4 + 6\mathbf{z}^3 + 13\mathbf{z}^2 + 12\mathbf{z} + 4} = rac{1}{(\mathbf{z} + 2)^2(\mathbf{z} + 1)^2}$$

Si ha che

$$egin{aligned} X(z) &= rac{c_{11}}{(z+2)^2} + rac{c_{12}}{(z+2)} + rac{c_{21}}{(z+1)^2} + rac{c_{22}}{(z+1)} \ & \\ c_{11} &= & [(z+2)^2 X(z)]|_{z=-2} = 1 \ & \\ c_{12} &= & \left[rac{d}{dz}(z+2)^2 X(z)
ight]_{z=-2} = 2 \ & \\ c_{21} &= & \left[(z+1)^2 X(z)
ight]_{z=-1} = 1 \ & \\ c_{22} &= & \left[rac{d}{dz}(z+1)^2 X(z)
ight]_{z=-1} = -2 \end{aligned}$$

Lezione 5

Il Problema del Campionamento

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione5

- I sistemi in retroazione con controllo digitale sono caratterizzati da una **parte continua** (il processo da controllare) e una **parte discreta** (il controllore digitale)
- Sono quindi presenti sia variabili a tempo discreto sia variabili a tempo continuo
- I dispositivi di interfaccia sono il campionatore e il ricostruttore

Ricostruttore di ordine zero:

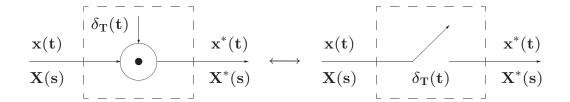
$$\begin{split} x_r(t) &= \sum_{k=0}^\infty x(kT)[h(t-kT) - h(t-(k+1)T)] \\ X_r(s) &= \sum_{k=0}^\infty x(kT) \left[\frac{e^{-kTs} - e^{-(k+1)Ts}}{s}\right] \\ &= \frac{1 - e^{-Ts}}{s} \sum_{k=0}^\infty x(kT) e^{-kTs} \end{split}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione5

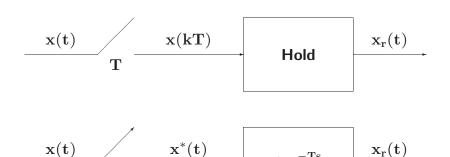
$$\begin{split} H_0(s) &= \frac{1-e^{-Ts}}{s} \qquad X^*(s) = \sum_{k=0}^\infty x(kT) e^{-kTs} \\ x^*(t) &= \mathcal{L}^{-1} \big[X^*(s) \big] = \sum_{k=0}^\infty x(kT) \delta(t-kT) \end{split}$$



• Il campionatore impulsivo è un modello ideale del campionatore reale (convertitore A/D) considerato adeguato alle esigenze di analisi e progetto dei controlli digitali

• L'uscita del ricostruttore di ordine zero vale:

$$X_r(s) = H_0(s) \, X^*(s) = \frac{1 - e^{-Ts}}{s} \, X^*(s)$$



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione5

$$\begin{split} \mathbf{X}^*(\mathbf{s}) &= \sum_{k=0}^{\infty} \mathbf{x}(k\mathbf{T}) e^{-kT\mathbf{s}} \\ \mathbf{z} &= e^{\mathbf{s}T} &\longleftrightarrow \mathbf{s} = \frac{1}{T} \ln \mathbf{z} \\ \mathbf{X}^*(\mathbf{s}) \big|_{\mathbf{s} = \frac{1}{T} \ln \mathbf{z}} &= \sum_{k=0}^{\infty} \mathbf{x}(k\mathbf{T}) \, \mathbf{z}^{-k} \end{split}$$

• La trasformata zeta della sequenza $\mathbf{x}(\mathbf{kT})$ anzichè la trasformata di Laplace del segnale $\mathbf{x}^*(\mathbf{t})$ permette di operare con funzioni razionali fratte.

$$\begin{array}{lll} x^*(t) & = & x(t)\,\delta_T(t) = x(t)\sum_{n=-\infty}^\infty \delta(t-nT) \\ \\ \delta_T(t) & = & \sum_{n=-\infty}^\infty c_n\,e^{j\,n\omega_S t} \\ \\ c_n & = & \frac{1}{T}\int_0^T \delta_T(t)\,e^{-j\,n\omega_S t}dt = \frac{1}{T} \\ \\ x^*(t) & = & x(t)\,\frac{1}{T}\sum_{n=-\infty}^\infty e^{j\,n\omega_S t} \\ \\ & = & \frac{1}{T}\sum_{n=-\infty}^\infty x(t)\,e^{j\,n\omega_S t} \end{array}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

ne segue

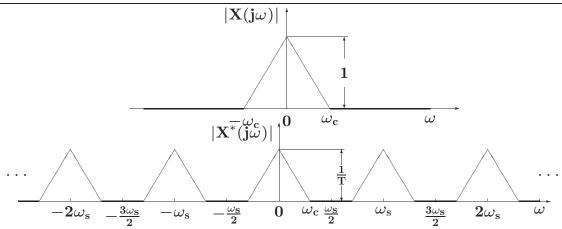
Sistemi di Controllo Digitale

Silvio Simani - Lezione5 5

$$X^*(s) = rac{1}{T} \sum_{n=-\infty}^{\infty} \mathcal{L} \Big[x(t) \, e^{j \, n \omega_S t} \Big] = rac{1}{T} \sum_{n=-\infty}^{\infty} X(s - j \, n \omega_s)$$

- A meno della costante moltiplicativa 1/T, la trasformata di Laplace $X^*(s)$ del segnale campionato si ottiene dalla somma degli infiniti termini, $X(s \mathbf{j} n\omega_s)$, ciascuno dei quali si ottiene dalla X(s) mediante traslazione di $\mathbf{j} n\omega_s$ nel campo complesso.
- L'andamento spettrale del segnale campionato vale:

$$\mathbf{X}^*(\mathbf{j}\omega) = rac{1}{\mathrm{T}}\sum_{\mathrm{n}=-\infty}^{\infty}\mathbf{X}(\mathbf{j}\omega - \mathbf{j}\,\mathrm{n}\omega_\mathrm{s})$$



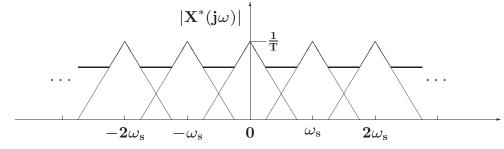
• La condizione $\omega_s > 2\omega_c$ mantiene distinto lo spettro originario dalle componenti complementari per cui, mediante filtraggio, è possibile ricostruire completamente il segnale x(t)

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione5

• Nel caso in cui la condizione $\omega_{
m s}>2\omega_{
m c}$ non è rispettata:



• Lo spettro originario è parzialmente sovrapposto alle componenti complementari contigue per cui mediante filtraggio non è più possibile ricavare il segnale originario a partire dal segnale campionato

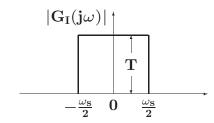
• Teorema di Shannon

Sia $\omega_s = \frac{2\pi}{T}$ la pulsazione di campionamento (T è il periodo di campionamento), e sia ω_c la più alta componente spettrale del segnale tempo-continuo x(t). Il segnale x(t) è completamente ricostruibile a partire dal segnale campionato $x^*(t)$ se e solo se la pulsazione ω_s è maggiore del doppio della pulsazione ω_c :

$$\omega_{\rm s} > 2\omega_{\rm c}$$

Ricostruzione mediante filtro ideale

$$\mathbf{G_I(j\omega)} = \left\{egin{array}{ll} \mathbf{T} & -rac{\omega_s}{2} \leq \omega \leq rac{\omega_s}{2} \ 0 & ext{altrove} \end{array}
ight.$$



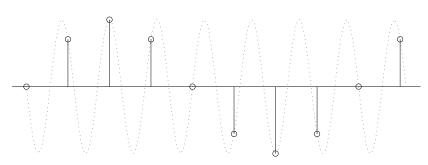
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione5

- **Aliasing**: Con il termine **aliasing** si indica quel fenomeno per il quale, mediante campionamento, si generano delle nuove componenti spettrali (armoniche) alla stessa frequenza della componente spettrale di partenza che impediscono la corretta ricostruzione del segnale di partenza.
- Si può avere aliasing solo nel caso in cui la condizione $\omega_{\rm s}>2\omega_{\rm c}$ del teorema di Shannon non sia verificata





• Per evitare fenomeni di aliasing si deve provvedere ad introdurre un opportuno filtraggio passa-basso **prima** del campionatore.

