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ﬁ Course Overview

1. Introduction
i. Course introduction
ii. Introduction to neural network
iii. Issues in Neural network

2. Simple Neural Network
i. Perceptron
ii. Adaline

3. Multilayer Perceptron
i. Basics

4. Radial Basis Networks

5. Application Examples

Machine Learning

= Improve automatically with experience

= Imitating human learning
= Human learning

Fast recognition and classification of complex classes
of objects and concepts and fast adaptation

=« Example: neural networks
= Some techniques assume statistical source
Select a statistical model to model the source

= Other techniques are based on reasoning or
inductive inference (e.g. Decision tree)




i Disciplines relevant to ML

= Artificial intelligence

= Bayesian methods

= Control theory

= Information theory

= Computational complexity theory
= Philosophy

= Psychology and neurobiology

= Statistics

iMachine Learning Definition

A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P, if its
performance at tasks in T, as measured by P,

improves with experience.




i Examples of Learning Problems

Example 1: Handwriting Recognition:
= T: Recognizing and classifying handwritten words
within images.
= P: percentage of words correctly classified.

= E: a database of handwritten words with given
classification.

Example 2: Learn to play checkers:
= T: play checkers.
= P: percentage of games won in a tournament.
= E: opportunity to play against itself ( ).
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Type of Training Experience

= Direct or indirect?
= Direct: board state -> correct move

= Indirect: Credit assignment problem (degree of credit or blame for
each move to the final outcome of win or loss)

= Teacher or not ?

= Teacher selects board states and provide correct moves Or
= Learner can select board states
= Is training experience representative of
performance goal?
= Training playing against itself
= Performance evaluated playing against world champion




Issues in Machine Learning

»

What algorithms can approximate functions
well and when?

How does the number of training examples
influence accuracy?

How does the complexity of hypothesis
representation impact it?

How does noisy data influence accuracy?

How do you reduce a learning problem to a
set of function approximation ?

Summary

Machine Learning is useful for data mining, poorly
understood domain (face recognition) and
programs that must dynamically adapt.

Draws from many diverse disciplines.

Learning problem needs well-specified task,
performance metric and training experience.

Involve searching space of possible hypotheses.
Different learning methods search different
hypothesis space, such as numerical functions,
neural networks, decision trees, symbolic rules.
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m TOPICS iv NEURAL NETWORKS

LECTURE 2:
IMIRODUCTiONV
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i Lecture Qutline

1. Introduction (2)
i. Course introduction
ii. Introduction to neural network
iii. Issues in Neural network

2. Simple Neural Network (3)
i. Perceptron
ii. Adaline

3. Multilayer Perceptron (4)
i. Basics
ii. Dynamics

4. Radial Basis Networks (5)
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INIRODUCTION T NEYRAL
NETWORKS
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2raln
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i Artificial Neuron

= Input/Output Signal may be.
= Real value.
= Unipolar {0, 1}.
= Bipolar {-1, +1}.
= Weight : w;; — strength of connection.

Note that w;; refers to the weight from
unit j to unit i (not the other way round).

16




Artificial Neuron

"= The bias b is a constant that can be written as
WY, With y, = b and Wip = 1 such that

Z Wy,

= The function f is the unlts activation function.
In the simplest case, f is the identity function,
and the unit’s output is just its net input. This
is called a linear unit.

= Other activation functions are : step function,
sigmoid function and Gaussian function.

17

Actlvation FUnctions

K = |temp—1 i x>0

%) = |temp—1 if x>0
tomp—0 othermice ¥ | "

temp—- 1 otherwise

-

1

¥y 05 B
)

‘ =
T
1
=
T
1

s

-2 -2 [ 2 -1
= ° 2 x -2 [ 2
x

Identity function Binary Step function . .
Y y Step Bipolar Step function
v ) :1+exnf—0-xi (2, 0) = 2 1 *W%
1 ; © Trep-on y(x):T_':e 2

Bk
o
&
.
. |
|2[%
W - -
vol i

Sigmoid function Bipolar Sigmoid function ~ Gaussian function

18




iArtIﬁ]ciaJ Neural Maetworiks (AMNM)

- Activation
% function g
= 5
< EE— — <
(@) =
o =
= a
. Q
weight s
=
p
weight
Signal Activation
routing function

19

i rlistorical Davslopmeant of ANMN...

= William James (1890) : Describes in words and figures
simple distributed networks and Hebbian learning

McCulloch & Pitts (1943) : Binary threshold units that
perform logical operations (they proof universal
computation)

Hebb (1949) : formulation of a physiological (local)
learning rule

Roseblatt (1958) : The perceptron- a first real learning
machine

Widrow & Hoff (1960) : ADALINE and the Widrow-Hoff
supervised learning rule
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i rlistorical Davelopmeant of AN

= Kohonen (1982) : Self-organizing maps

= Hopfield (1982): Hopfield Networks

= Rumelhart, Hinton & Williams (1986) :
Back-propagation & Multilayer Perceptron

= Broomhead & Lowe (1988) : Radial
basis functions (RBF)

= Vapnik (1990) -- support vector machine
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#en Should A} Solution Be Considarad ?

