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Abstract

In this report a model-based procedure exploiting analytical redundancy for the detection and isolation of faults of a dynamic system is presented. The diagnosis system is based on output observers designed in both deterministic and stochastic environments. Residual analysis and statistical tests are used for fault detection and isolation, respectively. Finally, by means of multi-layer percepron neural network, used as non-linear function approximators, fault size estimation can be performed. The proposed fault detection and isolation tool has been tested on a single-shaft industrial gas turbine model.
1 Introduction

The control devices which are nowadays exploited to improve the overall performance of the industrial processes involve both sophisticated digital system design techniques and complex hardware (sensors, actuators, processing units). In such a way, the probability of failure occurrence on such equipment may result significant and an automatic supervision control should be used to detect and isolate anomalous working conditions as early as possible.

The problem of fault detection and isolation (FDI) in linear time-invariant dynamic processes has received great attention during the last two decades and a wide variety of model-based approaches has been proposed (Isermann, 1997; Chen & Patton, 1999).

These different methods, however, can be brought down to a few basic concepts such as the parity space approach (Gertler, 1998), the state estimation approach (Willsky,1976; Isermann, 1984; Baseville, 1988; Frank, 1990; Xie & Soh, 1994a; Xie & Soh, 1994b), the fault detection filter approach (Frank, 1990; Patton et al., 1996; Frank & Ding, 1997) and the parameter identification approach (Willsky, 1976; Baseville, 1988; Patton et al, 1989). In every case, for the detectability and distinguishability of faults, mathematical models of the process under investigation are required, either in state space or input-output form.

State space descriptions provide general and mathematically rigorous tools for system modelling and residual generation which may be used in fault detection of industrial systems, both for the deterministic (noise-free case) and the stochastic (noisy case) environment. Residuals should then be processed to detect an actual fault condition, rejecting any false alarms caused by noise or spurious signals.

This work aims to define a comprehensive methodology for fault diagnosis by using a state estimation approach, in conjunction with residual processing schemes which include a simple threshold detection, in deterministic case, as well as statistical analysis when data are affected by noise.

The suggested method does not require the physical knowledge of the process under observation since the input-output links are obtained by means of an identification scheme which uses Auto Regressive eXogenous (ARX) models in case of high signal to noise ratios, or Errors-In-Variables (EIV) models, otherwise (Kalman, 1982; Kalman, 1990). In the last situation the identification technique is based on the rules of the Frisch Scheme, based on the traditional application to the analysis of economic systems (Frisch, 1934). This approach gives a reliable model of the plant under investigation, as well as providing variances of the input-output noises (Beghelli et al., 1990).

The FDI technique presented in this paper is applied to the fault diagnosis of a single-shaft industrial gas turbine whose linear mathematical description is obtained by using identification procedures.

2 Model description

In the following it is assumed that the monitored system, depicted in Figure (1), can be described in fault free condition, by a linear, discrete-time, time-invariant, linear model of the type
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where 

 is the state vector, 
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 the control input vector. 
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 and 

are constant matrices of appropriate dimensions obtained by means of modelling techniques or identification procedures. 
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Figure 1: The monitored system.

It is assumed that 

 and 

 are the only available measurements. The fault block shown in Figure (1) can be described by the scheme depicted in Figure (2)
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Figure 2: Fault block scheme.
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where 
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By neglecting sensor and actuator dynamics, the signal 

 and 

 can be modelled by
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where 
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 are signals which assume values different from zero only in the presence of actuator and sensor faults, respectively. 

When a component fault 
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 occurs in the system (1), (see Figure (1)), the dynamic system can be described as
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The same fault may occur on the regulator in the control loop. In such a case, under the assumptions that 
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where 
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 represents the discrete-time transfer matrix of the controller.

Usually 

, 

, 

 signals are described by step and ramp functions representing abrupt and incipient faults (bias or drift), respectively. Figure (1) also shows the distribution of the process faults. In real applications, variables 

 and 

 represent noises which, due to technological reasons, affect sensor behaviour. They are generally described as white, zero-mean, uncorrelated Gaussian noises.

Representations of types (1) and (2), when 

, 
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, are known as EIV models.

The design of state observers and Kalman filters requires the knowledge of a state-space model of the system under investigation. When classical modelling techniques cannot be used since the complete physical knowledge of the system is not available or the model parameters are unknown, an identification approach can be considered.

3 Equation Error Models

In case of high signal to noise ratios (

 and 

), equation error identification can be exploited and, in particular, different equation error models can be extracted from the data. A specific linear, discrete-time, time-invariant, model, e.g. ARX or ARMAX (Auto Regressive eXogenous or Auto Regressive Moving Average eXogenous), (Leontaritis and Billings, 1985), can be selected only inside an assumed family of models.