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

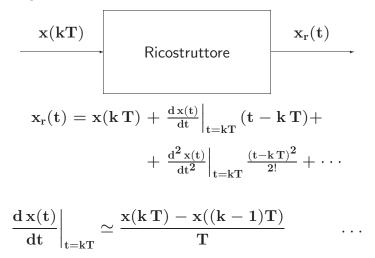
Sistemi di Controllo Digitale

Silvio Simani - Lezione6 5

Lezione 6

Ricostruttori di Segnale - Relazione tra Piano \boldsymbol{s} e Piano \boldsymbol{z}

• Tipici ricostruttori di segnale



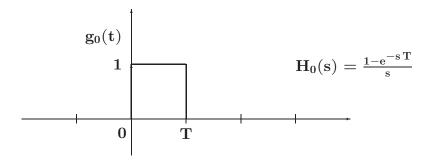
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione6 5

• Ricostruttore di ordine zero

$$x_0(t) = x(k\,T) \qquad \qquad k\,T \le t < (k+1)T$$



• La risposta frequenziale del ricostruttore di ordine zero:

$$\begin{split} \mathbf{H}_0(\mathbf{j}\omega) &= \tfrac{1-\mathrm{e}^{-\mathrm{j}\omega T}}{\mathrm{j}\omega} = \tfrac{2\,\mathrm{e}^{-\mathrm{j}\omega T/2}}{\omega} \ \ \tfrac{\mathrm{e}^{\mathrm{j}\omega T/2}-\mathrm{e}^{-\mathrm{j}\omega T/2}}{2\mathrm{j}} \\ &= T\tfrac{\sin(\omega T/2)}{\omega T/2}\,\mathrm{e}^{-\mathrm{j}\omega T/2} \end{split}$$

Modulo

$$|\mathrm{H}_0(\mathrm{f j}\omega)|=\mathrm{T}\left|rac{\sin(\omega\mathrm{T}/2)}{\omega\mathrm{T}/2}
ight|$$

Fase

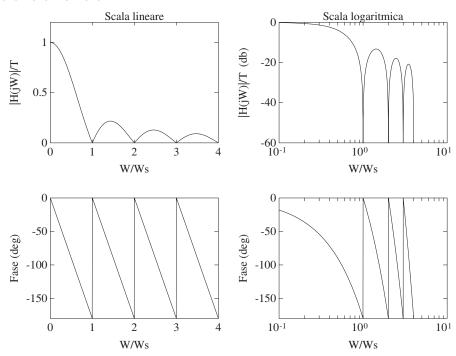
$$\mathbf{Arg}\left[H_0(\mathbf{j}\omega)\right] = \mathbf{Arg}\left[\sin\frac{\omega T}{2}\right] - \frac{\omega T}{2}$$

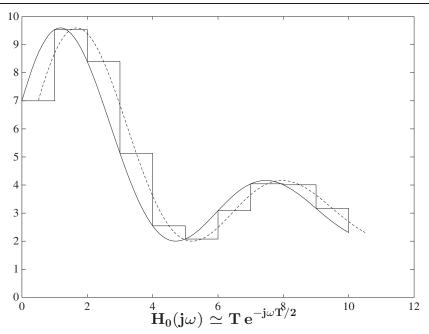
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione6 60

Ricostruttore di ordine zero





Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione6

• Corrispondenza tra piano s e piano z

$$\mathbf{X}^*(\mathbf{s}) = \mathbf{X}(\mathbf{z})|_{\mathbf{z} = \mathbf{e}^{\mathbf{S}T}}$$

• Le variabili complesse s e z sono legate dalla relazione

$$z = e^{sT}$$

ullet Posto $\mathbf{s}=\sigma+\mathbf{j}\omega$ si ha

$$\mathbf{z} = \mathbf{e}^{\mathbf{T}(\sigma + \mathbf{j}\omega)} = \mathbf{e}^{\mathbf{T}\sigma}\mathbf{e}^{\mathbf{j}\mathbf{T}\omega} = \mathbf{e}^{\mathbf{T}\sigma}\mathbf{e}^{\mathbf{j}\mathbf{T}(\omega + \frac{2\mathbf{k}\pi}{\mathbf{T}})}$$

ullet Ogni punto del piano z è in corrispondenza con infiniti punti del piano s

• I punti del piano s a parte reale negativa ($\sigma < 0$) sono in corrispondenza con i punti del piano z all'interno del cerchio unitario:

$$|\mathbf{z}| = \mathrm{e}^{\mathrm{T}\sigma} < 1$$

- I punti sull'asse immaginario ($\sigma = 0$) vengono mappati sul cerchio unitario ($|\mathbf{z}| = 1$), mentre quelli a parte reale positiva ($\sigma > 0$) vengono mappati all'esterno del cerchio unitario ($|\mathbf{z}| > 1$).
- La striscia di piano s delimitata dalle rette orizzontali $s=j\omega_s/2$ e $s=-j\omega_s/2$ prende il nome di **striscia primaria**

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

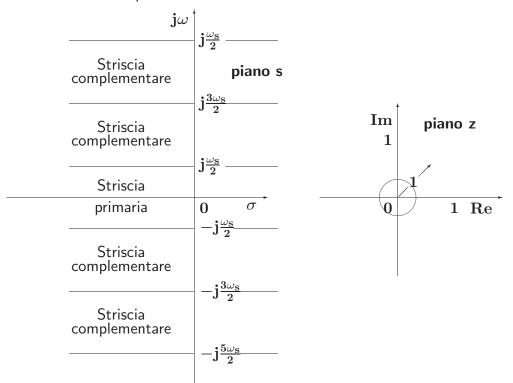
Sistemi di Controllo Digitale

Silvio Simani - Lezione7 64

Lezione 7

Funzioni di Trasferimento Discrete

• Striscia primaria e Strisce complementari



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione7

66

ullet Le variabili complesse ${f s}$ e ${f z}$ sono legate dalla relazione

$$\mathbf{z} = \mathbf{e}^{sT}$$

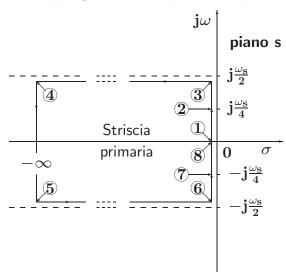
• Posto $\mathbf{s} = \sigma + \mathbf{j}\omega$ si ha

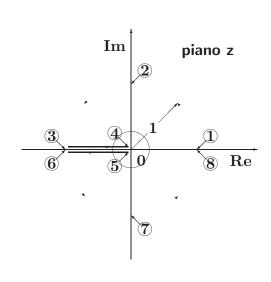
$$\mathbf{z} = \mathbf{e}^{\mathbf{T}(\sigma + \mathbf{j}\omega)} = \mathbf{e}^{\mathbf{T}\sigma}\mathbf{e}^{\mathbf{j}\mathbf{T}\omega}$$

dove

$$0 \le \omega \le rac{\omega_{
m s}}{2} = rac{\pi}{
m T}$$

• Mapping tra striscia primaria e piano z





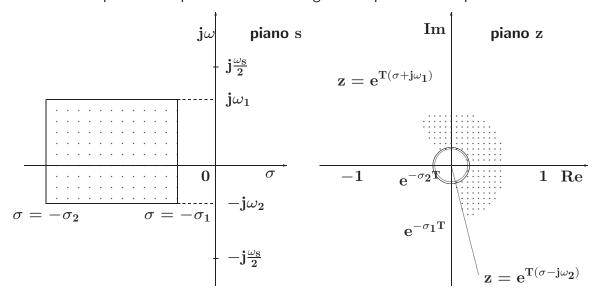
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

68

Silvio Simani - Lezione7

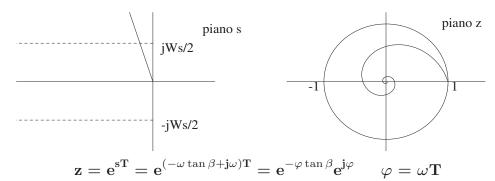
ullet Un esempio di corrispondenza fra due regioni del piano ${\bf s}$ e del piano ${\bf z}$



ullet Luogo dei punti a coefficiente di smorzamento costante $\delta=\delta_1$

$$\mathbf{s} = -\omega \tan \beta + \mathbf{j}\omega = -\omega \frac{\delta}{\sqrt{1 - \delta^2}} + \mathbf{j}\omega$$

 $\beta = \arcsin \delta_1$



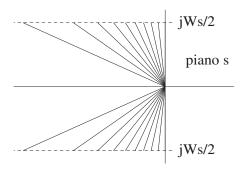
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