»The solution to the problem cannot be explicitly described
by an algorithm, a set of equations, or a set of rules.

»There is some evidence that an input-output mapping exists
between a set of input and output variables.

»There should be a large amount of data available to train

the network.

22
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I?éblems That Can Lead to Poor Parformance

= The network has to distinguish between very similar cases
with a very high degree of accuracy.

= The train data does not represent the ranges of cases that
the network will encounter in practice.
= The network has a several hundred inputs.

= The main discriminating factors are not present in the
available data. E.qg. trying to assess the loan application
without having knowledge of the applicant's salaries.

= The network is required to implement a very complex

function.
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iApplications of Artificial Naural Networks

Manufacturing : fault diagnosis, fraud detection.
Retailing : fraud detection, forecasting, data
mining.

Finance : fraud detection, forecasting, data mining.
Engineering : fault diagnosis, signal/image
processing.

Production : fault diagnosis, forecasting.

Sales & Marketing : forecasting, data mining.

24
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i Datz Pra-procassing

Neural networks very rarely operate on the raw
data. An initial pre-processing stage is essential.

Some examples are as follows:

= Feature extraction of images: For example, the analysis of X-rays
requires pre-processing to extract features which may be of interest

within a specified region.

= Representing input variables with numbers. For example "+1" is the
person is married, "0" if divorced, and "-1" if single. Another example
is representing the pixels of an image: 255 = bright white, 0 = black.
To ensure the generalization capability of a neural network, the data

should be encoded in form which allows for interpolation.
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i Data Pre=procassing

= Categorical Variable

= A categorical variable is a variable that can belong to
one of a number of discrete categories. For example,
red, green, blue.

= Categorical variables are usually encoded using 1 out-of
n coding. e.g. for three colours, red = (1 0 0), green
=(010)Blue =00 1).

« If we used red = 1, green = 2, blue = 3, then this type
of encoding imposes an ordering on the values of the
variables which does not exist.
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i Datz Pra-procassing

= CONTINUOUS VARIABLES

= A continuous variable can be directly applied to
a neural network. However, if the dynamic
range of input variables are not approximately
the same, it is better to normalize all input

variables of the neural network.
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i Example of Mormalized Input Yactor

Input vector : (245610 4)

6

1
Mean of vector : U= ZZ x, = 5.167
i=1

Standard deviation : o= /ég(xi—y)z —2714

Normalized vector : x,=5"*=(-1.17 043 —006 031 1.78 —043
(o2
Mean of normalized vector is zero

Standard deviation of normalized vector is unity

28
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SiAmPLE NEURAL NETWAORKS

LECTURE J:
SimPLE PERCEPTRONV

.

Outlines

> The Perceptron

e Linearly separable problem
e Network structure

e Perceptron learning rule

e Convergence of Perceptron

15



‘ THE PERCEPTRON

»The perceptron was a simple model of ANN introduced
by Rosenblatt of MIT in the 1960’ with the idea of
learning.

> Perceptron is designed to accomplish a simple pattern
recognition task: after learning with real value training data

{x(i), di), i =12, ..., p} where d(i) = 1 or -1

»For a new signal (pattern) x(i+1), the perceptron is
capable of telling you to which class the new signal
belongs

X(it]) m—) | oerceptron = lor-1

31

Perceptron
= Linear threshold unit (LTU)

e { , ifzizon w, x; >0

otherwise
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X5

iDecision Surface of a Perceptron
. X5 AND A

¢ Perceptron is able to represent some useful functions
e AND (x4,%,) choose weights w,=-1.5, w;=1, w,=1
e But functions that are not linearly separable

(e.g. XOR) are not representable
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‘Mathematically the Perceptron is

y=F(Y wr +b) = (X wx,)

We can always treat the bias b as another weight with
inputs equal 1

where f is the hard limiter function i.e.

Lif Y w,x, +b >0

34

17



Why is the network capable of solving linearly
separable problem ?

zm‘ wx, +b=0
i=1

iwl.xi +b<0
=1
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Learning rule

An algorithm to update the weights w so that finally
the input patterns lie on both sides of the line decided
by the perceptron

Let t be the time, att = 0, we have

36
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Learning rule

algorithm to update the weights w so that finally

" perceptron

Let t be the time, att =1

37

e input patterns lie on both sides of the line decided by the

Learning rule

ights w so that finally
the input patterns lie on both sides of the line decided by the
perceptron

Let t be the time, att = 2

38
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Learning rule

eights w so that finally
the input patterns lie on both sides of the line decided by the
perceptron

Let t be the time, att = 3

w(3)

