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Abstract
For the improvement of reliability, safety and efficiency advanced methods of supervision, fault-detection and fault diagnosis become

increasingly important for many technical processes. This holds especially for safety related processes like aircraft, trains, automobiles, power

plants and chemical plants. The classical approaches are limit or trend checking of some measurable output variables. Because they do not

give a deeper insight and usually do not allow a fault diagnosis, model-based methods of fault-detection were developed by using input and

output signals and applying dynamic process models. These methods are based, e.g., on parameter estimation, parity equations or state

observers. Also signal model approaches were developed. The goal is to generate several symptoms indicating the difference between nominal

and faulty status. Based on different symptoms fault diagnosis procedures follow, determining the fault by applying classification or inference

methods. This contribution gives a short introduction into the field and shows some applications for an actuator, a passenger car and a

combustion engine.
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1. Introduction

Within the automatic control of technical systems,

supervisory functions serve to indicate undesired or not

permitted process states, and to take appropriate actions in

order to maintain the operation and to avoid damage or

accidents. The following functions can be distinguished:
(a) m
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onitoring: measurable variables are checked with

regard to tolerances, and alarms are generated for the

operator;
(b) a
utomatic protection: in the case of a dangerous process

state, the monitoring function automatically initiates an

appropriate counteraction;
(c) s
upervision with fault diagnosis: based on measured

variables, features are calculated, symptoms are
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generated via change detection, a fault diagnosis is

performed and decisions for counteractions are made.
The big advantage of the classical limit-value based s-

upervision methods (a) and (b) is their simplicity and rel-

iability. However, they are only able to react after a relatively

large change of a feature, i.e., after either a large sudden fault

or a long-lasting gradually increasing fault. In addition, an

in-depth fault diagnosis is usually not possible. Therefore (c)

advanced methods of supervision and fault diagnosis are

needed which satisfy the following requirements:
(1) E
arly detection of small faults with abrupt or incipient

time behavior;
(2) D
iagnosis of faults in the actuator, process components

or sensors;
(3) D
etection of faults in closed loops;
(4) S
upervision of processes in transient states.
A general survey of supervision, fault-detection and diag-

nosis methods is given in (Isermann, 1997). In the following

model-based fault-detection methods are considered, which

allow a deep insight into the process behavior.
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Fig. 1. General scheme of process model-based fault-detection and diag-

nosis.

Fig. 3. Time-dependency of faults: (a) abrupt; (b) incipient; (c) intermittent.
2. Process model-based fault-detection methods

Different approaches for fault-detection using mathema-

tical models have been developed in the last 20 years, see,

e.g., (Chen & Patton, 1999; Frank, 1990; Gertler, 1998;

Himmelblau, 1978; Isermann, 1984, 1997; Patton, Frank, &

Clark, 2000; Willsky, 1976). The task consists of the

detection of faults in the processes, actuators and sensors by

using the dependencies between different measurable

signals. These dependencies are expressed by mathematical

process models. Fig. 1 shows the basic structure of model-

based fault-detection. Based on measured input signals U
and output signals Y, the detection methods generate

residuals r, parameter estimates Q̂ or state estimates x̂,

which are called features. By comparison with the normal

features (nominal values), changes of features are detected,

leading to analytical symptoms s.

For the application of model-based fault-detection

methods, the process configurations according to Fig. 2
Fig. 2. Process configuration for model-based fault-detection: (a) SISO

(single-input single-output); (b) SISO with intermediate measurements; (c)

SIMO (single-input multi-output); (d) MIMO (multi-input multi-output).
have to be distinguished. With regard to the inherent

dependencies used for fault-detection, and the possibilities

for distinguishing between different faults, the situation

improves greatly from case (a) to (b) or (c) or (d), by the

availability of some more measurements.

2.1. Process models and fault modeling

A fault is defined as an unpermitted deviation of at least

one characteristic property of a variable from an

acceptable behavior. Therefore, the fault is a state that

may lead to a malfunction or failure of the system. The

time dependency of faults can be distinguished, as shown

in Fig. 3, abrupt fault (stepwise), incipient fault (drift-

like), intermittent fault. With regard to the process models,

the faults can be further classified. According to Fig. 4

additive faults influence a variable Y by an addition of the

fault f , and multiplicative faults by the product of another

variable U with f . Additive faults appear, e.g., as offsets of

sensors, whereas multiplicative faults are parameter

changes within a process.