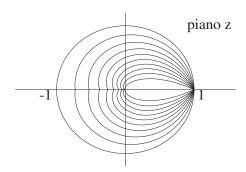
Sistemi di Controllo Digitale

Silvio Simani - Lezione7

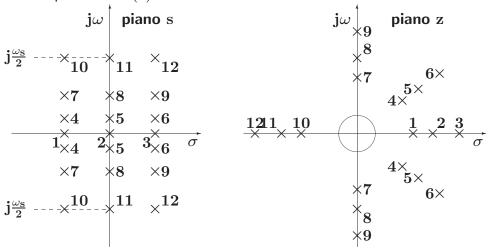
__

 \bullet Luoghi a coefficiente di smorzamento δ costante



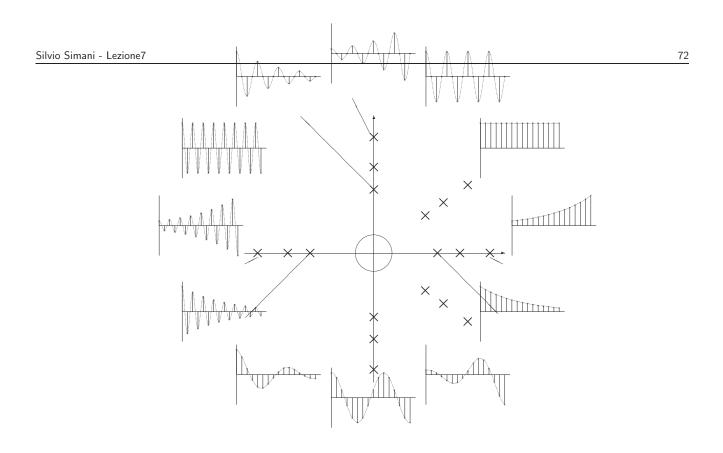


• I punti del piano \mathbf{z} e del piano \mathbf{z} , posti in corrispondenza per mezzo della relazione $\mathbf{z}=\mathbf{e}^{\mathbf{s}T}$, possono essere considerati come poli corrispondenti di trasformate $\mathbf{F}(\mathbf{s})$ ed $\mathbf{F}(\mathbf{z})$, con $\mathbf{F}(\mathbf{z})$ calcolata campionando $\mathbf{F}(\mathbf{s})$



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale



Lezione 8

Composizione di Schemi a Blocchi

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione8 74

Funzione di trasferimento discreta

$$y(kT) = \sum_{h=0}^{\infty} g(kT - hT)x(hT)$$

$$\mathbf{X}(\mathbf{z}) = \mathcal{Z}[\mathbf{x}(\mathbf{kT})] = 1$$

$$\mathbf{Y}(\mathbf{z}) = \mathbf{G}(\mathbf{z})$$

Funzione di Risposta Armonica Discreta

$$G(e^{j\omega T}), \qquad \qquad 0 \le \omega \le \frac{\pi}{T}$$

$$G(e^{j(\omega+k\omega_s)T}) = G(e^{j\omega T}), \qquad G(e^{j(-\omega)T}) = G^*(e^{j\omega T})$$

• La risposta di un sistema G(z) asintoticamente stabile ad un ingresso sinusoidale $\sin(\omega kT)$ di ampiezza unitaria è, a regime, una sinusoide $A\sin(\omega kT + \varphi)$ la cui ampiezza A è data dal modulo del vettore $G(e^{j\omega T})$, e la cui fase φ è data dalla fase del vettore $G(e^{j\omega T})$:

$$\mathbf{A} = |\mathbf{G}(\mathbf{e}^{\mathbf{j}\omega T})| \qquad \quad \varphi = \mathbf{Arg}[\mathbf{G}(\mathbf{e}^{\mathbf{j}\omega T})]$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione8 76

$$\begin{split} \mathbf{X}(\mathbf{z}) &= \mathcal{Z}[\sin(\omega \mathbf{t})] = \frac{\mathbf{z} \sin \omega T}{\mathbf{z}^2 - (2\cos \omega T)\mathbf{z} + 1} \\ &= \frac{1}{2\mathbf{j}} \left(\frac{\mathbf{z}}{\mathbf{z} - \mathbf{e}\mathbf{j}\omega T} - \frac{\mathbf{z}}{\mathbf{z} - \mathbf{e}\mathbf{j}\omega T} \right) \\ \mathbf{Y}(\mathbf{z}) &= \mathbf{G}(\mathbf{z}) \, \mathbf{X}(\mathbf{z}) \\ &= \mathbf{Y}_0(\mathbf{z}) + \frac{|\mathbf{G}(\mathbf{e}^{\mathbf{j}\omega T})|}{2\mathbf{j}} \left(\frac{\mathbf{e}\mathbf{j}(\omega T + \varphi)_{\mathbf{z}}}{\mathbf{z} - \mathbf{e}\mathbf{j}\omega T} - \frac{\mathbf{e}^{-\mathbf{j}(\omega T + \varphi)_{\mathbf{z}}}}{\mathbf{z} - \mathbf{e}^{-\mathbf{j}\omega T}} \right) \end{split}$$

somma di un termine transitorio $Y_0(z)$ che si annulla asintoticamente, corrispondente ai poli stabili di G(z), e un termine sinusoidale di ampiezza $|G(e^{j\omega T})|$ e fase $\varphi = Arg[G(e^{j\omega T})]$.

Lezione 9

Stabilità per Sistemi a Tempo Discreto

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione9 78

Stabilità dei sistemi discreti

$$\frac{\mathbf{Y}(\mathbf{z})}{\mathbf{U}(\mathbf{z})} = \mathbf{G}(\mathbf{z}) = \frac{\mathbf{B}(\mathbf{z})}{\mathbf{A}(\mathbf{z})}$$

- Stabilità semplice
- Stabilità asintotica
- Stabilità ingresso limitato uscita limitata

• Il comportamento dinamico di un sistema

$$\mathbf{G}(\mathbf{z}) = \frac{\mathbf{B}(\mathbf{z})}{\mathbf{A}(\mathbf{z})}$$

dipende dai poli di G(z), cioè dalle radici del polinomio A(z).

Esempio

$$G(z) = \frac{4z^{-1}}{1 + az^{-1}} = \frac{4}{z + a}$$

in risposta a

$$u(0) = 1,$$
 $u(k) = 0,$ $k > 0;$

in corrispondenza ai valori $a=0.75,\; a=-0.75,\; a=1.25,\; a=-1.25,\; a=1,\; a=-1$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione9

$$Y(z)(1+az^{-1})=4z^{-1}U(z)$$

$$y(k) = -ay(k-1) + 4u(k-1)$$

$$y(0) = 0$$

 $y(1) = 4u(0) = 4$

$$y(2) = -ay(1) + 4u(1) = -4a$$

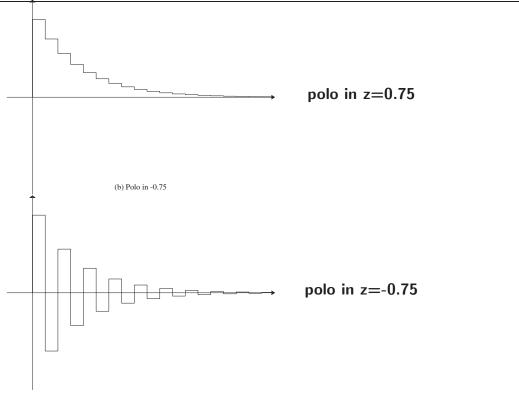
$$y(3) = -ay(2) + 4u(2) = 4a^2$$

$$y(4) = -ay(3) + 4u(3) = -4a^3$$

 $y(5) = -ay(4) + 4u(4) = 4a^4$

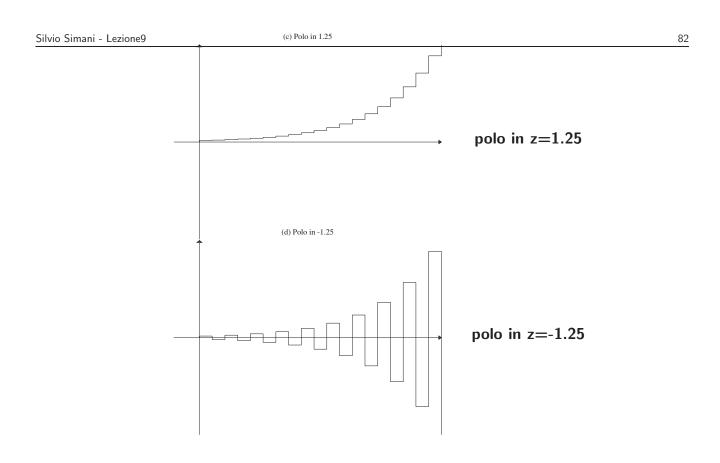
$$y(5) = -ay(4) + 4u(4) = 4a^4$$

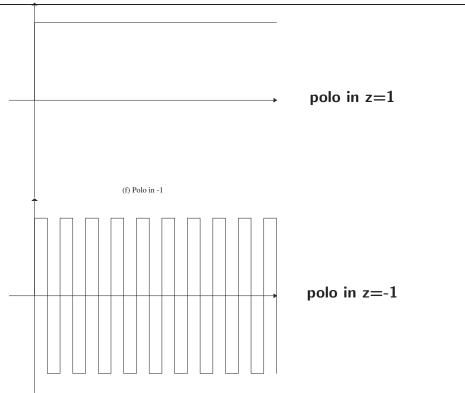
$$y(k) = -ay(k-1) + 4u(k-1) = 4(-a)^{k-1}$$



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

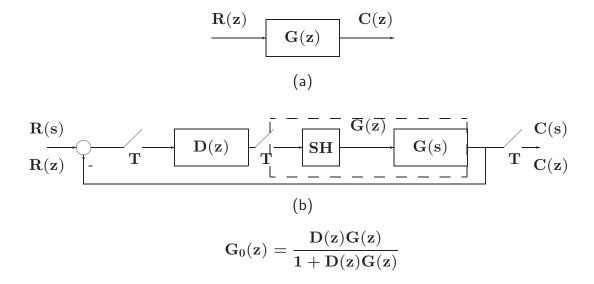




Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione9



Sia dato un sistema descritto da

$$G(z) = \frac{B(z)}{A(z)} \ \text{oppure} \ G_0(z) = \frac{D(z)G(z)}{1 + D(z)G(z)}$$

- Il sistema è asintoticamente stabile se e solo se tutte le radici del polinomio A(z) (o del polinomio 1 + D(z)G(z)), cioè i poli del sistema, sono entro il cerchio di raggio unitario con centro nell'origine del piano z ossia $|p_i| < 1, \forall i$.
- Il sistema è stabile se tutti i poli a modulo unitario $|\mathbf{p_i}| = 1$ sono poli semplici (la loro molteplicità è 1), mentre tutti i rimanenti poli sono entro il cerchio unitario.