39

In Math
A1) = {+ Uif x (t)in class +

— 1if x(t)in class -
Perceptron learning rule

w(t+1)=w)+n () d(r) -
sign (w_ (1) e x(1))] x(t)
Where n(t) is the learning rate >0,
+1if x>0
sign(x) = | hard limiter function
-1 if x<=0,
NB : d(t) is the same as d(i) and x(t) as x(i)

40
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ﬁ In words:

« If the classification is right, do not update the
weights

o If the classification is not correct, update the

weight towards the opposite direction so that the
output move close to the right directions.
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erceptron convergence theorem

\ ___(Rosenblatt, 1962)

Let the subsets of training vectors be linearly separable. Then
after finite steps of learning we have

lim w(t) = w which correctly separate the samples.

The idea of proof is that to consider ||w(t+1)-w||-||w(t)-w||
which is a decrease function of t

42
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i Summary of Perceptron learning ...

Variables and parameters
x(t) = (m+1) dim. input vectors at timet

= ( bl Xl (t)l X2 (t)l oo g Xm (t) )

w(t) = (m+1) dim. weight vectors
= ( 1 7 W1 (t)l J000 7 Wm (t) )

b = bias

y(t) = actual response

Nn(t) = learning rate parameter, a +ve constant < 1
d(t) = desired response
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Summary of Perceptron learning ...

#ﬁa_(_ﬁ;x(_i_),_d(i)), i=1,...,p}

v Present the data to the network once a point

v could be cyclic :
(x(1), d(1)), (x(2), d(2)),..., (x(p), d(p)),
(x(p+1), d(p+1)),...

v'or randomly

(Hence we mix time t with i here)

44
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i Summary of Perceptron learning (algorithm)

1. Initialization Set w(0)=0. Then perform the following
computation for time step t=1,2,...
2. Activation At time step t, activate the perceptron by applying
input vector X(t) and desired response d(t)
3. Computation of actual response Compute the actual response
of the perceptron
y(t) = sign (w(t) - x(t) )

where sign is the sign function
4. Adaptation of weight vector Update the weight vector of the
perceptron

w(t+1) = w(t)+ n@) [d(t)-y(t) ] x(©)

5. Continuation

45

i Questions remain
Where or when to stop?

By minimizing the generalization error

For training data {(x(i), d(i)), i=1,...p}

How to define training error after t steps of learning?

E(t)= 3P, [d(i)-sign(w(t) . x()P?

46




After
learning
t steps

E(t) =0

47

How to define generalization error?

\ a new signal {x(t+1),d(t+1)}, we have
Eg = [d(t+1)-sign (x(t+1)ew (1) ]?

or

After
learning
t steps

48

24



»

We next turn to ADALINE learning,
from which we can understand

the learning rule, and more general the
Back-Propagation (BP) learning

.

§imPLE NEURAL NETWORK

LECTURE 4:
ADALINE LEARIVINVG

25



i Outlines

= ADALINE

= Gradient descending learning

= Modes of training

51

l#happy over Perceptron Training

= When a perceptron gives the right answer, no

learning takes place

= Anything below the threshold is interpreted

as 'no’, even it is just below the threshold.

= It might be better to train the neuron based

on how far below the threshold it is.

52
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i ADALINE

ADALINE is an acronym for ADAptive LINear Element
(or ADAptive LInear NEuron) developed by Bernard
Widrow and Marcian Hoff (1960).

» There are several variations of Adaline. One has
threshold same as perceptron and another just a bare
linear function.

*The Adaline learning rule is also known as the least-
mean-squares (LMS) rule, the delta rule, or the Widrow-
Hoff rule.

e It is a training rule that minimizes the output error

using (approximate) gradient descent method.
53

unction——
: With or without the threshold, the Adaline is trained based
on the output of the function f rather than the final output.

¢ Replace the step function in the perceptron with a
cﬁntinuous (differentiable) function f, e.g the simplest is

Teacher Ot

.% Teacher CT)

, T

= I~
e 2O

O/ \ c/ O
Perceptron Learning Delta Rule
(Adaline)

54
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»

After each training pattern x(i) is presented, the correction to
apply to the weights is proportional to the error.