If instead the signal to noise ratios on the input and output of the process are low, the Frisch scheme can be applied to perform the dynamic system identification. Such a scheme allows to determine the linear discrete system which has generated the noisy sequences as well as the variances of the noises 

 and 

 affecting the data. In the Frisch scheme these signals are assumed zero-mean white noises, mutually uncorrelated and uncorrelated with every component of 

 and 

.

In particular, in this work, the identification of a number of ARX Multi-Input Single-Output (MISO) models
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equal to the number 
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 are the parameters to be determined by an identification approach. The term 

 takes into account the modelling error, which is due to process noises, parameter variations, etc.

The next step is the transformation of linear input-output discrete-time (4) models into state-space representations.  The state-space systems obtained by the equation errors models are useful to design dynamic observers, whilst the ones coming from the Frisch scheme can be used in order to build Kalman filters.

It can be proved that a state-space formulation of the input-output equation error model (4) in fault free conditions, for the 

-th output (

) becomes
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4 ARX model identification

Consider an assumed order 

 for a SISO (Single-Input Single Output, 
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) ARX model (4) and the input-output sequences 

observed in the time interval 

. If the model (4) is used to compute predicted output values 

 in the 

 times 

, for a given set of parameters
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the mean square prediction error is given by








(7)

By introducing now the following Hankel matrices 

 and 




 and 
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it follows that






(9)

It can be proved that the parameter vector minimising the cost function (7) is given by








(10)

where 

 denotes the pseudo-inverse of 

. The algorithm gives an estimate of 

, 

, which converges asymptotically to the real parameter of the process that has generated the data.

To estimate the order 

 of the ARX process, an integer 

 and the (

) matrix of input-output samples given by



.




(11)

are considered.

If 

 in (4) the following properties hold
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It could be possible to consider the increasing sequence of matrices 
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where 

 and to evaluate their singularity. The first singular matrix 
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It can be proved that if N is large enough, an estimate of the standard deviation 

 of the process 

 in (4), is given by



.
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If the following quantity is defined, 









(15)

it can be shown that 

 and 

 for 

.

In other words, if 

 is large enough, a sequence of decreasing values of 

 followed by a stabilisation once the correct order is reached, can be noted. The criterion can be used to evaluate a suitable order or, at least, an interval of admissible orders for the model before computing its parameters.

It is easy to show that 
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 for an ARX model with order 

 and 

 given by (10).

If the value (15) is expressed as percentage of the standard deviation of the measured output, the well-established Predicted Per Cent Reconstruction Error criterion (PPCRE) is obtained (Guidorzi, 1974). The PPCRE(

) gives the prediction error of an ARX model of order 

 without requiring any computation of its parameters and predictions. The application of the PPCRE criterion consists in computing an increasing sequence of PPCRE(
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An example of the PPCRE(

) and 

 increasing sequences with 

 is reported in Figures (3).




Figure 3: Mean square and predicted reconstruction errors for different ARX models.

Relation (15) can also be used in the application of the well-known FPE, AIC and MDL order estimation criteria (Soderstrom & Stoica, 1987).

5 Linear MISO systems identification in stochastic environment.

In this paragraph, the well-established Frisch Scheme procedure for the identification of dynamic MISO system from input-output 
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A finite sequence of the variables 
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(16)

which describe linear MISO (multiple-input, single output) discrete-time systems whose order is 
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 and whose parameters are 
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At first, the following problem is presented.

Problem 1 (realisation). Given a noiseless input-output sequence 
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The following vectors and matrices can be defined
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The matrix 
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To solve the realisation problem it is possible to consider the sequence of increasing-dimension matrices
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In Problem 1 it has been assumed that 
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In the noisy case the following identification problem can be proposed.

Problem 2 (identification). Given a noisy input-output sequence 
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Note that in presence of noise the procedure described for the solution of Problem 1 would obviously be useless since matrices 
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In the Frisch Scheme it is normally assumed that
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where every noise term 
[image: image68.wmf])

(

~

t

u

j

 and 
[image: image69.wmf])

(

~

t

y

 is independent of every other term and only 
[image: image70.wmf])

(

t

u

j

 and 
[image: image71.wmf])

(

t

y

 are known. Without loss of generality, all the variables may be assumed as having null mean value. Consequently the generic positive definite matrix 
[image: image72.wmf]k

å

 associated with the input-output noise-corrupted sequences may always be expressed as the sum of two terms


[image: image73.wmf],

~

ˆ

k

k

k

å

+

å

=

å


where


[image: image74.wmf][

]

0

~

~

~

~

1

1

1

³

=

å

-

-

k

u

k

u

k

y

k

r

diag

I

I

I

s

s

s

L


since no correlation has been assumed among the noise samples at different times. This condition is verified for additive white noise with variance 
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Problem 3. Given a sequence of increasing-dimension 
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It is worth observing now that, unlike the algebraic case, for each 
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Previous results hold for every value of 
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Theorem 1.The solution sets of condition 
[image: image90.wmf]0