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione10

Lezione 10

Stabilità - Luogo delle radici

• Il **Criterio di Nyquist** permette di decidere circa la stabilità di sistemi in retroazione analizzando il comportamento frequenziale della risposta armonica di anello in rapporto al **punto critico** $(-1+\mathbf{j}0)$

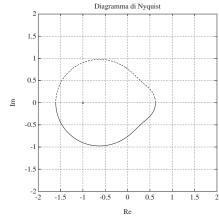
$$\mathbf{G}(\mathbf{e}^{\mathbf{j}\omega\mathbf{T}}), \qquad \qquad -\frac{\pi}{\mathbf{T}} \le \omega \le \frac{\pi}{\mathbf{T}}$$

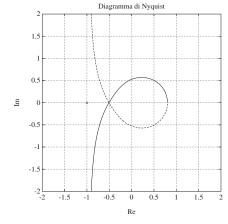
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione10

• Se la G(z) è di tipo 0, allora il diagramma relativo è una curva chiusa; se è di tipo 1 o 2, allora si ha una curva aperta, che viene chiusa con una circonferenza o semicirconferenza all'infinito percorsa in senso orario





• Criterio di Nyquist I

Sia data una funzione di guadagno d'anello G(z) con tutti i poli stabili (a modulo minore di uno), con l'eventuale eccezione di un polo semplice o doppio in z=1. Condizione necessaria e sufficiente perchè il sistema in retroazione sia asintoticamente stabile è che il diagramma polare completo della funzione $G(e^{j\omega T})$ tracciato per $-\pi/T \leq \omega \leq \pi/T$ non circondi nè tocchi il punto critico -1+j0

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

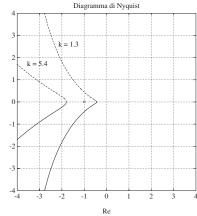
90

Silvio Simani - Lezione10

• Esempio:

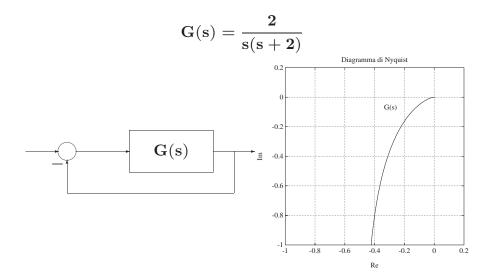
$$\mathbf{G}(\mathbf{z}) = rac{\mathbf{z}}{(\mathbf{z} - \mathbf{1})(\mathbf{z} - \mathbf{0.5})}$$

 $\mathbf{G}(\mathbf{z})$



ullet Si ha stabilità per il sistema in retroazione con ${
m k}=1.3$ ed instabilità con ${
m k}=5.4$

• Esempio



• Il sistema è stabile

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

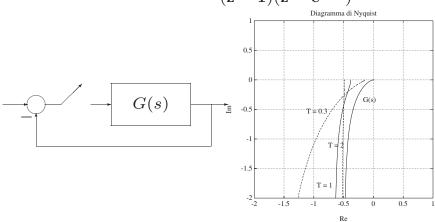
Sistemi di Controllo Digitale

Silvio Simani - Lezione10 92

ullet Si desidera ora studiare la stabilità del sistema in retroazione con campionamento di periodo $oldsymbol{\mathrm{T}}$ e ricostruttore di ordine zero

Senza ricostruttore:

$$G'(z) = \mathcal{Z}[G(s)] = rac{z(1 - e^{-2T})}{(z - 1)(z - e^{-2T})}$$



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

94

Silvio Simani - Lezione10

Luogo delle radici

È il luogo descritto dagli zeri di una funzione

$$\mathrm{F}(\mathrm{s}) = 1 + \mathrm{k} \; \mathrm{G}(\mathrm{s}) = 1 + \mathrm{k} \; rac{\mathrm{B}(\mathrm{s})}{\mathrm{A}(\mathrm{s})}$$

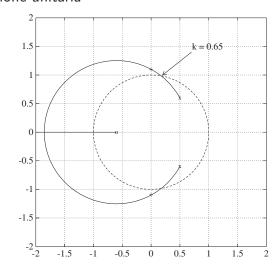
al variare del parametro k nell'intervallo $[0,+\infty]$

- Per il tracciamento del luogo valgono le stesse regole del caso continuo
- Cambia l'interpretazione dei risultati che si ottengono

ullet Esempio. Dato il seguente sistema in catena aperta con due poli in ${f z}_{1,2}=0.5\pm {f j}0.6$:

$$G(z) = k \frac{z + 0.6}{z^2 - z + 0.61}$$

Per il sistema in retroazione unitaria



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

96

Silvio Simani - Lezione11

Lezione 11

Errori a Regime

- Specifiche di progetto di sistemi di controllo
- Specifiche che il sistema deve soddisfare, in condizioni **statiche** (o **di regime**) e durante i **transitori**:
 - **Precisione a regime**: ci si riferisce con questa alla capacità di un sistema di seguire alcuni segnali di riferimento con il minimo errore
 - **Risposta nel transitorio**: ci si riferisce all'andamento per tempi finiti dell'uscita del sistema in retroazione in risposta a segnali tipici in ingresso

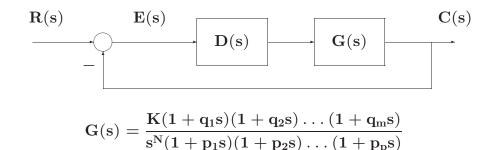
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione11 98

- Stabilità relativa: ci si riferisce ai margini di stabilità
- **Sensitività parametrica**: ci si riferisce al fatto che le prestazioni del sistema non vengano alterate dalle variazioni di certi parametri
- Reiezione di disturbi: cioè la capacità del sistema controllato di ridurre al minimo l'influenza sull'uscita di eventuali disturbi che entrano nell'anello di controllo
- **Sforzo di controllo**: ci si riferisce all'ampiezza massima della variabile manipolabile $\mathbf{v}(\mathbf{t})$, o sull'energia entrante nel sistema

• Errori a regime (caso continuo)



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione11 100

• Errori a regime (caso discreto)

ullet Nel caso discreto la corrispondente definizione di tipo si riferisce al numero di poli nel punto ${f z}=1$

$$\mathbf{R}(\mathbf{z}) \quad \mathbf{E}(\mathbf{z})$$

$$\mathbf{D}(\mathbf{z}) \quad \mathbf{Hold} \quad \mathbf{P}(\mathbf{s})$$

$$\mathbf{G}(\mathbf{z}) = \mathbf{D}(\mathbf{z})\mathbf{H}\mathbf{P}(\mathbf{z}) = \mathbf{D}(\mathbf{z})(1-\mathbf{z}^{-1})\mathcal{Z}\left[\frac{\mathbf{P}(\mathbf{s})}{\mathbf{s}}\right]$$

$$\mathbf{E}(\mathbf{z}) = \frac{1}{1+\mathbf{G}(\mathbf{z})}\mathbf{R}(\mathbf{z})$$

• Assumendo che il sistema sia stabile, l'errore a regime può essere calcolato mediante il teorema del valore finale:

$$\begin{array}{lcl} e_{reg} = \lim_{k \to \infty} e(k) & = & \lim_{z \to 1} \left[(1-z^{-1}) E(z) \right] \\ \\ & = & \lim_{z \to 1} \left[(1-z^{-1}) \frac{1}{1+G(z)} R(z) \right] \\ \\ & = & \lim_{z \to 1} \left[\frac{z-1}{z} \frac{1}{1+G(z)} R(z) \right] \end{array}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione11 102

• Errore di posizione

$$\begin{split} R(z) &= \frac{r_0}{1-z^{-1}} \\ e_p &= \lim_{z \rightarrow 1} \left[(1-z^{-1}) \frac{1}{1+G(z)} \frac{r_0}{1-z^{-1}} \right] = \lim_{z \rightarrow 1} \left[\frac{r_0}{1+G(z)} \right] \end{split}$$