E(t)="2[d(i)—f(w)-x@®)]% i=1,..p
N.B. If fis a linear function f(w(t) - x(i)) = w(t) - x(i)
Summing together, our purpose is to find W which minimizes

E(®) = 2; E(it)

55

i General Appreach gradient descent method

To find ¢

w(t+1) = w(t)+g( E(w(t)) )
so that w automatically tends to the
global minima of E(w).

w(t+1) = w(t)- E'(w(t))nt)
(see figure below)

56
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e (radient direction is the direction of uphill
' Figure, at position 0.4, the
gradient is uphill ( F is E, consider one dim case )

1

09F
0s8F

07 i
FEr Gradient direction
oer F{0.4) |
o4l / 4
03l g
02F
01F

i _/

L L 1 . . 1 L L
-1 -08 06 -04 02 o 02 0.4 06 o8 1
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w(t+1) = w(t) — F(w(t) n()
" therefore the ball goes downhill since — F'(w(t))
is downhill direction

£ In gradient descent algorithm, we have

1

0.9 F
0.8
0.7 F

e Gradient direction

0.5

0.4 /

0.3
0.2

a1 F

o L L L L L L L L L
-1 0.8 -0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.8 1
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¢ In gradient descent algorithm, we have

w(t+1) = w(t) - F(w(t)) n(»)

- therefore the ball goes downhill since — F'(w(t))
is downhill direction

1

09 -
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0.7
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0.5

040

0.3
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Gradient direction
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¢|Gradually the ball will stop at a local minima where

gradient is zero
1
0.9 —
0.8 -
0.7 F —
osr Gradient direction
0.5 -
0.4 —
0.3 -
0.z —
0.1k .~ .
D-1 D.IEE -D.IG -D.Ixi D.I2 o D.I2 D.IA D.IG D.IEE 1
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i * In words
“Gradient method could be thought of as a ball rolling down
from a hill: the ball will roll down and finally stop at the valley

Thus, the weights are adjusted by

wit+1) = wyt) +n) 2 [d(i) - fw(t) - x(1)) ] x()

This corresponds to gradient descent on the quadratic error
surface E

When ' =1, we have the perceptron learning rule (we have in

general f">0 in neural networks). The ball moves in the right
direction.

61

i Two types of network training:

Sequential mode (on-line, stochastic, or
per-pattern) :

Weights updated after each pattern is
presented (Perceptron is in this class)

Batch mode (off-line or per-epoch) :
Weights updated after all patterns are
presented

62
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Gradient Descent Rules

O Perceptron learning rule guaranteed to succeed if
= Training examples are linearly separable

ﬁ Comparison Perceptron and

» Sufficiently small learning rate n

OLinear unit training rule uses gradient descent
guaranteed to converge to hypothesis with
minimum squared error given sufficiently small
learning rate

= Even when training data contains noise
= Even when training data not separable by Hyperplane

63

i Renaissance of Perceptron

Multi-Layer

- Perceptron

Back-Propagation, 80’

Perceptron

Learning Theory, 90’

T

Support Vector
Machine

64
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ﬁ Summary of Previous Lectures

Perceptron
W(t+1)= W(t)+n(t) [ d(t) - sign (w(t) . X)] x

Adaline (Gradient descent method)

W(t+1)= W(t)+n(t) [ d(t) - f(w(t) . )] x F

65

‘ Multi-Layer Perceptron (MLP)

Idea: Credit assignment problem

 Problem of assigning ‘credit’ or ‘blame’ to
individual elements involving in forming overall
response of a learning system (hidden units)

e In neural networks, problem relates to dividing

which weights should be altered, by how much
and in which direction.

66
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Example: Three-layer networks

Input Output

Signal routing

Input layer  Hidden layer Output layer
67

NL Properties of architecture

« N0 connections within a layer

* No direct connections between input and output layers

e Fully connected between layers

e Often more than 2 layers

e Number of output units need not equal humber of input units

e Number of hidden units per layer can be more or less than
input or output units

]
= - Each unit is a perceptron
]

yi= f(Z,wuxs 4 br)
[/

68
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iBP (Back Propagation)
=

gradient descent method
+

multilayer networks

.

LECTQRE 5
MULTILAYER PERCEPTROM

BACK. PROPAGATIIVG LEARIVINVG

35



BP learning algorithm
Solution to “credit assignment problem” in MLP

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes ‘functional signal’,
feedforward propagation of input pattern signals through
network

Backward pass phase: computes ‘error signal’,
propagation of error (difference between actual and desired
output values) backwards through network starting at output
units

71

‘BP Learning for Simplest MLP,
i 7 ;¥ —to-minimize
E=(d-02/2 W
= [d - (W(O(t) /2 y
= [d- AWORWOD) F/2 1,
Error function at the output unit

Weight at time t is w(t) and W(t),
intend to find the weight w and W at time t+1

Where y = f(w(t)I), output of the hidden unit

72
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Forward pass phase 1
@)

| Suppose that we have w(t), W(t) of time t ...~ :

For given input I, we can calculate

W(t)
y = fw(t)D) |
and y
o= f(WH)Y) w(t)
= fiW%t% fCw(t) 1))
Error function of output unit will be 5 I

73

i Backward Pass Phase

d =

W+1)=W(t)—-n dViE(t) W)
_ _a9E _df y
=W@-n df dw (t) W

=W (t)+n(d—0)f' (W (t)y)y

E= (d-0)/2 o= f(W()y)

74




i Backward pass phase

s,
. 0
K .
3 ()
.
0
K

W (t+1) = W () =1 — n

.......