Now lumped-parameter processes are considered, which

operate in open loop. The static behavior (steady states) is

frequently expressed by a non-linear characteristic as shown

in Table 1. Changes of parameters bi can be obtained by

parameter estimation with, e.g., methods of least squares,

based on measurements of different input–output pairs

[Yj,Uj]. This method is applicable, e.g., for valves, pumps,

drives, engines.

More information on the process can usually be obtained

with dynamic process models. Table 2 shows the basic

input/output models in form of a differential equation or a

state space model as vector differential equation. Similar

representations hold for non-linear processes and for multi-

input multi-output processes, also in discrete-time.
Fig. 4. Basic models of faults: (a) additive fault; (b) multiplicative faults.
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Table 1

Fault-detection of a non-linear static process via parameter estimation for

steady states
2.2. Fault-detection with parameter estimation

Process model-based methods require the knowledge of a

usually dynamic process model in form of a mathematical

structure and parameters. For linear processes in continuous

time the models can be impulse responses (weighting

functions), differential equations of frequency responses.

Corresponding models for discrete-time (after sampling) are

impulse responses, difference equations or z-transfer

functions. For fault-detection in general differential equa-
Table 2

Linear dynamic process models and fault modeling
tions or difference equations are primarily suitable. In most

practical cases the process parameters are partially not

known or not known at all. Then, they can be determined

with parameter estimation methods by measuring input and

output signals if the basic model structure is known. Table 3

shows two approaches by minimization of the equation error

and the output error. The first one is linear in the parameters

and allows therefore direct estimation of the parameters

(least squares estimates) in non-recursive or recursive form.

The second one needs numerical optimization methods and

therefore iterative procedures, but may be more precise

under the influence of process disturbances. The symptoms

are deviations of the process parameters DQ. As the process

parameters Q ¼ f ðpÞ depend on physically defined process

coefficients p (like stiffness, damping coefficients, resis-

tance), determination of changes Dp allows usually a deeper

insight and makes fault diagnosis easier (Isermann, 1992).

Parameter estimation methods operate with adaptive process

models, where only the model structure is known. They

usually need a dynamic process input excitation and are

especially suitable for the detection of multiplicative faults.

2.3. Fault-detection with observers

If the process parameters are known, either state

observers or output observers can be applied, Table 4. Fault

modeling is then performed with additive faults fL at the
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Table 3

Fault-detection with parameter estimation methods for dynamic processes
input (additive actuator or process faults) and fM at the

output (sensor offset faults).

2.3.1. State observers

The classical state observer can be applied if the faults

can be modeled as state variable changes Dxi as, e.g., for

leaks. In the case of multi-output processes special

arrangements of observers were proposed:

2.3.1.1. Dedicated observers for multi-output processe-

s. Observer, excited by one output. One observer is driven

by one sensor output. The other outputs y are reconstructed

and compared with measured outputs y. This allows the

detection of single sensor faults (Clark, 1978).

Bank of observers, excited by all outputs. Several state

observers are designed for a definite fault signal and detected

by a hypothesis test (Willsky, 1976).

Bank of observers, excited by single outputs. Several

observers for single sensor outputs are used. The estimated

outputs y are compared with the measured outputs y. This

allows the detection of multiple sensor faults (Clark, 1978)

(dedicated observer scheme).

Bank of observers, excited by all outputs except one. As

before, but each observer is excited by all outputs except one

sensor output which is supervised (Frank, 1987).

2.3.1.2. Fault-detection filters (fault-sensitive filters) for

multi-output processes. The feedback H of the state
observer is chosen so that particular fault signals fL(t)

change in a definite direction and fault signals fM(t) in a

definite plane (Beard, 1971; Jones, 1973).

2.3.2. Output observers

Another possibility is the use of output observers (or

unknown input observers) if the reconstruction of the state

variables x(t) is not of interest. A linear transformation then

leads to new state variables jðtÞ. The residuals r(t) can be

designed such that they are independent of the unknown

inputs v(t), and of the state by special determination of the

matrices Cj and T2. The residuals then depend only on the

additive faults fL(t) and fM(t). However, all process model

matrices must be known precisely. A comparison with the

parity equation approach shows similarities.