 $\bullet \;\; \mathsf{Definendo} \; k_p = \lim_{z \to 1} G(z)$ costante di posizione

$$\mathrm{e_p} = rac{\mathrm{r_0}}{1 + \mathrm{k_p}}$$

• Esempio

$$G(z) = \frac{z^{-1}}{1 - 0.5z^{-1}}$$

con $T=0.25~\mathrm{s}$

$$\mathbf{k_p} = \lim_{\mathbf{z} o 1} \mathbf{G}(\mathbf{z}) = \mathbf{2}$$

$$k_p = \lim_{z \to 1} G(z) = 2 \qquad \qquad e_p = \tfrac{1}{1+2} = 0.333$$

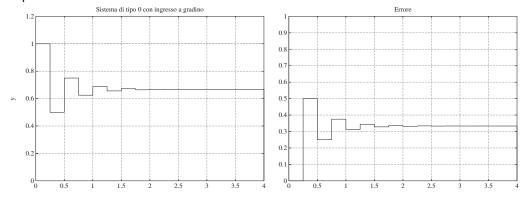
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

104

Silvio Simani - Lezione11

• Errore di posizione



• Esempio

$$G(z) = \frac{0.3z^{-2}}{1 - 1.2z^{-1} + 0.2z^{-2}} = \frac{0.3z^{-2}}{(1 - z^{-1})(1 - 0.2z^{-1})}$$

con $T=1~\mathrm{s}$. Il sistema è ora di tipo 1

$$k_p = \lim_{z \to 1} G(z) = \infty \qquad \qquad e_p = 0$$

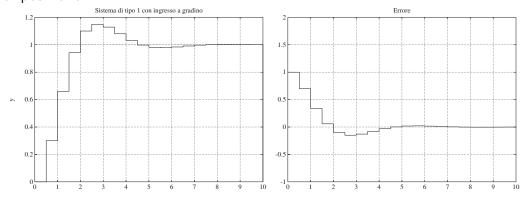
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

106

Silvio Simani - Lezione11

• Errore di posizione



Lezione 12

Specifiche nel Transitorio: Specifiche Frequenziali

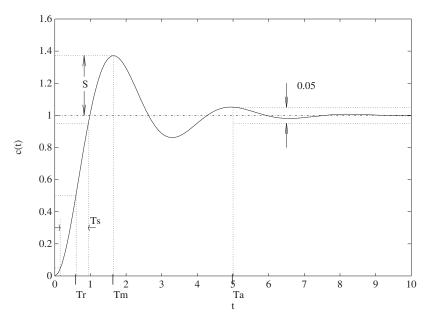
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione12

- Specifiche sul transitorio
- Nel caso tempo-continuo, si definiscono le seguenti caratteristiche temporali della risposta a gradino:
 - Tempo di salita $T_{\rm s}$
 - Tempo di assestamento $\mathbf{T}_{\mathbf{a}}$
 - Tempo di ritardo $T_{\rm r}$
 - Massimo sorpasso o massima sovraelongazione $\mathbf S$
 - Istante di massima sovraelongazione $T_{\rm m}\,$

Risposta di un sistema di secondo ordine



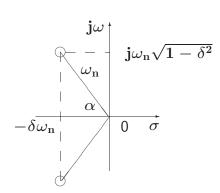
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

110

Silvio Simani - Lezione12

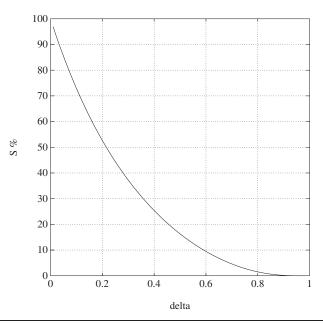
$$G(s) = \frac{\omega_n^2}{s^2 + 2\delta\omega_n s + \omega_n^2}$$



- Tempo da 0 al 100% del V.F.: $\mathbf{T}_1 = \frac{\pi \arccos \delta}{\omega_{\mathrm{n}} \sqrt{1 \delta^2}}$ Istante di massimo sorpasso: $\mathbf{T}_{\mathrm{m}} = \frac{\pi}{\omega_{\mathrm{n}} \sqrt{1 \delta^2}}$ Tempo di assestamento: $\mathbf{T}_{\mathrm{a}} = \frac{3}{\delta \omega_{\mathrm{n}}}$ (al 5 %), $\mathbf{T}_{\mathrm{a}} = \frac{4}{\delta \omega_{\mathrm{n}}}$ (al 2 %)

• Massimo sorpasso percentuale:

$$S = 100[c(T_m) - 1] = 100\,e^{-\frac{\delta\pi}{\sqrt{1-\delta^2}}}$$



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

112

Silvio Simani - Lezione12

- Specifiche frequenziali
- Margine di fase M_F : detto $-\phi$ l'argomento di $G(e^{j\omega T})$ in corrispondenza della pulsazione ω_0 per la quale $|G(e^{j\omega_0 T})|=1$, il margine di fase M_F è il complemento a π di ϕ , cioè

$$M_F = \pi - \phi$$

Tipici valori di specifica sono $45^{
m o} \div 60^{
m o}$

• Margine di ampiezza M_A : è l'inverso del guadagno di anello alla pulsazione ω' a cui corrisponde la fase π :

$$M_A = \frac{1}{|G(e^{j\omega'T})|}$$

dove $\mathrm{arg}\{G(e^{j\omega'T})\}=\pi$

Valori usuali di specifica per questo parametro sono 4-6 (12-16 db)

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione13

Lezione 13

Progetto per Discretizzazione del Controllore Analogico - I

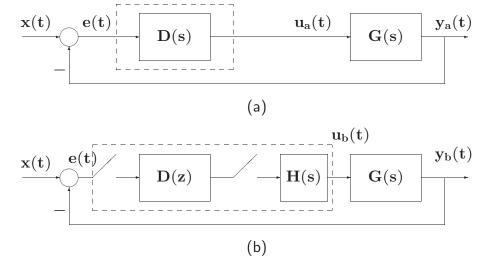
- Tre classi di tecniche progettuali
 - 1. Metodo indiretto o per discretizzazione di un progetto analogico
 - 2. Metodo diretto ossia nel dominio discreto:
 - progetto con il luogo delle radici
 - 3. Regolatori a struttura fissa (tipo PID industriale)

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione13

Metodo indiretto



• T il più piccolo possibile !?

- Tre passi concettuali
- 1. Definizione di ${f T}$ e verifica dei margini di stabilità del sistema

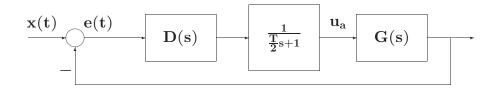
$$H_0(s) = \frac{1-e^{-sT}}{s} ~\approx ~ \frac{T}{\frac{T}{2}s+1} \label{eq:h0s}$$

$$H_0(s) \ \approx \ e^{-sT/2}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione13



- 2. Discretizzazione della $\mathbf{D}(\mathbf{s})$
- 3. Verifica a posteriori (simulativa e sperimentale) del comportamento dinamico

• Tecniche di discretizzazione:

- 1. Metodo delle differenze all'indietro (Eulero all'Indietro, El)
- 2. Metodo delle differenze in avanti (Eulero in Avanti, EA)
- 3. Trasformazione bilineare (Tustin, TU)
- 4. Metodo della \mathcal{Z} -trasformata con ricostruttore di ordine 0

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione13

Metodo delle differenze all'indietro (EI)

$$\left.D(z)=\left.D(s)\right|_{s=\frac{1-z^{-1}}{T}}$$

$$ullet$$
 Esempio: $rac{\mathrm{d} y(t)}{\mathrm{d} t} + a y(t) = a x(t)$

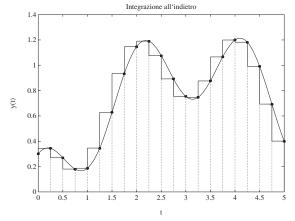
$$\int_0^t \frac{dy(t)}{dt} dt = -a \int_0^t y(t) dt + a \int_0^t x(t) dt$$

calcolando per $\mathrm{t}=\mathrm{k}\mathrm{T}$, per $\mathrm{t}=(\mathrm{k}-1)\mathrm{T}$ e sottraendo si ha

$$\begin{split} \mathbf{y}(\mathbf{kT}) - \mathbf{y}((\mathbf{k-1})\mathbf{T}) &= -\mathbf{a} \int_{(\mathbf{k-1})\mathbf{T}}^{\mathbf{kT}} \mathbf{y}(\mathbf{t}) d\mathbf{t} \\ &+ \mathbf{a} \int_{(\mathbf{k-1})\mathbf{T}}^{\mathbf{kT}} \mathbf{x}(\mathbf{t}) d\mathbf{t} \\ &\simeq -\mathbf{aT} \left[\mathbf{y}(\mathbf{kT}) - \mathbf{x}(\mathbf{kT}) \right] \end{split}$$

$$Y(z) = z^{-1}Y(z) - aT[Y(z) - X(z)]$$

$$\frac{Y(z)}{X(z)} = G(z) = \frac{aT}{1-z^{-1}+aT} = \frac{a}{\frac{1-z^{-1}}{T}+a}$$



Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione13

2. Metodo delle differenze in avanti (EA)

$$\left.D(z)=\left.D(s)\right|_{s=\frac{z-1}{T}}$$

Esempio

$$\begin{split} \int_{(k-1)T}^{kT} y(t) dt &\approx Ty((k-1)T) \\ \int_{(k-1)T}^{kT} x(t) dt &\approx Tx((k-1)T) \\ y(kT) &= y((k-1)T) - aT \left[y((k-1)T) - x((k-1)T) \right] \\ \frac{Y(z)}{X(z)} &= G(z) = \frac{aTz^{-1}}{1 - (1 - aT)z^{-1}} = \frac{a}{\frac{1-z^{-1}}{Tz^{-1}} + a} \end{split}$$