=W (t)+nAy

where A= (d-0) f’

W(t)

w(t)

75

i Backward pass phase

w(t+1)=w(t)-n Adi—

dw((t)

=w()+n(d —o) f'(W ()y)W (1)

=w(t)+nAW (¢) f' (w(t)l)]

.......

dw (t)

W(t)

o= f(W(H)y)
= f(WH f(w®) 1))

w(t)

76
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General Two Layer Network

I inputs, O outputs, w connections for input
units, W connections for output units, vy is the
activity of input unit

net (t) = network input to the unit at time t

Output units
w

y

Input units .

Forward pass

- Weights are fixed during forward & backward pass at tim&t
k

Wii(®)
Yi
w;i(t)
2. compute values for output units o
Netr(t) =3 Wu(t)ys I

1

O+ = f (Net: (1))

78
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Backward Pass

Recall delta rule , error measure for pattern n is

E()=, 2(d,(0-0,(t))

We want to know how to modify weights in order to decrease E
where

JE (t)

Wij(t+1)_wij(t)°c_m

both for hidden units and output units

This can be rewritten as product of two terms using chain rule

79

#—9:’5—66—_ JE (1) . dnet (1)

ow,(t) dnet (1) Iw, (1)

both for hidden units and output units

Term A How error for pattern changes as function of change
in network input to unit j

How net input to unit j changes as a function of

Term B change in weight w

80
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Summary
wﬁt updates are local

L+ —w (1) =nd ,(£)1,(z) (hidden unit)
W@+ =W, (8)=nA,()y;() (output unit)
output unit
Wy (@+1) =Wy ()=nA,()y,; )
=N (d, (1) = 0, (1)) f "(Net (1)) y,; (1)

hidden unit
Wji(t+ 1)_ Wji(t) = 775 j(t)li(t)

=nf "(net ()Y, A (W, 1,(1)

Once weight changes are computed for all units, weights are
updated at same time (bias included as weights here)

We now compute the derivative of the activation function f( ).

Activation Functions
d-to-find the derivative of activation

function f
»>to find derivative the activation function must be smooth

Sigmoidal (logistic) function-common in MLP

1

f (net; (1)) = 1+ exp(—knet, (1))

where k is a positive constant. The sigmoidal function gives
value in range of 0 to 1

Input-output function of a neuron (rate coding assumption)
82
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Shape of sigmoidal function
1.5 [
L saturated
0Aa
input signal
o
saturated
T % 4 2 il 2 1 5 8 10

Note: whennet =0, f=0.5

83

:hape of sigmoidal function derivative

025¢F

02F

a16F

0.1F

005 -

1}
-10 -8 & -4 2 a 2 4 B 8 10

Derivative of sigmoidal function has max at x= 0., is symmetric
about this point falling to zero as sigmoidal approaches extreme
values

84
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Returning to local error gradients in BP algorithm we have for
output units

For hidden units we have

0 ,(t) = f '(net i(t))z A, ()W

k

= hy ()1 =y, (1) Y A (OW,

k

Since degree of weight change is proportional to derivative of
activation function, weight changes will be greatest when units
receives mid-range functional signal than at extremes

85

Summary of BP learning algorithm

Set initial weight values (incl.. biases): w, W

Loop until stopping criteria satisfied:

present Target response to output units

compute error signal for output units

compute error signal for hidden units

update all weights at same time

increment n to n+1 and select next I and d
end loop

86
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Network training:
+% Training set shown repeatedly until stopping criteria are met
: ‘ull-presentation-of all patterns = ‘epoch’
< Randomise order of training patterns presented for each
epoch in order to avoid correlation between consecutive
training pairs being learnt (order effects)

>

X/
o

Two types of network training:
> _
» Batch mode (off-line or per -epoch)

87

dvantages and disadvantages of different
modes

Batch mode:
e Faster learning than sequential mode

88




LECT(RE 5
o MULTILAYER PERCEPTRON i

DYAMICS 08 MULTILAYER PERCEPTRONV

Summary of Network Training

rd-phase:I(t), w(t), net(t), v(1), W(), Net(t), O(t)
Backward phase:
Output unit

Input unit
Wji(t+1)_ Wij(t) =nod j(t)li(t)
=nf "(net ; (1)) Y, A, (W, ()1,(1)

45



ﬁ Network training:

Training set shown repeatedly until stopping criteria are met.
Possible convergence criteria are
» Euclidean norm of the gradient vector reaches a
sufficiently small denoted as 6.
»When the absolute rate of change in the average squared

error per epoch is sufficiently small denoted as .
»Validation for generalization performance : stop when
generalization reaching the peak (illustrate in this lecture)

91

i Network training:

Two types of network training:

>

> Batch mode (off-line or per -epoch)
Weights updated after all the patterns are presented

92
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dvantages and disadvantages of different
modes

Batch mode:
eFaster learning than sequential mode

93

i_Goals of Neural Network Training

™ To give the correct output for input
training vector (Learning)

To give good responses to hew unseen
input patterns (Generalization)

94
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ﬁ Training and Testing Problems

e Stuck neurons: _Deg%ree of weight change is proportional
to derivative of activation Tunction, weight changes will be
greatest when units receives mid-range functional signal than
at extremes neuron. To avoid stuck neurons weights
initialization should give outputs of all neurons approximate 0.5

 Insufficient number of training patterns: In this
case, the training patterns will be learnt instead of the
underlying relationship between inputs and output, i.e. network
just memorizing the patterns.