2.4. Fault-detection with parity equations

A straightforward model-based method of fault-detection

is to take a fixed model GM and run it parallel to the process,

thereby forming an output error, see Table 5.

r0ðsÞ ¼ ½GpðsÞ � GMðsÞ�uðsÞ (1)

If Gp(s) = GM(s), the output error then becomes for additive

input and output faults, Table 2.

r0ðsÞ ¼ GpðsÞ fuðsÞ þ fyðsÞ (2)
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Table 4

Fault-detection with observers for dynamic processes
Another possibility is to generate an equation error (poly-

nominal error) or an input error as in Table 6 (Gertler, 1998).

The residuals depend in all cases only on the additive

input faults fu(t) and output faults fy(t). The same procedure

can be applied for multivariable processes by using a state

space model, see Table 6.

The derivatives of the signals can be obtained by state

variable filters (Höfling, 1996). Corresponding equations

exist for discrete-time and are easier to implement for the

state space model. The residuals shown in Tables 5 and 6 left

are direct residuals. If the parity equations are formulated for

more than one input and one output, it becomes possible to

generate structured residuals such that faults do not

influence all residuals. This improves the isolability of

faults (Gertler, 1998). For example, the components of

matrix W for the state space model, Table 6 right, are

selected such that, e.g., one measured variable has no impact

on a specific residual. Parity equations are suitable for the
detection and isolation of additive faults. They are simpler to

design and to implement than output observer-based

approaches and may be made to lead to the same results.

2.5. Fault-detection with signal models

Many measured signals y(t) show oscillations that are of

either harmonic or stochastic nature, or both. If changes in

these signals are related to faults in the process, actuator or

sensor, a signal analysis is a further source of information.

Especially for machine vibration, sensors for position, speed

or acceleration are used to detect, for example, imbalance

and bearing faults (turbo machines), knocking (Diesel

engines) or chattering (metal-grinding machines) (Kolerus,

2000). But also signals from many other sensors, like

electrical current, position, speed, force, flow and pressure,

may show oscillations with a variety of higher frequencies

than the usual process dynamic responses. The extraction of
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Table 5

Fault-detection with different forms of parity equations for linear input/output models
fault-relevant signal characteristics can in many cases be

restricted to the amplitudes y0(v) or amplitude densities

jy(iv)j within a certain bandwidth vmin 
 v 
 vmax of the

signal by using of bandpass filters. Also parametric signal
Table 6

Fault-detection with parity equations for dynamic processes
models can be used, which allow the main frequencies and

their amplitudes to be directly estimated, and which are

especially sensitive to small frequency changes. This is

possible by modeling the signals as a superposition of

damped sinusoids in the form of discrete-time ARMA

(autoregressive moving average) models (Burg, 1968;

Neumann, 1991).
3. Fault diagnosis methods

The task of fault diagnosis consists of the determination

of the type of fault with as many details as possible such as

the fault size, location and time of detection. The diagnostic

procedure is based on the observed analytical and heuristic

symptoms and the heuristic knowledge of the process. The

inputs to a knowledge-based fault diagnosis system are all

available symptoms as facts and the fault-relevant knowl-

edge about the process, mostly in heuristic form. The

symptoms may be presented just as binary values [0,1] or as,

e.g., fuzzy sets to take gradual sizes into account.

3.1. Classification methods

If no further knowledge is available for the relations

between features and faults classification or pattern

recognition methods can be used, Table 7. Here, reference

vectors Sn are determined for the normal behavior. Then the

corresponding input vectors S of the symptoms are
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Table 7

Methods of fault diagnosis
determined experimentally for certain faults Fj. The

relationship between F and S is therefore learned (or

trained) experimentally and stored, forming an explicit

knowledge base. By comparison of the observed S with the

normal reference Sn, faults F can be concluded.

One distinguishes between statistical or geometrical

classification methods, with or without certain probability

functions (Tou & Gonzalez, 1974). A further possibility is

the use of neural networks because of their ability to

approximate non-linear relations and to determine flexible

decision regions for F in continuous or discrete form

(Leonhardt, 1996). By fuzzy clustering the use of fuzzy

separation areas is possible.