ˆ

³

å

k

for different values of 
[image: image91.wmf]k

 are non-crossing curves (Beghelli, 1990).
It is also important to observe that, since we assume that a system (16) has generated the noiseless data, for 
[image: image92.wmf]n

k

>

 all the hyper-surfaces of type 
[image: image93.wmf]0

ˆ

³

å

k

 have necessarily at least one common point, i.e. point 
[image: image94.wmf](

)

*

*

*

~

~

~

1

r

u

u

y

s

s

s

L

 corresponding to the true variances 
[image: image95.wmf]*

~

y

s

 and 
[image: image96.wmf]*

~

j

u

s

 of the noise affecting the output and the inputs of the system. The search for a solution for the identification problem can thus start from the determination in the noise space of this point. 

The following considerations can now be stated.

With reference to the diagonal non-negative definite matrices 
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, the following properties hold:

· If 
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It is worthy to note how this approach cannot be applied immediately in the identification of real processes, since the hypotheses on the linearity, finite dimensionality and time independence of the system and on the additivity and whiteness of the noise are not usually verified, so that the hyper-surfaces 
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As an example, Figure (4) shows the above properties for a SISO dynamic system. The point marked with a circle corresponds to the input-output noise variances 
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Figure 4: Singularity surfaces in the noisy space for n=2.

6 Residual generation

The problem treated in this work regards the detection and isolation of the faults on the basis of the knowledge of the measured sequences 

 and 

. The structure of the fault detection device is depicted in Figure (5).




Figure 5: Logic diagram of the fault detection system.

The symptom (residual) generation is implemented by means of dynamic observers or Kalman filters, in order to produce a set of signals from which it will be possible to isolate faults associated to actuators, components and sensors. The symptom evaluation refers to a logic device which processes the redundant signals generated by the first block in order to estimate and univocally identify a fault occurrence.

This report will present a FDI technique to elaborate a set of symptoms from which it will be possible to univocally detect faults. With reference to Figure (5) the symptom signals are differences between estimated signals (given by observers or Kalman filters) and the actual ones supplied by the input and output sensors.

Moreover, it is assumed that only a single fault may occur in the actuators, components or output sensors of the plant.

7 Fault diagnosis in deterministic environment

The aim of this report consists in finding a procedure in order to detect and isolate faults on actuators, components and sensors of  single-shaft industrial gas turbine. The model of such a turbine was developed in SIMULINK® environment (Simulink, 1992).

Figure (6) shows the gas turbine layout as well as inputs and outputs



Figure 6: The monitored system.

The time series of data used to identify the models were generated with a non-linear dynamic model in SIMULINK environment and they simulate measurements taken on the machine with a sampling rate of 
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 and without noise (
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) due to measurement uncertainty which, instead, is always present in the real measurement systems. 

The non-linear SIMULINK model of the gas turbine was validated in steady state conditions against engine measurements where available, and against the prediction of a more rigorous steady state gas turbine model where measurements were not available. The SIMULINK model variables were found to be within 
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In the dynamic case no model validation has been carried out as yet.

Orders and output reconstruction errors of each ARX model are shown in Table (2). The 

-th model (with 

 and 

) is driven by 

 and 

 and gives the prediction of the 

-th output 

.

The inputs are 

 and they are summarised in Table (1). The Table also reports measurement accuracy, nature (e.g. measured or inferred) and reference values.

Variable
Name
Nature
Accuracy
Ref.




ambient air temp.
measured



273.6




ambient air press.
inferred

100900




fuel flow
inferred



0.2165




valve angle
measured



63.15

Table 1: Turbine inputs

Dynamics of input signals is shown in Figure (7).
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Figure 7 : Gas turbine input signals: 
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 (right).
Even if, according to Figure (6), the measurements of ambient and pressure temperature (

 and 

) are inputs for the turbine, they were not considered, since they are constant all the times.

The outputs are

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

, 

 and they are collected in Table (2). The Table also shows measurement accuracy, nature (e.g. measured or inferred) and reference values.

Each model was tested in different operating conditions and it has always provided an output reconstruction error lower than 

.