* Too few hidden neurons: network will not produce a
good model of the problem.

» Over-fitting: the training patterns will be learnt instead
of the underlying function between inputs and output because
of too many of hidden neurons. This means that the network
will have a poor generalization capability.

95

is to minimise an error function over all training
rns by adapting weights in MLP

i Dynamics of BP learning

Recalling the typical error function is the mean
squared error as follows

E(t)= ;—2 (d (1) - 0, (1))°

The idea is to reduce E(t) to global minimum point.

96
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r* Dynamics of BP learning

ngle layer perceptron with linear activation
functions, the error function is simple, described
by a smooth parabolic surface with a single
minimum

97

Dynamics of BP learning
with nonlinear activation functions have complex error

[ 5(e.g. ptateaus, fong valleys etc. ) with no single

minimum
An Ugly Cost Surface

lecal
minirma

|

plateau

/

global
minimurm

For complex error surfaces the problem is learning rate must
keep small to prevent divergence. Adding momentum term is
a simple approach dealing with this problem.

98
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Momentum
° cing problems of instability while increasing
the rate of convergence
¢ Adding term to weight update equation can
effectively holds as exponentially weight history of
previous weights changed

Modified weight update equation is

WU(I’Z + 1)_ Wij(n): rlsj(n)yz(n)
+ a[Wij(n)_ Wij(n - 1)]

99

Effect of momentum term
» If weight changes tend to have same sign
momentum term increases and gradient
decrease speed up convergence on shallow

gradient

» If weight changes tend have opposing
signs momentum term decreases and
gradient descent slows to reduce oscillations
(stabilizes)

» Can help escape being trapped in local
minima

100
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i Selecting Initial Weight Values

> Choice of initial weight values is important as this

decides starting position in weight space. That is,
how far away from global minimum

> Aim is to select weight values which produce
midrange function signals

> Select weight values randomly from uniform
probability distribution

» Normalise weight values so number of weighted
connections per unit produces midrange function
signal

101

Convergence of Backprop
Wumum with fast convergence :
= Add momentum

Stochastic gradient descent
Train multiple nets with different initial weights

Nature of convergence

Initialize weights 'near zero’ or initial networks
near-linear

Increasingly non-linear functions possible as
training progresses

102
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ﬁ: of Available Data Set for Training

Pie available data set is normally split into three
sets as follows:
= Training set — use to update the weights.
Patterns in this set are repeatedly in random
order. The weight update equation are
applied after a certain number of patterns.

= Validation set — use to decide when to stop
training only by monitoring the error.

= Test set — Use to test the performance of the
neural network. It should not be used as part
of the neural network development cycle.

103

Earlier Stopping - Good Generalization

= _Running too many epochs may overtrain the
: ork-and result inoverfitting and perform
poorly in generalization.

~ Keep a hold-out validation set and test accuracy
after every epoch. Maintain weights for best
performing network on the validation set and stop
training when error increases increases beyond
this.

Validation set

error o
Training set

No. of epochs
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Model Selection by Cross-validation

o few hidden units prevent the network from

ingadequately fitting the data and learning

the concept.
= Too many hidden units leads to overfitting.

» Similar cross-validation methods can be used to
determine an appropriate number of hidden units
by using the optimal test error to select the model
with optimal number of hidden layers and nodes.

Validation set

error o
Training set

No. of epochs
105

ALTERVATIVE TRARViVG ALGORTTHAA

|

LECTURE 8 -
GEVETVC ALGORTTHANS
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History Background

. xIdea of evolutionary computing was introduced in the 1960s by I.
Rechenberg in his work "Evolution strategies" (Evolutionsstrategie in
original). His idea was then developed by other researchers. Genetic
Algorithms (GAs) were invented by John Holland and developed by him
and his students and colleagues. This lead to Holland's book "Adaption in
Natural and Artificial Systems" published in 1975.

In 1992 John Koza has used genetic algorithm to evolve programs to
perform certain tasks. He called his method “Genetic Programming"
(GP). LISP programs were used, because programs in this language can

expressed in the form of a "parse tree", which is the object the GA works

on. 107

Biological Background
Chromosome.