3.2. Inference methods

For some technical processes, the basic relationships

between faults and symptoms are at least partially known.

Then this a priori knowledge can be represented in causal

relations: fault ! events ! symptoms. Table 7 shows a

simple causal network, with the nodes as states and edges as

relations. The establishment of these causalities follows the

fault-tree analysis (FTA), proceeding from faults through

intermediate events to symptoms (the physical causalities)

or the event-tree analysis (ETA), proceeding from the

symptoms to the faults (the diagnostic forward-chaining

causalities). To perform a diagnosis, this qualitative
knowledge can now be expressed in form of rules: IF

<condition> THEN <conclusion>. The condition part

(premise) contains facts in the form of symptoms Si as

inputs, and the conclusion part includes events Ek and faults

Fj as a logical cause of the facts. If several symptoms

indicate an event or fault, the facts are associated by AND

and OR connectives, leading to rules in the form
� I
F < S1 AND S2 > THEN <E1>

� I
F < E1 OR E2 > THEN <F1>.

For the establishment of this heuristic knowledge several

approaches exist, see (Torasso & Console, 1974). In the

classical fault-tree analysis the symptoms and events are

considered as binary variables, and the condition part of the

rules can be calculated by Boolean equations for parallel-

serial-connection, see, e.g. (Barlow & Proschan, 1975; Fr-

eyermuth, 1993). However, this procedure has not proved to

be successful because of the continuous nature of faults and

symptoms. For the diagnosis of technical processes appr-

oximate reasoning is more appropriate. A recent survey on

learning methods for rule-based diagnosis is given in (Füssel

& Isermann, 2000).

The summary of some basic fault-detection and diagnosis

methods presented in Sections 2 and 3 was limited to linear

processes mainly. Some of the methods can also be directly

applied for non-linear processes, as e.g., signal analysis,

parity equations and parameter estimation. However, all the

methods have to be adapted to the real processes. In this

sense the basic methods should be considered as ‘‘tools’’,

which have to be combined properly in order to meet the

practical requirements for real faults of real processes.
4. Applications of model- and signal-based fault

diagnosis

In the following some results from case studies and in-

depth investigations of model-based fault-detection methods

are briefly described. The examples are selected such that

they show different approaches and process adapted

solutions which can be transferred to other similar technical

processes.

4.1. Fault diagnosis of a cabin pressure outflow valve

actuator of a passenger aircraft

The air pressure control in passenger aircraft is manipu-

lated by DC motor driven outflow valves. The design of the

outflow valve is made fault tolerant by two brushless DC

motors which operate over the gear to a lever mechanism

moving the flap, Fig. 5. The two DC motors form a

duplex system with dynamic redundancy and cold standby,

Fig. 6. Therefore, a fault-detection for both DC motors is

required to switch from the possibly faulty one to the

standby motor.
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Fig. 5. Actuator servo-drive for cabin pressure control (Nord Micro).
In the following it is shown how the fault-detection was

realized by combining parameter estimation and parity

equations with implementation on a low cost microcon-

troller (Moseler & Isermann, 2000a; Moseler, Heller, &

Isermann, 1999; Moseler & Müller, 2000).

A detailed model of the brushless DC motor for all three

phases is given in (Isermann, 2003a; Moseler et al., 1999). It

could be shown that for the case of fault-detection averaged

values (by low pass filter) of the voltage U(t) and the current

I(t) to the stator coils can be assumed. This leads to the

voltage equation of the electrical subsystem.