Variable
Name
Model order



Nature
Accuracy
Ref.




mass flow
4
0.00079
inferred



16.8162





2



inferred



16.8163





2



inferred



16.8332





2



inferred



13.3269





2



inferred



1.9946




turbine outlet
2



inferred



15.5561




valve
3
0.00060
inferred



17.0321




compressor inlet
2
0.00035
measured



100005.1




compressor exit
2



measured



1025666.281





2



measured

989222.4985





2



measured

93959.728




turbine back pressure
2
0.00018
measured

202094.0779





2



inferred

5312941.3134




torque
2
0.00062
inferred



1.5424





2



inferred



3142.3523





2



inferred



3199.5385




compressor exit temperature
2



measured



578.5786





2



inferred

578.5759




turbine cooling air temperature
2



inferred

578.5657





2



inferred

578.5786




compressor exit temperature
2
0.00036
measured



1225.0295





2



inferred

578.5657





2
0.00036
inferred

1148.1068




valve up stream temperature
2
0.00042
measured



839.6036




turbine speed
2



measured



1660.8553

Table 2: Turbine outputs

Moreover, two time series of data generated by the gas turbine non-linear model were exploited in order to validate the ARX models.

These models have always provided in full simulation an output reconstruction error lower than 

.

A very effective way of evaluating the adequacy and flexibility of identified models consists, in fact, in their use for performing complete simulations (i.e. using only the initial samples of the observed outputs) and in comparing the obtained predictions with observed output samples. This procedure, that can be applied when a single set of data is available, gives the best results when applied to sequences different from those used to identify the model. The mean square prediction error between the observed outputs and the ones obtained by simulation can be used to compare models with different orders.

Reconstruction errors of each ARX model are summarised in Table (3).

In the first stage of this report, the FDI problem in deterministic environment was approached by using a bank of output observers.

Variable





 1st valid.


 2nd valid.
Ref.




0.00079
0.00264
0.7899
16.8162







0.00011
0.07910
16.8163







0.00017
0.0792
16.8332







0.00013
0.00552
13.3269










0.0040
1.9946










0.0078
15.5561




0.00060
0.00049
0.0058
17.0321




0.00035
0.0023
0.12255
100005.1










0.8177
1025666.281










0.7704
989222.4985










0.8255
93959.728




0.00018
0.00011
0.0795
202094.0779










0.0841
5312941.3134




0.00062
0.00029
0.9736
1.5424










0.8347
3142.3523










0.8745
3199.5385










0.00274
578.5786










0.00021
578.5759










0.02083
578.5657










0.00274
578.5786




0.00036
0.00012
0.1042
1225.0295










0.02083
578.5657




0.00036
0.00012
0.1042
1148.1068




0.00042
0.00012
0.04270
839.6036










0.31424
1660.8553

Table 3: Dynamic ARX model validation.

8 Simulated Fault Conditions

Four gradually developing faults are represented as follows:

1)  Compressor contamination (core engine performance deterioration), 
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.

2)  Thermocouple sensor fault, 
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(

t

y

f

.

3)  High Pressure turbine seal damage (core engine performance deterioration), 
[image: image137.wmf])
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c

f

.

4)  Fuel actuator friction wear, 
[image: image138.wmf])
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f

.

Note that in real industrial applications it is commonplace for each of the above faults to develop slowly over a period of months. For the purpose of this simulation - in order to avoid excessively long duration simulations - the fault development rate will be increased so that significant effects are present after one hour. However this is still considerably longer than the duration of the gas turbine dynamics which occur over periods of seconds - a factor which must be taken account of in any FDI algorithm design.

In the presence of a fault condition, the challenge for the designer of an FDI algorithm may be summarised as follows:

1. detect that a fault condition exists with minimum delay from the initial occurrence of the fault.

2. identify the nature, magnitude and location of the fault, again with minimum delay from the initial occurrence of the fault.

Note that it is desirable to avoid introducing perturbation signals onto the model variables. In the first instance an FDI design should be based upon data which is available from the normal day to day operation of the plant, for example during transient and over prolonged periods of steady state operations.

The rate of development and magnitude of faults have been set to nominal values in this case study. It will be of interest to know how small the fault parameters can be made whilst still maintaining good FDI performance.

8.1 Case 1: compressor contamination (core engine performance deterioration)

Failure “case 1”, represents fouling of the surfaces of the compressor blades, this reduces air flow, changes the blade aerodynamics and consequently changes the surface roughness. The failure is modelled as a gradual decrease in mass flow rate for a given pressure ratio. The fault dynamics is modelled by the submodel shown in Figure (8).

The maximum decrease in mass flow rate is set nominally at 5% while the fault development rate is set to (5% decrease of normal flow rate)/hour.
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Figure 8: Fault submodel

In order to design the component FDI scheme (
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), with respect to the turbine SIMULINK model, the subsystem depicted in Figure (9) was considered.
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Figure 9: The monitored subsystem.

The inputs for the subsystem are

, 

, 

and 

, while 

, 

and 

 are the outputs directly affected by the fault. 