= All living organisms consist of cells. In each cell there is the same set of

chromosomes. Chromosomes are strings of DNA and serves as a model for
the whole organism. A chromosome consist of genes, blocks of DNA. Each
gene encodes a particular protein. Basically can be said, that each gene
encodes a trait, for example color of eyes. Possible settings for a trait (e.g.
blue, brown) are called alleles. Each gene has its own position in the

chromosome. This position is called locus.

= Complete set of genetic material (all chromosomes) is called genome.
Particular set of genes in genome is called genotype. The genotype is with
later development after birth base for the organism's phenotype, its physical

and mental characteristics, such as eye color, intelligence etc.
108
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Biological Background
ﬁ Reproduction.

- During reproduction, first occurs recombination (or

crossover). Genes from parents form in some way the
whole new chromosome. The new created offspring can
then be mutated. Mutation means, that the elements of
DNA are a bit changed. This changes are mainly caused by

errors in copying genes from parents.

= The fitness of an organism is measured by success of the

organism in its life.

109

‘ Evolutionary Computation

s Based on evolution as it occurs in nature

= Lamarck, Darwin, Wallace: evolution of species, survival
of the fittest

= Mendel: genetics provides inheritance mechanism

= Hence “genetic algorithms”

= Essentially a massively parallel search procedure
» Start with random population of individuals

= Gradually move to better individuals

110
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# Evolutionary Algorithms
utation

population of genotypes

10001
11001

phenotype space

foiii
- 00111}

1ot

coding schem

recombination selection R
10011 10001] X e
fitness
01001 1000 11001,

1011
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‘ Pseudo Code of an Evolutionary Algorithm

Create initial random population

Evaluate fitness of each individual
v yes
Termination criteria satisfied ? —— stop
v no
Select parents according to fitness
v

Recombine parents to generate offspring
v

Mutate cg‘fspring

Replace population by new offspring

112

56



A Simple Genetic Algorithm

M®ptimization task : find the maximum of f(x)

for example f(x)=xesin(x) xe[0, 7]
« genotype: binary string se<[0,1]° e.g. 11010, 01011, 10001
» mapping : genotype = phenotype,,_s

binary integer encoding: x =7 ¢ 21 s, ® 201 /(2n-1)

Initial population

genotype integ. phenotype fitness prop. fitness
11010 26 2.6349 1.2787 30%
01011 11 1.1148 1.0008 24%
10001 17 1.7228 1.7029 40%
00101 5 0.5067 0.2459 6%

113

Some Other Issues Regarding
it —Eveolutionary Computing

= Evolution according to Lamarck.

= Individual adapts during lifetime.
= Adaptations inherited by children.

= In nature, genes don't change; but for computations we could
allow this...

= Baldwin effect.

= Individual’s ability to learn has positive effect on evolution.
= It supports a more diverse gene pool.
= Thus, more “experimentation” with genes possible.

= Bacteria and virus.

= New evolutionary computing strategies.

114
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LECTRE 7
PADIAL BASTS FUNCTIONS

PADIAL BASTS FUNVCTONS

Radial-basis function (RBF) networks

RB+= radial-basis function: a function which
depends only on the radial distance from a point

’ —
' g ! XOR problem
7 ‘ / .
< /
/
Ve

7 quadratically separable
4
7 /s
7

e
e

y
7

/ e

Q- L]

- -
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Radial-basis function (RBF) networks
SgaRBFs are functions taking the form

o x - x, 1)

where ¢ is a nonlinear activation function, x is the
input and x; is the i'th position, prototype, basis or
centre vector.

The idea is that points near the centres will have
similar outputs (i.e. if x ~ xi then f(x) ~ f (xi))
since they should have similar properties.

The simplest is the linear RBF : o(x) =||x — xj |

117

Multiquadrics

6 (r)=(r’+c)

for some c>0
(b) Inverse multiquadrics

B (ry=(r’+e’)'?
for some c>0
(c) Gaussian )

0 (r) = exp(——

20°
for some ¢ >0

b Typical RBFs include

)

118

59



rmu‘i"t}'\\‘
o

4 4

‘nonlocalized’ functions ‘localized’ functions

> Idea is to use a weighted sum of the outputs from the
basis functions to represent the data.
> Thus centers can be thought of as prototypes of input

data.

MLP VS
distributed

120
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i Starting point: exact interpolation

Each input pattern x must be mapped onto a
target value d

Approximation (Fitting)
MLP

L L L I I I L L L
o 01 02 03 04 05 0B 07 08 08 1

121

hat is, given a set of N vectors X; and a corresponding set
; . (the targets), find a function F that
‘satisfies the interpolation condition:

F(x;)=d fori=1,..N

or more exactly find:

F(x) = 3 wig(llx —x'|])

satisfying:

F(x') = g wig(lx —x[)) = d

122
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Single-layer networks

Input

Yo Input layer : Oy (Y)=0x (|[¥-xxlD

e output = X w; ¢; (v - X;)
e adjustable parameters are weights w;
e number of hidden units = number of data points

e Form of the basis functions decided in advance
123

For a given data set containing N points (Xx,d,), i=1,...,N
Choose a RBF function ¢

Calculate ¢(x; — x;)

Solve the linear equation ® W = D

Get the unique solution

Done

ﬁ To summarize:

. -
L X4

X3

A

X3

A

X/
L X4

» Like MLP’s, RBFNs can be shown to be able to approximate
any function to arbitrary accuracy (using an arbitrarily large
numbers of basis functions).