UðtÞ � kEvrðtÞ ¼ RIðtÞ (3)

with R the overall resistance and kE the magnetic flux

linkage. The generated rotor torque is proportional to the

effective magnetic flux linkage kT < kE

TrðtÞ � kTIðtÞ (4)

(In ideal cases kE = kT). The mechanical part is then

described by

Jrv̇rðtÞ ¼ kTIðtÞ � TfðtÞ � TLðtÞ (5)
Fig. 6. Redundant DC motor drive
with the moment of inertia Jr, and the Coulomb friction

torque

TfðtÞ ¼ cf signvrðtÞ (6)

and the load torque TL(t). The gear ratio v relates the motor

shaft position fr to the flap position fg

’g ¼ ’r

n
(7)

with n = 2500. The load torque of the flap is a non-linear

function of the position fg

TL ¼ cs f ð’gÞ
and is approximately known around the steady-state opera-

tion point. (For the experiments the flap was replaced by a

lever with a spring). For fault-detection following measure-

ments are available: U(t), I(t), fr(t), fg(t). Using the notation

yðtÞ ¼ cTðtÞu (8)

two equations were used for parameter estimation

� electrical subsystem
sys
yðtÞ ¼ UðtÞ; cTðtÞ ¼ ½IðtÞvrðtÞ�;

uT ¼ ½RkE�
(9)

mechanical subsystem
�

yðtÞ ¼ kTIðtÞ � cs f ð’gðtÞ � Jrv̇rðtÞÞ

cTðtÞ ¼ ½signvrt�; uT ¼ ½cf �ðJr knownÞ (10)

Hence, three parameters R
_

, k
_

E, and c
_

f are estimated. Various

parameter estimation methods were applied like: recursive

least squares (RLS), discrete square root filtering (DSFI),

fast DSFI (FSDFI), normalized least mean squares (NLMS)

and compared. The parity equations are obtained from the

basic two Eqs. (3) and (5) by assuming known parameters

(obtained from parameter estimation)

r1ðtÞ ¼ UðtÞ � RIðtÞ � kEvrðtÞ (11)

r2ðtÞ ¼ kTIðtÞ � Jrv̇rðtÞ � cf signvrðtÞ � cs f ð’gÞ (12)

r3ðtÞ ¼ UðtÞ � R

kT

ðJrv̇rðtÞ þ cs f ð’gÞ þ cf signvrðtÞ

þ kEvrðtÞ (13)
tem for the outflow valve.
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Fig. 7. Resulting symptoms from parameter estimation and parity equations

by measuring U(t), I(t), v(t),fg(t) and fr(t).

Table 8

Parameter deviations and parity equation residuals for different actuator

faults (0 no significant change; + increase; ++ large increase; � decrease;

�� large decrease)

Faults Parameter estimates Residuals of parity equations

R̂ k̂E ĉf r1 r2 r3 r4

Incr. R + 0 0 + 0 + 0

Incr. cf 0 0 ++ + �� ++ 0

Offset U + + 0 ++ 0 ++ 0

Offset fg 0 0 0 + 0 0 0

Offset Ib ++ � �� ++ ++ 0 ��
r4ðtÞ ¼ ’gðtÞ �
’rðtÞ

v
(14)

Each of the residuals is decoupled from one measured

signal. r1 is independent from fg, r2 from U, r3 from I, r4

from all but fr. (fr is assumed to be correct. It can directly be

supervised by a logic evaluation within the motor electro-

nics). Fig. 7 shows measured signals, parameter estimates

and residuals for five different implemented faults. The

actuator was operating in closed loop with slow triangle

changes of the reference variable (setpoint). The fault-

detection methods, including differentiating filter (SVF)

were implemented on a digital signal processor TI TMS

320 C40 with signal sampling period T0 = 1 ms. The results

for fault-detection are summarized in Table 8.

The sign and size of changes for the parameter estimates

with FDSFI clearly allow to identify the parametric faults

and for the parity residuals the respective additive (offset)

sensor faults. But there are also cross couplings: for para-

metric faults some residuals show changes and for sensor

additive faults some parameter estimates change (except for

fg), which can all be interpreted by the equations used.

According to (Gertler, 1998) the symptom pattern is weakly

isolating as a parametric fault of R and an additive fault in U

differ only in one symptom. However, all faults can be

isolated. Including the standard deviation of the symptoms

isolability can be improved (Moseler, 2001). By processing

eight symptoms with a rule-based fuzzy-logic diagnosis

system, finally 10 different faults could be diagnosed (Mose-

ler and Müller, 2000b; Moseler, 2001).

If the input signal U stays approximately constant, only

parity equations should be applied, which then may indicate

faults. Then for isolating or diagnosing the faults a test

signal on U can be applied for short time to gain deeper

information. Hence, by applying both parameter estimation

and parity equations a good fault coverage can be obtained.