The most sensitive signal to a ramp fault is 
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, depicted in Figure (10) on the left. In the same Figure on the right, the ramp fault is shown. 
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Figure 10: The 
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A second order (
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The diagnosis of the 
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 signal (linked to the faulty turbine component) requires the knowledge of the triple (
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) with 
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[image: image158.wmf]13

rd output 
[image: image159.wmf])

(

t

q

c

. Because of the deterministic case, in which 
[image: image160.wmf]0

)

(

~

,

0

)

(

~

=

=

t

t

y

u

, in system (5) the term 
[image: image161.wmf])

(

t

i

e

 was neglected (
[image: image162.wmf]0

)

(

=

t

i

e

).

Note how, in such a case, the fault is modelled as a ramp signal.

The fault detection of a fault regarding the compressor was performed by using the classical output observer configuration exploited for the FDI of output sensor faults (see Figure (11) on the left). The inputs 

, 

 and the output 

 feed the observer to estimate the signal 

 itself. The poles of the output observer for the signal 
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Figure 11: Observer scheme (left) and 
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The eigenvalues 
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, in fact,  were chosen to maximise the mean square error of the residual sensitivity 

 to a fault and minimise the mean square error of the residual in fault-free condition, 

. The minimum 

, where 

 is the cost function 

has to be found.

In Figure (11) on the right, the plot of the 
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The Figure (12) shows the estimate of the fault 

 obtained by computing the difference between the fault-free (solid line) and the faulty residual (dotted line) 

.
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Figure 12: The fault model (left) and the fault free and faulty residual (right).

8.2 Case 2: fault diagnosis on 

 thermocouple sensor
Failure "case 2" represents the malfunctioning of a thermocouple in the gas path leading to a slowly increasing or decreasing reading over time (Figure (13)). 

There is no limit placed on the error magnitude while the fault development rate is set to (5% error in measuring actual temperature)/hour.

In order to diagnose a single fault on the 

-th output sensor (

 and 

) when the measurement noises are negligible (

 and 

, 
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-th output observer (

) has the form
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where 
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 is the i-th observer state vector, 

 represents a fault on the 

-th output sensor and the triple (

,

,

) is a minimal state-space representation (completely observable) of the link among the inputs of the process and its 

-th output 

. 

In the absence of faults, it can be verified that, for the 

-th output 
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 is equal to zero. In the presence of a fault on the 

-th output sensor the 

-th output residual reaches a value different from zero and this situation leads to a complete failure diagnosis.
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Figure 13: Fault model on the output sensor.

In particular, diagnosis of the 

 output sensor (thermocouple fault, in Figure (13)) requires the knowledge of the triple (

,

,

) with 

 and the identification of an ARX model with two inputs which gives the prediction of the 

th output 
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A second order ARX MISO model (
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The poles of the output observer (depicted in Figure (14) on the right) were chosen near 
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in order to minimise the 
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An incipient fault (drift) was generated in the 

 output sensor (see Figure (14) on the left) of the SIMULINK model by adding a ramp function with a slope of 

 to the 

 output signals.  Moreover, it was decided to consider a fault during a transient since, in this case, the residual error due to ARX model approximation is maximum and therefore it represents the most critical case.

The fault occurring on the single sensor causes alteration of the sensor signal and of the residuals given by the output observer using this signal as input. These residuals indicate a fault occurrence when their values are lower or higher than the thresholds fixed in fault-free conditions
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Figure 14 : The 
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 signal and the output sensor FDI configuration.
Figure (15) shows the fault-free 

 (continuous line) and faulty 

 (dotted line) residual 

 obtained from the difference between the values computed by the observer related to the output 

 and the ones given by the sensor. Obviously, the non zero value of the residual is due to the ARX model approximation.

The drift (ramp fault) in Figure (16) starts at the instant 
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. Since the observer gives the estimate 

 of 

at the instant 

 using measurements available from the instant

 to 

, a fault occurring at the instant 

affects only 

. This change may produce an instantaneous peak which appears in Figure (16). They may be used as incipient detector of anomalous behaviour of the output sensors. 

Figure (16) shows the behaviour of the residual with the same fault as the previous case occurring at the instant 

 in different operating conditions of the plant. The fault free residual,

, is depicted in continuous line, whilst the faulty one, 

 using dotted line. The step which appear in the Figure is generated by the change related to the fault occurrence at the same instant.

Figure (17) depicts the dynamics of the drift 

 affecting the 

 output sensor and of the fault estimate obtained from the difference between the fault-free and the faulty residual. The peak which appears in the Figure (17), on the right, is generated by the instantaneous difference between measured and estimated output 

 and 

 at the instant 

 related to the fault occurrence.
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Figure 15: Residual function of the output observer.
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Figure 16: Residual function in a different operating point.
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Figure 17: Real (left) and estimated (right) fault function.