3. Trasformazione bilineare (TU)

$$D(z) = \left. D(s) \right|_{s = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}}$$

detta anche integrazione trapezoidale (o di di Tustin)

$$\int_{(k-1)T}^{kT} y(t) dt \quad \approx \quad \frac{[y(kT) + y((k-1)T)]T}{2}$$

$$\int_{(k-1)T}^{kT} x(t) dt \quad \approx \quad \frac{[x(kT) + x((k-1)T)]T}{2}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione14

Lezione 14

Progetto per Discretizzazione del Controllore Analogico - II

 Metodo della Z-trasformata con ricostruttore di ordine 0 o dell'invarianza alla risposta al gradino

$$\mathcal{Z}^{-1}\bigg[D(z)\frac{1}{1-z^{-1}}\bigg] = \mathcal{L}^{-1}\bigg[D(s)\frac{1}{s}\bigg]\bigg|_{t=kT}$$

$$D(\mathbf{z}) = (1 - \mathbf{z}^{-1}) \mathcal{Z} \bigg[\frac{D(s)}{s} \bigg] = \mathcal{Z} \bigg[\frac{1 - e^{-sT}}{s} D(s) \bigg]$$

- Possibilità di aliasing
- ullet Da $\mathbf{D}(\mathbf{s})$ stabili a $\mathbf{D}(\mathbf{z})$ stabili

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

126

Silvio Simani - Lezione14

• Progetto di regolatori

$$D(z) = \frac{k_d(z-z_0)}{z-z_n}$$

che corrispondono a

$$D(s) = \frac{1 + s \, \tau_0}{1 + s \, \tau_p}$$

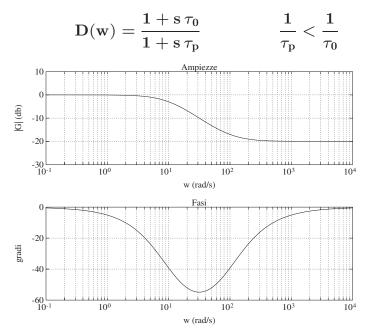
• Ad esempio, se si usa la trasformazione di Tustin:

$$\mathrm{D}(\mathrm{z}) = rac{1+\mathrm{s}\, au_0}{1+\mathrm{s}\, au_\mathrm{p}}igg|_{\mathrm{s}=rac{2(\mathrm{z}-1)}{\mathrm{T}(\mathrm{z}+1)}}$$

$$\mathbf{D}(\mathbf{z}) = rac{\mathbf{T} + 2 au_0}{\mathbf{T} + 2 au_p} rac{\mathbf{z} + rac{\mathbf{T} - 2 au_0}{\mathbf{T} + 2 au_0}}{\mathbf{z} + rac{\mathbf{T} - 2 au_p}{\mathbf{T} + 2 au_p}}$$

$$k_d = \frac{T+2\tau_0}{T+2\tau_p}, \qquad z_0 = \frac{2\tau_0-T}{2\tau_0+T}, \qquad z_p = \frac{2\tau_p-T}{2\tau_p+T}$$

• Progetto di rete ritardatrice



• $\tau_0 = 0.01 \text{ s}, \ \tau_p = 0.1 \text{ s}$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

128

Silvio Simani - Lezione14

• Alle alte frequenze, il valore del guadagno è dato da

$$\alpha = \frac{\tau_0}{\tau_\mathrm{p}} < 1$$

• Lo sfasamento massimo (in ritardo) è dato da

$$\Phi_{\rm m} = -\arcsin\frac{1-\alpha}{1+\alpha}$$

e si ottiene per la pulsazione

$$\Omega_{\rm m} = \frac{1}{\sqrt{\tau_0 \tau_p}} = \frac{1}{\tau_p \sqrt{\alpha}}$$

• Attenuazione alle alte frequenze (effetto positivo), sfasamento in ritardo (effetto negativo)

Lezione 15

Progetto di Reti Compensatrici - I

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione15

• Progetto di Rete Ritardatrice

$$\mathbf{D}(\mathbf{w}) = \frac{1+s\,\tau_0}{1+s\,\tau_p} \qquad \frac{1}{\tau_p} < \frac{1}{\tau_0}$$

 $\bullet \ \tau_0 = 0.01 \; \mathrm{s}, \ \tau_p = 0.1 \; \mathrm{s}$

- Il progetto si articola nei seguenti passi:
 - 1. Dai diagrammi di Bode del sistema G(s), con guadagno modificato per soddisfare eventuali specifiche sull'errore a regime, si calcola la pulsazione Ω^* a cui corrisponde un margine di fase pari a quello desiderato (M_F) aumentato di 5^o per compensare le approssimazioni introdotte nel procedimento:

$$\Omega^*: \quad \mathrm{Arg}[\mathrm{G}(\mathrm{j}\Omega^*)] = -180^{\mathrm{o}} + \mathrm{M_F} + 5^{\mathrm{o}}$$

2. Poichè la rete deve far sì che a questa pulsazione il guadagno di anello diventi unitario, si impone che il fattore di attenuazione introdotto dalla rete corretrice sia

$$\frac{\tau_0}{\tau_p} = \alpha = \frac{1}{|\mathbf{G}(\mathbf{j}\Omega^*)|}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione15

3. Si fissa

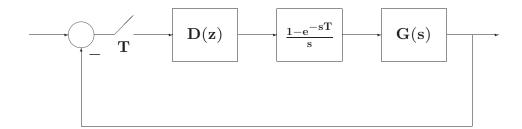
$$rac{1}{ au_0}=0.1~\Omega^*$$

al fine di assicurarsi, come si è detto, che lo sfasamento in ritardo della rete non influisca in modo apprezzabile alla pulsazione di attraversamento

4. Si ricava

$$\tau_{\rm p} = \frac{\tau_0}{\alpha}$$

• Esempio



$$G(s) = \frac{2}{s(s+1)(s+2)}$$

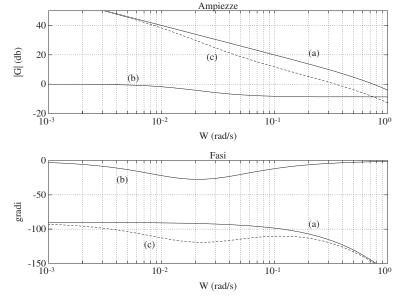
- \bullet Progettare una rete digitale ritardatrice D(z) che garantisca al sistema in retroazione un margine di fase $M_F=55^o$
- T = 0.1 s

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione15

ullet Diagrammi di Bode di G(s) (a), di D(s) (b) e del guadagno di anello D(s) G(s) (c)



ullet La pulsazione cui corrisponde una fase di $-180+55+5=-120^{
m o}$ è $\Omega^*pprox 0.3446~{
m rad/s}$ a cui corrisponde un guadagno di

$$1/\alpha = 2.7039 = 8.64$$
db

da cui

$$au_0 = rac{1}{0.03446} = 29.0191$$

$$\tau_{\rm p} = 2.7039 \cdot 29.0191 = 78.4649$$

$$\Omega_0 = 0.03446$$
 $\Omega_{
m p} = 0.01274$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

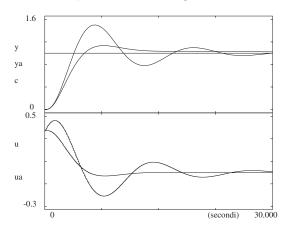
Silvio Simani - Lezione15

136

• Effettuando la discretizzazione di D(s)

$$D(z) = \frac{0.37(z-0.99656)}{(z-0.9987)} = \frac{0.37z-0.369}{(z-0.9987)}$$

• Risposta a gradino del processo in retroazione e relative variabili di controllo con e senza troncamento numerico a 3 cifre dei parametri del regolatore



Note:

ullet Il polo e lo zero della rete ritardatrice sono molto prossimi tra loro ed entrambi nelle vicinanze del punto ${f z}=1+{f j}0$

- Il fenomeno è peraltro accentuato per T piccolo
- Il regolatore digitale deve essere realizzato con una notevole precisione numerica

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione15

• Progetto di Rete Anticipatrice

$$D(s) = \frac{1+s\tau_0}{1+s\tau_p} \qquad \frac{1}{\tau_0} < \frac{1}{\tau_p}$$

$$\frac{30}{20}$$
Ampiezze
$$\frac{30}{20}$$

$$\frac{10}{10}$$

• $\tau_{\rm p} = 0.01 \; {\rm s}, \quad \tau_0 = 0.1 \; {\rm s}$

• Il guadagno della rete per alte frequenze è

$$\frac{1}{\alpha} = \frac{\tau_0}{\tau_{\rm p}} > 1$$

• Lo sfasamento massimo in anticipo è

$$\Phi_{\rm m} = \arcsin \frac{1-\alpha}{1+\alpha}$$

ottenuto alla pulsazione

$$\Omega_{
m m} = rac{1}{\sqrt{ au_0 au_{
m p}}} = rac{1}{ au_0 \sqrt{lpha}}$$

• Sfasamento in anticipo (effetto positivo), aumento di guadagno (effetto negativo)