Because the position sensors of the rotor fr and the shaft fg

yield redundant information, sensor fault-detection for fg

was used to reconfigure the closed loop after failure of fg

by using fr as control variable (Moseler, 2001). The

described combined fault-detection methodology needs

about 8 ms calculation time on a 16 bit microcontroller.

Therefore, online implementation in a smart actuator is

possible by only measuring four easy accessible variables

U, I and vr and fg.

4.2. Supervision of the lateral driving behavior of

passenger cars

Based on theoretical modeling of the lateral behavior of a

passenger car, the characteristic velocity is considered as a

parameter determining the kind of the steering behavior, like

understeering or oversteering. This characteristic value is

used as a ‘‘fault-detection feature’’ due to Fig. 1 to classify the

behavior with regard to normal or critical driving behavior and

such indicating also faulty behavior, like instability.

R. Isermann / Annual Revie
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Table 9

Symbols for vehicle variables and parameters

Symbol Description Value Unit

x Longitudinal position error – [m]

y Lateral position error – [m]

z Vertical position error – [m]

c Yaw angle – [rad]

d Steering angle – [rad]

dst Steering wheel angle – [rad]

b Side slip angle – [rad]

m vehicle mass 1720 [kg]

Jz Mom. of inertia, z-axis 2275 [kg m2]

v Longitudinal velocity – [m/s]

c’aF Effective front wheel cornering stiffness 50000 [N/rad]

caR Rear wheel cornering stiffness 60000 [N/rad]

lF,lR Length of front, rear axle from CG 1.3/1.43 [m]

l Length between front and rear axle 2.73 [m]

ist Steering system gear ratio 13.5 [–]

r Radius – [m]

Fxr Longitudinal force acting on rear tire – [N]

FxF Longitudinal force acting on front tire – [N]

FyR Side force acting on rear tire – [N]

FyF Side force acting on front tire – [N]

Fig. 8. Scheme for modeling the lateral vehicle behavior with a one-track

model.
4.2.1. Vehicle model

For deriving the lateral dynamics, a coordinate system is

fixed to the center of gravity (CG) and Newton’s laws are

applied, Fig. 8. Roll, pitch, bounce, and deceleration dynamics

are neglected to reduce the model to two degrees of freedom:

the lateral position and yaw angle states. The resulting non-

linear dynamic model, known as the one-track model, is

ÿ

c̈

� �
¼

� c
0
aF þ caR þ mv̇

mv

caRlR � c
0
aFlF

mv

caRlR � c
0
aFlF

Jzv
� caRl2R þ c

0
aFl2

F

Jzv

2
664

3
775 ẏ

ċ

� �

þ

c
0
aF

mist

c
0
aFlF
Jsist

2
6664

3
7775dst (15)

see, e.g. (Isermann, 2001). The symbols are explained in

Table 9. Although the one-track model is relatively simple, it

has been proven to be a good approximation for vehicle

dynamics when lateral acceleration is limited to 0.4 g on

normal dry asphalt roads.

4.2.2. Stability of vehicles

Based on the state equation of the one-track model the

characteristic equation det (s I -A) = 0 of the lateral vehicle

dynamics becomes

s2 þ ðJz þ ml2
FÞc

0
aF þ ðJz þ ml2

RÞcaR

Jzmv

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{a1

s

þ c
0
aFcaRðlF þ lRÞ2 þ mv2ðcaRlR � c

0
aFlFÞ

Jzmv2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{a0

¼ 0 (16)

According to the Hurwitz stability criterion, stability

requires that a1 > 0 and a0 > 0. As a1 > 0 is always satis-
fied, because no negative values arise, only a0 has to be

considered. With the characteristic velocity

v2
chðtÞ ¼

c
0
aFðtÞcaRðtÞ2

mðcaRðtÞlR � c
0
aFðtÞlFÞ

(17)

the following stability condition results:

c
0

aFcaRðlF þ lRÞ2 þ mv2ðcaRlR � c
0

aFlF

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{a0

> 0) 1 þ v2

v2
ch

> 0

(18)