» Unlike MLP’s, however, they have the property of ‘best
approximation’ i.e. there exists an RBFN with minimum
approximation error.
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Largec =1

Ciutputs from Linear Rbf ket

-
RS
Ny

<

Difference in Activations between
Linear and Gaussian MNets

0.8
06
0.4
nz2

Qutputs from Gaussian Rbf MNet

k3 #
3 W
S =
.'><_ e
x
W w
X. .X
| s linear -
x| —— gaussian | =
] oA 1

Prafile of rbfs

Small ¢ = 0.2

Outputs from Linear Rbf Met

Difference in Activations between
Linear and Gaussian Mets

Outputs from Gaussian Rbf Net

1 s linear
—— gaussian
0.5 X, ¥
S Ea
0.6 R
S
04 EE
0.2 R 3,
£ =
Ok
] 0s 1

Profile of rbfs
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Problems with exact interpolation
produce poor generalisation performance as only data

. -constrain-mapping
Overfitting problem
Bishop(1995) example

Underlying function f(x)=0.5+0.4sine(2r x)
sampled randomly for 30 points

added Gaussian noise to each data point
30 data points 30 hidden RBF units

fits all data points but creates oscillations due added noise
and unconstrained between data points

127

All Data Points 5 Basis functions
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#To fit an RBF to every data point is very
Tnefficient due to the computational cost of
matrix inversion and is very bad for
generalization so:

v" Use less RBF’s than data points I.e. M<N

v" Therefore don't necessarily have RBFs centred at data points
v" Can include bias terms

v" Can have Gaussian with general covariance matrices but
there is a trade-off between complexity and the number of

parameters to be found eg for d rbfs we have:
129

| APPLICATION EXAAPLES

LECTURE 9:

NOMLIvEAR IDENVTICICATION, PREDICTION
AvD (OVTROL
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Nonlinear System Identification

) —
e B —
o e L
: = 7o) B YplktD)
l—“ 1()
T i ‘y ®
(] EEt —
7, ® Dj_ - :F‘_T; e(k+l)
Figure 2.1 Input-output model
u(k) iL nenller‘al
[_ZIJ‘———' ynet(k+l)
?»7
Target function: yp(kt1) =1(.)
Identified function: y\gr(k+1)=F(.)
Estimation error:  e(k+1)
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]]\Ionlinear System Neural Control

£ &

o]

*
u
c:

reference/desired response
system output/desired output
system input/controller output
desired controller input

: NN output
controller/network error

The goal of training is to find an
appropriate plant control u from

the desired response d. The weights
are adjusted based on the difference
between the outputs of the networks
I & II to minimise e. If network I is
trained so that y=d, thenu=u".
Networks act as inverse dynamics

identifiers.
132
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onlinear System Identification

dix| _ X;
dt X 9.81sinx; — 2x,+u]
Xl =
x, = 92
H(f) 2 dt
degZrad = pi/180;
angle = [-20:40:200]*degZrad;
vel = [-90:36:90]*deg2rad; Neural network
force = —-30:6:30: input generation

Pm
anglez = [-20:10:200]*deg2rad;
Pm = [combvec(angle,vel, force) ;
[angleZ; zeros(2,length(angle2))]];
133

Nonlinear System Identification

S1 = 8;
[S2.Q] = size(Tm) ;
mnet = newff(minmax (Pm), [S1 S2],{'tansig' 'purelin'},K 'trainlm'):

mnet. trainParam.goal = (0.0037"2);
mnet = train(mnet,Pm,Tm) ;

Pendulum and Open Network Response.
T T T

Neural network target
T'm £l
e
< 80
o [ 1) 1 15 2 EL] 3 38 4

Time [sec)

Neural network response
angle & velocity)

Velosity (degisec P +M -

Time [sec)
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L Model Reference Control

daix| _ )
dt Xy 9.81sinx, - 2x,+u

e 2@)

u(f) —m

Linear reference model

AL
dt

X2
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State

Controller

Demand
Network

Model Reference Control

Next

Force

Pendulum

State
—>

Neural controller + nonlinear system diagram

Linear
Reference
Model
State LY
g Controller q
Demand . Flatuore Force

MNeural controller, reference model, neural model

Target
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~ Matlab NNtool GUI (Graphical User Interface)

) Metwork/Data Manages
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