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione15

- ullet Progetto con specifica di margine di fase M_F :
 - 1. Dai diagrammi di Bode della G(w), nella quale si è considerato il guadagno opportuno per soddisfare le specifiche sull'errore a regime, si individua il margine di fase del sistema
 - 2. Si calcola l'anticipo di fase Φ_m necessario per avere un margine di fase pari a quello M_F desiderato, maggiorato di ${\bf 5}^o \div {\bf 10}^o$ per compensare le approssimazioni di progetto
 - 3. Una volta noto Φ_{m} , si calcola

$$\alpha = \frac{1-\sin\Phi_m}{1+\sin\Phi_m}$$

- 4. Si determina la pulsazione Ω^* per la quale l'ampiezza di G(w) vale $\alpha/2$. Poichè la rete aumenta il guadagno del sistema alle alte frequenze, si fa corrispondere la nuova pulsazione Ω^* alla Ω_m della rete anticipatrice
- 5. Dalle due relazioni

$$lpha = rac{ au_{
m p}}{ au_{
m 0}}, \qquad \qquad \Omega^* = \Omega_{
m m} = rac{1}{ au_{
m 0}\sqrt{lpha}}$$

si ricavano le due costanti di tempo au_0, au_p

6. Se le prestazioni risultanti non sono quelle desiderate, si ripete il procedimento fissando Φ_m ad un valore superiore. Può risultare conveniente considerare come valori di Ω_m per la rete una pulsazione diversa (solitamente inferiore)

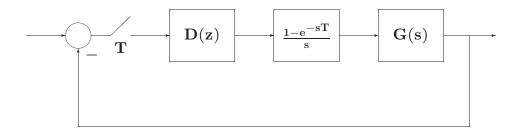
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

142

Silvio Simani - Lezione15

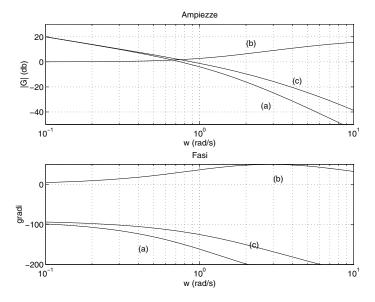
Esempio



$$G(s) = \frac{2}{s(s+1)(s+2)}$$

- \bullet Progettare una rete anticipatrice digitale D(z) che garantisca al sistema in retroazione un margine di fase $M_F=55^o$
- T = 0.1 s

ullet Diagrammi di Bode di G(s) (a), di D(s) (b) e del guadagno di anello D(s) G(s) (c)



ullet Margine di fase pari a circa $30^{
m o}$, per una pulsazione di $0.75~{
m rad/s}$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione15

ullet Primo tentativo: si progetta una rete che introduce uno sfasamento $\Phi_{
m m}=35^{
m o}$. Si ottiene

$$\alpha = 0.271, \quad \Omega^* = 2.16 \text{ rad/s}$$

$$au_{
m p} = 0.241 \; {
m s}, \quad au_0 = 0.8893 \; {
m s}$$

- ullet II margine di fase di D(w)G(w) è di 49^o
- ullet Anche variando Ω_m non si riesce ad ottenere la specifica di fase
- ullet Si ricomincia con $\Phi_m=45^o$ e si ottiene

$$lpha = 0.1715, \quad \Omega^* = 2.61 \; \mathrm{rad/s}$$

$$\tau_{\rm p} = 0.1587 \; {\rm s}, \quad \tau_0 = 0.9252 \; {\rm s}$$

e un margine di fase complessivo di ${\bf 53}^{
m o}$

• Ridefinendo $\Omega^* = 2.2 \text{ rad/s si ottiene}$

$$D(s) = \frac{1+1.0973s}{1+0.1883s}$$

che fornisce il margine prescritto $M_{\mathrm{F}}=55^{\mathrm{o}}$

Discretizzando

$$\mathrm{D}(\mathrm{z}) = rac{4.8146(\mathrm{z} - 0.9129)}{\mathrm{z} - 0.5803}$$

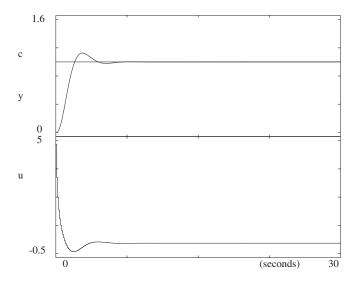
• Si nota che nel caso della rete anticipatrice non ci sono problemi numerici sulla precisione dei parametri

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione15

• Risposta a gradino del processo in retroazione e relativa variabile di controllo



Lezione 16

Progetto di Reti Compensatrici - II

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione16

• Progetto mediante il luogo delle radici

• Equazione caratteristica del sistema in anello chiuso

$$1+k\ G_0(z)=0$$

- ullet k è il parametro di interesse che si fa variare tra 0 e $+\infty$
- Solitamente k rappresenta il guadagno

Esempio di Progetto

• Nell'anello digitale sia

$$G(s) = \frac{0.1}{s(s+0.1)}$$

con $T=1~\mathrm{s}$. Per cui

$$G(z) = 0.0484 \frac{z + 0.9672}{(z-1)(z-0.9048)} \label{eq:Gz}$$

Le specifiche di progetto sul sistema in catena chiusa sono:

$$S\% \le 16, \qquad \quad T_a \le 6 \; s$$

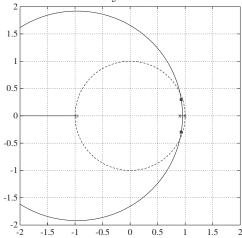
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione16

ullet Dalla specifica sul sorpasso si ha $\delta=0.5$. Assumendo $\mathbf{D}(\mathbf{z})=\mathbf{k}$, l'equazione caratteristica diventa

$$1 + 0.0484 \mathrm{k} rac{\mathrm{z} + 0.9672}{(\mathrm{z} - 1)(\mathrm{z} - 0.9048)} = 0$$



 \bullet Nel caso tempo continuo, le specifiche su $\mathbf{S}\%$ e $\mathbf{T_a}$ implicano che la coppia di poli dominanti del sistema in anello chiuso sia

e nel caso tempo discreto effettuando la trasformazione $\mathbf{z} = \mathbf{e}^{sT}$

$$z = 0.393 \pm j0.462$$

- Nel piano z i poli del sistema in retroazione devono essere:
 - interni al cerchio di raggio $r=e^{-\delta\omega_n}=0.6065$
 - entro la zona delimitata dal luogo a spirale logaritmica per $\delta=0.5$
- ullet Non sono soddisfatte le specifiche su ${f S}\%$ e su ${f T_a}$
- ullet Per K>2 il sistema è instabile

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione16

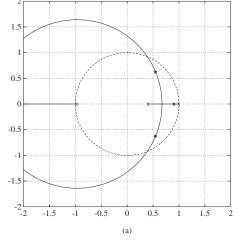
152

• Si introduce un regolatore dinamico

$$D(z)=k\frac{z-z_0}{z-z_p}$$

ullet Primo tentativo: $old z_0$ cancella il polo old z=0.9048 e si fissa il polo del regolatore a sinistra, per

esempio $z_{
m p}=0.4$



• I poli si posizionano in

$$z = 0.5476 \pm j0.6284$$

per cui $\delta=0.21$ e quindi non è soddisfatta la specifica sul transitorio

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

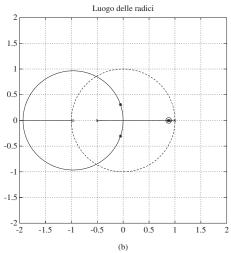
Sistemi di Controllo Digitale

Silvio Simani - Lezione16

• Nuovo tentativo:

$$z_0=0.88$$

in modo che in questa zona lo sviluppo del luogo delle radici all'esterno dell'asse reale sia modesto, e il polo in ${f z}=-0.5$



ullet Se si sceglie k=13 per cui

$$z = -0.04986 \pm j0.3035,$$
 $z = 0.8757$

• Il regolatore finale è

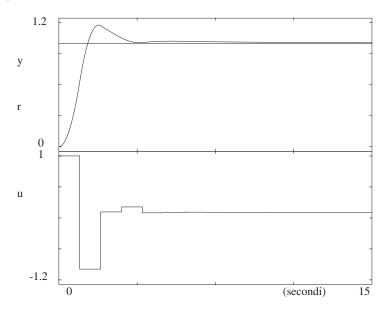
$$D(z) = 13 \frac{z - 0.88}{z + 0.5}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione16 156

• Verifica simulativa



Lezione 17

Regolatori Standard PID Digitali - I

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione17 158

Regolatori standard

- Struttura fissa tipo PID
- Tuning dei parametri
- ullet Scelta del periodo di campionamento ${f T}$
- Discretizzazione algoritmi analogici ed inoltre . . .
- Tuning automatico dei parametri