4.2.3. Circular test drive

A stationary circular test drive is now assumed. The

dynamic equation of motion leads to the algebraic

relationship

ċðtÞ
dstðtÞ

¼ 1

istl

vðtÞ
1 þ ðvðtÞ=vchðtÞÞ2

(19)

With the measured steering wheel angle dst as the input, the

velocity vðtÞ and the yaw rate ċðtÞ as the output, the

quadratic characteristic velocity v2
chðtÞ follows from (19)

v2
chðtÞ ¼ � v2ðtÞ

1 � ðdstðtÞvðtÞ=ċðtÞistlÞ
(20)

Introducing the steering wheel angle dst,0(t) for neutral

steering yields in (19) with n� nch

dst

dst;0
¼ 1 þ v2

v2
ch

(21)

This leads to the definition of neutral-, under- and over-

steering:



R. Isermann / Annual Reviews in Control 29 (2005) 71–85 81

Fig. 9. Steering gain ratio in dependence on the speed n2 and characteristic

velocity v2
ch.
� i
Ta

Cl
f v2
ch ! �1 then neutralsteering behavior;
� i
f v2
ch > 0 then understeering behavior;
� i
f v2
ch ¼ 0 then indifferent behavior;
� i
f v2
ch < 0 then oversteering behavior.

Fig. 9 shows the different situations.

4.2.4. Characteristic velocity stability indicator CVSI

A driving situation detection is developed via the

calculation of the characteristic velocity nch and a driving

situation decision logic. The input of the model is the

steering wheel angle signal dst. As output signal the yaw rate

sensor ċ can be used to calculate the characteristic velocity

nch, see (20). With help of the on-line calculated

characteristic velocity nch, the over ground velocity v, and

the steering wheel angle dst the current driving situation can

be detected. For small steering angles dst < dst,L, it is
ble 10

assification of different driving conditions (L: logical AND)
assumed that the driving condition is mainly a straight run,

just compensating for disturbances. If dst � dst,L cornering

can be assumed. Then a classification of different driving

situations can be made as shown in Table 10 (Börner,

Andréani, Albertos, & Isermann, 2002) with an indicator

called characteristic velocity stability indicator (CVSI).

4.2.5. Experimental results

The following results are based on experimental data,

which have been obtained using an Opel Omega vehicle on

an airfield runway (Börner, 2004).

The test vehicle is equipped with special sensors for

measuring the following signals: the steering wheel angle

dst, lateral acceleration ÿ, yaw rate ċ, and ABS velocity n1.4.

The passenger cars velocity v has a large influence on the

vehicles stability. Fig. 10 shows the behavior for a double

lane change. After starting cornering, the vehicle shows first

understeering, then neutral steering and oversteering

behavior. At t = 16.4 and 17.8 s for a short time unstable

behavior with counter steering can be observed. Further

examples are shown in (Börner, 2004).

4.3. Combustion engines

Because of increased sensors, actuators and electronic

functions the diagnosis of faults in combustion engines gets

more complicated. However, model-based fault-detection

offers new approaches by using the electronic control units

not only for control but also for increased model-based fault

diagnosis. Therefore an overall fault-diagnosis system for

Diesel engines is briefly described. The inlet system, the

injection and combustion as well as the exhaust system have

been considered. The methods are based on an appropriate

signal processing of measurable signals using signal- and

process models to generate physically related features,
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Fig. 10. Double lane change with speed v = 12 m/s: (a) steering angle; (b) yaw-rate; (c) CVSI: characteristic velocity indicator.
residuals and symptoms. Former publications on fault-

detection of gasoline engines are, for example (Krishnas-

wami, Luth, & Rizzoni, 1995; Rizzoni & Samimy, 1996) or

(Nielsen & Nyberg, 1993).

Fig. 11 shows the concept for the developed model-based

fault-detection and diagnosis of the complete engine, see

also (Kimmich, Schwarte, & Isermann, 2005; Schwarte,

Kimmich, & Isermann, 2002). The engine is partitioned in

three major subsystems: intake system, injection, combus-

tion and crankshaft system as well the exhaust gas system.
Fig. 11. Concept of a modular model-based fault-detection system of the com

combustion; module 3: exhaust system.
The actuators are commanded by the electronic control unit

and act on different components of the combustion engine.