8.3 Case 3: High Pressure turbine seal damage (core engine performance deterioration)

Failure “case 3” represents failure of an HP turbine seal. This results in a reduction in turbine efficiency. The fault is modelled as a gradual reduction in turbine efficiency over time. The maximum decrease in turbine efficiency is set nominally at 5% while the fault development rate is set to (5% reduction of normal efficiency)/hour.

In order to detect such a fault, an output observer fed by the inputs 

, 

 and 

 is designed. In Figure (18) the subsystem generating the component fault is depicted.
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Figure 18: Fault Simulink subsystem.

In Figure (19) the plot of 
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Figure 19: The 
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The fault dynamics 

 and its estimate 

 obtained by the output observer are shown in Figure (20). 

Under noise-free conditions (
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, the observer was designed for a third order MISO model which gives a mean square reconstruction error equal to 

 and the eigenvalues were chosen near 
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Figure 20: Actual and estimated fault.

The scheme used to generate the redundant residual regarding the 

 is depicted in Figure (21) on the left. The fault free and the faulty residual are also shown in the Figure (21) on the right.





Figure 21: Residual generation scheme (left) and the observer residual (right).

8.4 Case 4: Fuel actuator friction wear

Failure “case 4”, depicted in Figure (22), represents the loss of performance due to wear of the fuel valve actuator. As there are no specific actuator dynamics in the current model, the wear effect of  the valve actuator causing slower response to demanded flow rates is modelled as a simple first order lag on the resulting fuel flow. The time constant increases linearly with the time to represent progressive wear damage to the actuator.



Figure 22: Actuator fault SIMULINK model.

For the diagnosis of the actuator, the subsystem represented in Figure (23) on the left was considered. In particular, the inputs of the turbine, the fuel flow, 

, the valve angle, 

 and the outputs 

, 

, 

, 

 and 

were considered. The additional signals, the speed demand 

, one of the inputs of the governor and 

, the third output of the turbine were also shown.

For each output, a third order ARX model with two inputs and one output was identified and a single fault was simulated and the most sensitive output to a fault regarding the actuator was determined. The 

 residual was the most sensitive, with a 
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The third order ARX parameter are collected in the parameter vector 
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In Figure (23) on the right is also depicted the observer scheme used to generate residual regarding the signal 

. 

, 

 and 

 are the inputs of the output observer used to estimate the 

 signal itself.
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Figure 23: The monitored subsystem (right) and the observer scheme (left).
Figure (24) depicts the dynamics of the 
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 signal (on the left) as well as the effects of the fault on the output measurement (on the right). 

is the residual obtained by the 

measurement in fault-free and faulty conditions. Because of the closed-loop configuration of the subsystem considered in Figure (24), the fault shape can not be described by using a ramp function
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Figure 24: The 
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An output observer (Figure (23)) to estimate 

 fed by the inputs 

 and 

 was designed. The eigenvalues 

 were chosen near 
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Figure (26) on the right shows how the fault occurring on the single sensor causes alteration of the input and output signals and of the residuals given by the output observer using the 

 signal as input. These residuals indicate a fault occurrence when their values are lower or higher than the thresholds fixed in fault-free conditions.

Figure (26) on the right shows the fault-free (solid line) and faulty (dotted line) residual 

 obtained from the difference between the values computed by the observer related to the output 

 and the ones given by the sensor.



Figure 25: The cost function 
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Figure 26: The fault-free (left) and the faulty residual (right).

In order to improve the fault detection capabilities of the proposed method regarding the "case4", another technique will be presented. A Kalman filter, used as parameter estimator, has been exploited in order to detect changes in parameters due to output faults. The system has the form
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(18)

where 

 is the parameter vector, 
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, the measurement vector, 

, 

 the order of the model, 

 a white process, in order to take into account the parameter variations for non stationary processes and 
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 the equation error term.

Figure (27) on the left depicts the recursive estimation of one entry of the parameter 

 of the MISO ARX model for the 

 output given by the Kalman filter (solid line) and the estimate computed by the OLS method (dotted line). Note how the real process with 

 and 

 as inputs and 

 as output is non stationary and the estimates are different.

The same Figure on the right shows the change of the most sensitive parameter due a fault, by using the Kalman filter for a third order ARX model (

), with a covariance matrix for the

 and 

 processes estimated from the OLS.
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Figure 26: Kalman filter parameter variations.

9 Fault Isolability

By performing residual sensitivity analysis, the Table (4) is obtained, in order to isolate different fault occurring at the same time.

Fault/




































Case 1
1
1
1
0
0
0
1
0
0
0
0

Case 2
0
0
0
0
0
0
0
0
1
0
0

Case 3
1
1
1
1
1
0
0
0
0
1
1

Case 4
1
1
1
0
1
1
0
1
0
0
0

Table 4: Fault signature.