Discretizzazione del classico regolatore PID analogico

$$U(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) E(s)$$

- Usando l'integrazione rettangolare
 - Forma di posizione:

$$u_n = K_p \left[e_n + \frac{T}{T_i} \sum_{k=0}^n \, e_k + \frac{T_d}{T} (e_n - e_{n-1}) \right] + M_R \label{eq:un}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione17

- Una forma di algoritmo particolarmente utilizzata in pratica
- Termine derivativo:

$$rac{
m T_d s}{1+
m T_d s/N}$$

N tra 3 e 10

- Parte integrale: "differenza in avanti"
- Parte derivativa: "differenza all'indietro"

$$\begin{array}{lcl} D_{PID}(z) & = & K_p \left[1 + \frac{T}{T_i(z-1)} + \right. \\ \\ & \left. + \frac{T_d}{T + T_d/N} \, \frac{z-1}{[z - T_d/(NT + T_d)]} \right] \end{array}$$

Tuning dei parametri

- Due categorie di criteri
 - a) Quelli che utilizzano alcuni punti caratteristici della risposta y(t) per imporre l'andamento transitorio desiderato.
 - b) Criteri di tipo integrale

$$ISE = \int_0^\infty [e(t)]^2 dt$$

$$IAE = \int_0^\infty |e(t)| dt$$

$$ITAE \ = \ \int_0^\infty t |e(t)| dt$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

162

Silvio Simani - Lezione17

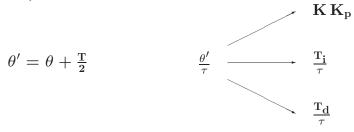
Nel caso analogico

Controllore	Ziegler-Nichols	Cohen-Coon	3C
P	$K K_p = (\theta/\tau)^{-1}$	$K K_p = (\theta/\tau)^{-1} + 0.333$	$K K_p = 1.208 (\theta/\tau)^{-0.956}$
PI	$K K_p = 0.9(\theta/\tau)^{-1}$	$K K_p = 0.9(\theta/\tau)^{-1} + 0.082$	$K K_p = 0.928 (\theta/\tau)^{-0.946}$
	$T_i/\tau = 3.33(\theta/\tau)$	$T_i/\tau = \frac{3.33(\theta/\tau)[1+(\theta/\tau)/11]}{1+2.2(\theta/\tau)}$	$T_i/\tau = 0.928(\theta/\tau)^{0.583}$
PID	$K K_p = 1.2(\theta/\tau)^{-1}$	$K K_p = 1.35 (\theta/\tau)^{-1} + 0.27$	$K K_p = 1.37 (\theta/\tau)^{-0.95}$
	$T_i/\tau = 2(\theta/\tau)$	$T_i/\tau = \frac{2.5(\theta/\tau)[1+(\theta/\tau)/5]}{1+0.6(\theta/\tau)}$	$T_i/\tau = 0.74(\theta/\tau)^{0.738}$
	$T_d/\tau = 0.5(\theta/\tau)$	$T_d/\tau = \frac{0.37(\theta/\tau)}{1 + 0.2(\theta/\tau)}$	$T_d/\tau = 0.365(\theta/\tau)^{0.95}$

Modello del sistema

$$G_p(s) = K \frac{e^{-\theta s}}{1 + \tau s}$$

ullet Approssimazione del campionatore e del ricostruttore di ordine zero con un ritardo pari a ${f T/2}$



e quindi si ricavano \mathbf{K}_p , \mathbf{T}_i e \mathbf{T}_d

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione17

• Esempio. Sistema da controllare:

$$G(s) = \frac{1}{(0.5\,s+1)(s+1)^2(2\,s+1)}$$

ullet Modello ($\mathrm{K}=1$, $heta=1.46\,\mathrm{s}$, $au=3.34\,\mathrm{s}$)

$$G_m(s) = \frac{e^{-1.46s}}{1+3.34\,s}$$

- ullet Progettare un regolatore PID in corrispondenza a $\delta=0.25$
- ullet Sia $T=0.3\,\mathrm{s}$

- $\theta' = \theta + T/2 = 1.46 + 0.15 = 1.61$
- $\bullet \ \ \theta'/\tau = 0.482$
- Dalla tabella di Ziegler-Nichols si ha

$${
m K\,K_p} = 2.4894 ~~ rac{{
m T_i}}{ au} = 0.9641 ~~ rac{{
m T_d}}{ au} = 0.241$$

da cui si ottengono i parametri

$$K_p = 2.4894$$

$$T_i = 0.9641\tau = 3.22$$

$$T_{\rm d} = 0.241\tau = 0.805$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

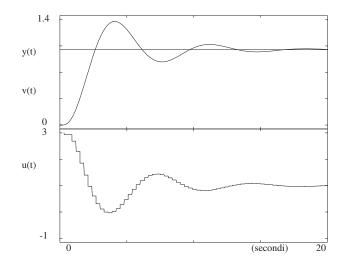
Sistemi di Controllo Digitale

Silvio Simani - Lezione17

166

• Mediante discretizzazione rettangolare

$$D_{PID}(z) = K_p \left[1 + \frac{T}{T_i(1-z^{-1})} + \frac{T_d}{T}(1-z^{-1}) \right]$$



Lezione 18

Regolatori Standard PID Digitali - II

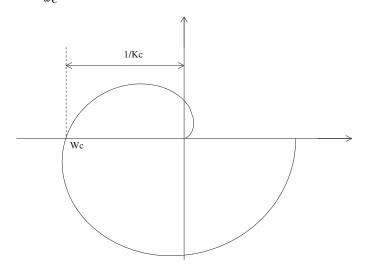
Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione18

• Tuning automatico

 \bullet Un semplice metodo è quello basato sulla stima del guadagno critico K_c e del periodo di oscillazione critica $P_c=\frac{2\pi}{\omega_c}$



 $\bullet~$ Stimati \mathbf{K}_c e \mathbf{P}_c , si usa la tabella di Ziegler–Nichols

Tipo	K_{p}	$\mathbf{T_{i}}$	$\mathrm{T_{d}}$
Р	$0.5 m K_c$	∞	0
PI	$0.45 m K_c$	$ m P_c/1.2$	0
PID	$0.6 m K_c$	$0.5\mathrm{P_c}$	$0.125\mathrm{P_c}$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

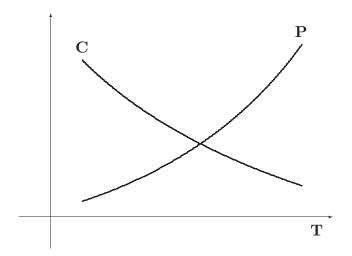
Sistemi di Controllo Digitale

Silvio Simani - Lezione19

Lezione 19

Considerazioni Conclusive

• Considerazioni riassuntive sulla scelta del periodo di campionamento



- C: Costo
- P: Prestazione
- T: Tempo di campionamento

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione19

- Prestazioni
 - reiezione dei disturbi
 - inseguimento del set-point
 - energia di controllo
 - ritardi e stabilità
 - robustezza alle variazioni parametriche
- Costo
 - sfruttamento della capacità elaborativa
 - velocità di conversione
 - velocità di elaborazione
 - precisione nella memorizzazione dei parametri e delle variabili

- Gli effetti di T sulle prestazioni
 - gli effetti di destabilizzazione crescono al crescere di ${f T}$;
 - la perdita di informazione sui segnali cresce al crescere di T;
 - l'accuratezza dell'algoritmo, ottenuto per discretizzazione, cresce al diminuire di T;
 - gli effetti di quantizzazione crescono al diminuire di ${f T}.$
- La miglior scelta è il valore di T più elevato che garantisca tutte le specifiche prestazionali fissate

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

Silvio Simani - Lezione19

174

• Regole pratiche per la scelta di T:

a)

$$\mathrm{T} \leq rac{ au_{\mathrm{dom}}}{10}$$

b)

$$T<<\frac{T_a}{10}\to T=\frac{T_a}{100}$$

• Modello di un processo di tipo 0:

$$G_{01}(s) = k \frac{e^{-\theta s}}{1+\tau s}$$

con \mathbf{k} , θ , τ da determinare.

• Modelli più complessi. Con due poli reali:

$$G_{02}(s) = k \frac{e^{-\theta s}}{(1 + \tau_1 s)(1 + \tau_2 s)}$$

• Con due poli complessi coniugati:

$$G_{03}(s) = k rac{e^{- heta s} \omega_n^2}{s^2 + 2\delta \omega_n s + \omega_n^2}$$

• Con due poli ed uno zero:

$$G_{04}(s) = k \frac{e^{-\theta s}(1 + s/\alpha)}{(1 + \tau_1 s)(1 + \tau_2 s)}$$

Università di Ferrara, Dip. di Ingegneria v. Saragat, 1E, I-44123, Ferrara, Italia

Sistemi di Controllo Digitale

176

Silvio Simani - Lezione19

Modello del primo ordine:

$$\mathbf{G}_{01}(\mathbf{s}) = \mathbf{k} rac{\mathbf{e}^{- heta \mathbf{s}}}{1 + au \mathbf{s}}$$

Risposta di un sistema di tipo 0