In addition to the available mass production sensors only

very few additional sensors are used. For each major

subsystem, fault-detection methods are developed to detect

faults in the shown components and to generate symptoms.

Then the symptoms are processed with diagnosis methods to

decide on faults according to their type and location. The

investigated engine is an Opel 2 liter, 4 cylinder, 16 valve

turbo charge DI Diesel engine with a power of 74 kW and a
plete combustion engine. Module 1: intake system; module 2: injection,
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Fig. 12. Air path of the intake system with sensors and considered faults.

Fig. 13. Fault diagnosis structure of the intake system.
torque of 205 Nm. The engine employs exhaust gas

recirculation and a variable swirl of the inlet gas for

emission reduction.

Only the intake system can be considered here as

example. As shown in Fig. 12 the air flows through the air

filter, air mass flow sensor, compressor, intercooler and inlet

manifold.

Measured input variables are the engine speed, the pulse

width modulated signals for the EGR and SFA (swirl flaps)
Fig. 14. Residual deflection in dependency on faults (online)
as well as the atmospheric pressure and temperature, see

Fig. 13.

Measured output variables are manifold pressure, the

manifold temperature and the air mass flow. The engine

pumping, describing the air mass flow into the engine, was

modeled with a semi-physical neural network model

(LOLIMOT). It is a mean value model of one working

cycle neglecting the periodic working principle. For the fault

free description of the intake system 5 static reference
; 2000 min�1, 130 Nm, p2,i = 1.5 bar, air flow 165 kg/h.
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models were identified, which describe the volumetric

efficiency, the amplitude of air mass flow oscillation, the

phase of air mass flow oscillation, the amplitude of boost

pressure oscillation depending on engine speed and

manifold pressure. The reference models were identified

for a closed EGR valve and opened swirl flaps actuator with

a quasi stationary identification cycle. The identified non-

linear reference models calculating special features are used

to set up five independent parity equations yielding five

residuals. The results of real-time fault-detection are

presented in Fig. 14 for an exemplary operating point.

Several faults were temporarily built into the intake system.

The fault-detection thresholds are marked by dotted lines.

The reference models for the volumetric efficiency,

amplitude air mass flow oscillation, amplitude boost

pressure oscillation, show the expected behavior in order

to isolate the different faults. Similar methods were

developed for the other parts of the Diesel engine,

(Isermann, Schwarte, & Kimmich, 2004).
5. Conclusion

After a short introduction into model-based fault-

detection methods, like parameter estimation, observers

and parity equations, and fault-diagnosis methods, like

classification and inference methods, three application

examples were shown. For a DC motor actuator of an

aircraft cabin pressure control the combination of parameter

estimation and parity equations allows the detection of

several parametric and additive faults by using four

measurements, followed by the fault diagnosis with

fuzzy-logic inferencing. Based on a dynamic one-track

model of a passenger car a time-varying parameter, the

characteristic velocity, can be calculated by measurement of

three drive dynamic variables. A classification scheme then

indicates different lateral driving conditions, from stable

understeering to unstable countersteering. For fault diag-

nosis of Diesel engines three detection modules are

proposed to generate symptoms based on mainly produc-

tion-type sensors. The symptoms are generated with non-

linear output error and input error parity equations for

special model-based characteristic quantities like volumetric

efficiency, oscillations of pressure, flow and (not shown

here) for angular speed and oxygen content. The generation

of about 20 symptoms then allow an in-depth fault diagnosis,

e.g., by a fuzzy logic inference scheme.

The shown examples are only a small sample of many

other developed and experimentally tested fault-detection

and fault-diagnosis procedures, like for pneumatic and

hydraulic actuators, robots and machine tools, AC motors

with centrifugal and oscillating pumps, SI engines and

automotive brake and active suspension systems. In all

cases the model-based fault-detection and diagnosis has

demonstrated a big step forward compared to limit and

trend checking of some directly measurable variables.
However, the methods have to be adapted to the physical

properties of the processes and their sensor signals and

some effort is needed to obtain the mostly non-linear

dynamic models. In many cases the combination of

parameter estimation and parity equations, the last one for

directly measured and calculated characteristic quantities,

has proven to result in a good fault diagnosis coverage and

to be most efficient.
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