In order to summarise the FDI capabilities of the presented schemes, Table (4) shows the "fault signatures" in case of a single fault in each actuator, component and sensor. The residuals which are affected by faults are marked with the presence of `1' in the correspondent table entry, while an entry `0' means that the fault does not affect the correspondent residual.

The highlighted entries in the Table represent the residuals affected by the same faults. The bold `1's are the distinguishable residuals (they are bigger than a fixed threshold).

Note how multiple faults in actuator, components and sensor can be isolated since a fault affects only the residual function of the observer driven by the same output.

9 FDI in stochastic environment

In this paragraph, a FDI technique based on Kalman filters designed in stochastic environment is presented. Such a design is enhanced by processing the noisy data according to the Frisch Scheme identification method. Moreover, fault size estimation can be performed by means of different neural network architectures. In particular, neural networks can be used as function approximators to estimate single sensor fault size. The proposed fault diagnosis tool in stochastic environment is tested on the power plant in the previous section.

9.1 Fault estimation device

The fault detection and diagnosis system produces and elaborates a set of residuals from which it will be possible to estimate the amplitudes of the faults regarding actuators, components and input-output sensors. With reference to Figure (28) the symptom generator is designed to produce a set of signals which are somehow redundant. These signals are differences between estimated signals given by Kalman filters and the actual ones supplied by the sensors.
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Figure 27 : Logic diagram of the fault detection system.
In order to experiment with learning capabilities of artificial neural networks, on which the diagnosis device in Figure (28) is based, a bank of classic Kalman filters are used. The number of filters is equal to the number 
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 of system outputs, and each filter is driven by a single output measurement and all the inputs of the plant. Because of this configuration, the diagnosis of faults is indeed very easy, since each output measurement is directly connected to a single residual generator.

The basic principle of fault detection by using Kalman filtering is illustrated in Figure (29).
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Figure 28: Bank of Kalman filters and NNs for residual generation and estimation.

With reference to the time-invariant, discrete-time, linear dynamic system described by a minimal state-space realisation (
[image: image223.wmf]i

A

,
[image: image224.wmf]i

B

,
[image: image225.wmf]i

C

) of the input-output MISO system (16) (Soderstrom & Stoica, 1987), the 
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-th Kalman filter has the structure (Jazwinski, 1970):
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(19)

The variable 
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 given by the filter. A Riccati equation is used to compute the time-variant gain of the filter 
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 is a white process when all the assumptions regarding the system (
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9.2 Identification procedure
The Frisch Scheme can be applied to perform the dynamic system identification of the plant (Frisch, 1934; Kalman, 1982; Kalman, 1990; Beghelli, 1990; Beghelli, 1992). Such a Scheme permits to determine the linear discrete dynamic system which has generated the noisy sequences as well as the variances of the noises 
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corrupting the data. In the Frisch Scheme these signals are assumed white noises, mutually uncorrelated and uncorrelated with every component of 
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The Table (5) summarises the reconstruction errors concerning the MISO models in the form (16) with two inputs (
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) and each monitored output variable, as output.

Variable
Name
Model order



Accuracy
Ref.




Pressure
2
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Torque
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Temperature
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Table 5: Frisch Scheme model reconstruction errors.

Table (6) collects parameters of second order models (
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) as well as the input and output noises.

Variable
Model parameters 
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Input noises 
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[-0.0295, 1.0054, 0.1369, -0.1328, 0.0402, -0.0232]
[0.0004, 0.0023]
0.0026




[0.6655, 0.2885, -0.0579, 0.0651, 0.2408, -0.2065]
[0.0004, 0.0023]
0.0026




[-0.9920, 1.9904, -0.0179, 0.0181, 0.0111, -0.0100]
[0.0004, 0.0023]
0.0015




[-1.1760, 2.1882, 0.0283, -0.0311, -0.3202, 0.3133]
[0.0004, 0.0023]
0.0024

Table 6: Frisch 
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 order model parameters and noise variances.

On the basis of the data collected in Table (6), four Kalman filters with two inputs and one output were designed.

The detection strategy which is commonly chosen in connection with Kalman filtering methods for failures detection, consists in monitoring the innovations 
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. Because of the linear property of system (1) and because of the additive effect of the faults on the system, it may easily be shown that the effect of the change on the innovation is also additive. Any change in measurements due to a fault is reflected in a change in the mean and in the standard deviation of 
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. In particular, since the Kalman filter produces zero-mean and independent white residuals with the system in normal operation, a method for failure detection and isolation consists in testing how much the sequence of innovations has deviated from the white noise hypothesis. The tests which can be performed on the innovations are the usual ones for zero-mean and variance, as cumulative sum algorithms as well as independence, as 
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If a system abnormality occurs, the statistics of 
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 change, so its comparison with a threshold fixed under no faults conditions, becomes the detection rule.

In Figures (30), (31), (32) and (33) the examples of the turbine FDI performed by using the residual generated by the Kalman filter with two inputs and one output are shown.

In particular, Figure (30) on the left shows the value of the fault 
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 affecting the 
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 residual (case 1), whilst Figure (30) on the right depicts fault-free and faulty residuals generated by the Kalman filter. It is driven by the input sensor signal 
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 causes a change in the value of the residual computed in fault-free condition (see Figure (30) on the right).

It is important to note that, in order to achieve the maximal fault detection capability, the residual corresponding to the most sensitive filter to a failure on the 
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 measurement was selected, in accordance with Table (4).
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Figure 30: Component (case 1) fault (left) and Kalman filter residuals (right) .
Figure (31) on the left shows the value of the 
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 and the ones measured by the sensor, are shown. Obviously, the non-zero value of the residual in fault-free conditions is due to the ARX model approximation and to the actual measurement noise.
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Figure 31: Output (case 2) sensor fault (left) and Kalman filter residuals (right).

Figure (32) on the right shows the behaviour of the residual when a fault 
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, the monitored signal for the FDI of a component of the turbine (see Table (4)). Figure (32) on the right depicts the fault-free residual and its change due to the fault occurrence, as the previous cases.

Finally, Figure (33) on the right shows the change in the fault-free residual concerning the 
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 measurement due to an actuator fault (case 4). The 
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. The fault is depicted in Figure (33) on the left. In Figure (33) on the right the fault-free and the faulty residuals are shown.
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Figure 32: Component (case 3) fault and Kalman filter residuals (right).
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Figure 33: Actuator fault (case 4) and Kalman filter residuals (right).

11 Minimal detectable faults
Table (7) summarises the performance of the fault detection and isolation technique both in the deterministic and stochastic environment. The Table collect the minimal detectable fault on the four measurements, in case the residual or innovation value is monitored using a geometrical test and fixed thresholds.

The minimal detectable fault values in Tables (7) are expressed as percentage of the signal values and are relative to the case in which the occurrence of a fault must be detected as soon as possible.

Fault Case
Deterministic environment
Stochastic environment
Detection delay

Case 1
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Table 7 : Minimum detectable faults by monitoring residual and innnovation values.
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Figure 29: Detection delay definition.
It results that the values of the faults obtained by using geometrical analysis on Kalman filter innovations, collected in Table (7), are different than the ones reported in the same Table and computed in the deterministic environment exploiting classical observers. 

Table (7) shows how faults modelled by ramp functions may not be immediately detected, since the delay in the corresponding alarm normally depends on fault mode.

The minimal detectable fault can be found by fixing a detection delay, defined in Figure (34). If a delay in detection is tolerable the amplitude of the minimal detectable fault is lower. 

The minimal detectable faults on the various sensors seem to be adequate to the industrial diagnostic applications, by considering also that the minimal detectable faults can be reduced if a delay in detection promptness is tolerable.

12 Fault diagnosis neural networks
In recent years, neural networks have been exploited successfully in pattern recognition as well as function approximation theory and they have been proposed as a possible technique for fault diagnosis, too. Neural networks can handle non-linear behaviour and partially known process.

The aim of this paragraph is to suggest how artificial neural networks can be exploited to approximate a large class of functions, for fault diagnosis of an industrial plant. In particular, the problem of the estimate of the slope of faults concerning actuators, components and output sensors of an industrial gas turbine can be solved. Faults modelled by ramp functions create changes in several residuals obtained by using dynamic observers (Kalman filters) of the process under examination. A neural network can be used in order to find the connection from a particular fault regarding input and output sensors to a particular residual. Residuals are dependent only on sensors faults. Therefore, the neural network evaluates patterns of residuals, uniquely related to particular fault conditions (Simani et al., 1998; Simani et al., 1999).

12 Conclusions and future work

The complete design procedure for FDI in actuators, components and output sensors of an industrial process is also described in this report. 

The fault diagnosis is performed by using a bank of dynamic observers or, when the measurement noises are not negligible, a bank of Kalman filters. Single fault on the input sensors and multiple faults on the output sensors have been considered

The suggested method does not require the physical knowledge of the process under observation since the input-output links are obtained by means of an identification scheme, which uses ARX models in case of high signal to noise ratios or errors-in-variables models, otherwise. In last situation the identification technique (Frisch scheme) gives the variances of the input-output noises, which are required in the design of the Kalman filters.

Such a procedure has been applied to a model of a single-shaft industrial gas turbine. In order to analyse the diagnostic effectiveness of the FDI system in the presence of  changes or drifts in measurements, faults modelled by ramp functions were generated. 

The results obtained by this approach indicate that the minimal detectable faults on the output sensors are of interest for the industrial diagnostic applications. 
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