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ﬁ References

Textbook (suggested):

o Neural Networks for Identification, Prediction, and
Control, by Duc Truong Pham and Xing Liu. Springer
Verlag; (December 1995). ISBN: 3540199594

e Nonlinear Identification and Control: A Neural
Network Approach, by G. P. Liu. Springer Verlag;
(October 2001). ISBN: 1852333421
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Course Overview

»

1. Introduction
I. Course introduction
ii. Introduction to neural network
lii. Issues in neural network

2. Simple neural network
I. Perceptron
i. Adaline

3. Multilayer Perceptron
I. Basics

4. Radial basis networks

5. Application examples
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i Machine Learning

= Improve automatically with experience

= Imitating human learning
= Human learning

Fast recognition and classification of complex classes
of objects and concepts and fast adaptation

=« Example: neural networks
= Some technigues assume statistical source
Select a statistical model to model the source

= Other techniques are based on reasoning or
inductive inference (e.G. Decision tree)
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Disciplines Relevant to ML

= Artificial intelligence

= Bayesian methods

= Control theory

= Information theory

= Computational complexity theory
= Philosophy

= Psychology and neurobiology

= Statistics
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ﬁMachine Learning Definition

A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P, if its
performance at tasks in T, as measured by P,

improves with experience.
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ﬁ Examples of Learning Problems

Example 1. hanawriting recognition:

= T: recognizing and classifying handwritten words
within images.

= P: percentage of words correctly classified.

= E: a database of handwritten words with given
classification.

Example 2. learn to play checkers:
= [: play checkers.

= P: percentage of games won in a tournament.
= E: opportunity to play against itself ( ).
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Type of Training Experience

s Direct or indirect?

= Direct: board state -> correct move

= Indirect: credit assignment problem (degree of credit or blame for
each move to the final outcome of win or loss)

= Teacher or not ?

= Teacher selects board states and provide correct moves Or
= Learner can select board states

= Is training experience representative of
performance goal?
= Training playing against itself
= Performance evaluated playing against world champion
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ﬁ Issues in Machine Learning

= What algorithms can approximate functions
well and when?

= How does the number of training examples
influence accuracy?

= How does the complexity of hypothesis
representation impact it?

= How does noisy data influence accuracy?

s How do you reduce a learning problem to a
set of function approximation ?
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ﬁ sSummary

s Machine learning is useful for data mining, poorly
understood domain (face recognition) and
programs that must dynamically adapt.

= Draws from many diverse disciplines.

= Learning problem needs well-specified task,
performance metric and training experience.

= Involve searching space of possible hypotheses.
Different learning methods search different
hypothesis space, such as numerical functions,
neural networks, decision trees, symbolic rules.
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.

Introduction to Neural
Networks
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ﬁ Braln

= 10! neurons (processors)
= On average 1000-10000 connections

S dendrites !_?put
one
{ﬁ*‘ cell body
axon
l | el
axon endings e

Output Zone
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ﬁ Artiticial Neuron

= Input/Output Signal may be.
= Real value.
= Unipolar {0, 1}.
= Bipolar {-1, +1}.
= Weight : w; —strength of connection.

Note that w; refers to the weight from
unit s to unit 7/ (not the other way round).
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ﬁ Artiticial Neuron

Silvio Simani

= The bias bis a constant that can be written as
Wigyp With yo band w;,= 1 such that

Z Wi ¥

= The function f is the umt s activation function.
In the simplest case, £ is the identity function,

and the unit’s output is just its net input. This
is called a /inear unit.

= Other activation functions are :
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ACTlvation Functions
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Arilficial Neural Networiks (ANN)

- Activation
% function g
= 5
= I — =
(@) =
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weight =
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weight
Signal Activation
routing function
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ﬁ rlistorical Developrnent of ANN...

= William James (1890) : describes in words and figures
simple distributed networks and Hebbian learning

= McCulloch & Pitts (1943) : binary threshold units that
perform logical operations (they proof universal
computation)

= Hebb (1949) : formulation of a physiological (local)
learning rule

= Roseblatt (1958) : the perceptron— a first real learning
machine

= Widrow & Hoff (1960) : ADALINE and the Widrow-Hoff
supervised learning rule
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ﬁ Historical Developrnent of AN

= Kohonen (1982) : Self-organizing maps

= Hopfield (1982): Hopfield Networks

= Rumelhart, Hinton & Williams (1986) :
Back-propagation & Multilayer Perceptron

= Broomhead & Lowe (1988) : Radial
basis functions (RBF)

= Vapnik (1990) -- support vector machine
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hen Should ANN Solution Be Consiclerec| ?

»The solution to the problem cannot be explicitly described
by an algorithm, a set of equations, or a set of rules.

»There is some evidence that an input-output mapping exists
between a set of input and output variables.

» There should be a large amount of data available to train

the network.
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Problems Thnat Can Leacd to Poor Parforrance ?

= The network has to distinguish between very similar cases
with a very high degree of accuracy.

= The train data does not represent the ranges of cases that
the network will encounter in practice.

= [he network has a several hundred inputs.

= The main discriminating factors are not present in the
available data. £.g. Trying to assess the loan application
without having knowledge of the applicant's salaries.

= The network is required to implement a very complex
function.
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|Applications of Artificial Neural Networlks

= Manufacturing : fault diagnosis, fraud detection.

= Retailing : fraud detection, forecasting, data
mining.

= Finance : fraud detection, forecasting, data mining.

= Engineering : fault diagnosis, signal/image
processing.

= Production : fault diagnosis, forecasting.

= Sales & marketing : forecasting, data mining.
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Dziia Pre-oprocessing

Neural networks very rarely operate on the raw
data. An initial pre-processing stage is essential.

Some examples are as follows:
= Feature extraction of images: for example, the analysis of x-rays
requires pre-processing to extract features which may be of interest
within a specified region.

= Representing input variables with numbers. For example "+1" is the
person is married, "0" if divorced, and "-1" if single. Another example
is representing the pixels of an image: 255 = bright white, 0 = black.
To ensure the generalization capability of a neural network, the data

should be encoded in form which allows for interpolation.
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ﬁ Dziia Pre-proc

(D
()
()
5
O

= Categorical Variable

= A categorical variable is a variable that can belong to
one of a number of discrete categories. For example,
red, green, blue.

= Categorical variables are usually encoded using 1 out-of
n coding. e.qg. for three colors, red = (1 0 0), green =(0
1 0) Blue =(001).

« If we used red = 1, green = 2, blue = 3, then this type
of encoding imposes an ordering on the values of the

variables which does not exist.
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| Dalea Pre-processing

= CONTINUOUS VARIABLES

= A continuous variable can be directly applied to
a neural network. However, if the dynamic
range of input variables are not approximately
the same, it is better to normalize all input

variables of the neural network.
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example of Norrmalized Input Vector

Input vector : (2456 104)

Mean of vector : U = é—z X, = 5.167

Standard deviation : o= \/ﬁi(xi — ) =2.714
,U: .

Normalized vector ; x, =32~#
Mean of normalized vector is zero

Standard deviation of normalized vector is unity
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»

Simple Neural Networks

Lecture 3:
Simple Perceptron
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ﬁ Outlines

> The Perceptron

e Linearly separable problem
e Network structure

e Perceptron learning rule

e Convergence of Perceptron
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ﬁ THE PERCEPTRON

»The perceptron was a simple model of ANN introduced
by Rosenblatt of MIT in the 1960’ with the idea of
learning.

> Perceptron is designed to accomplish a simple pattern
recognition task: after learning with real value training data

£ x(1), d(1), 1=1,2, ..., p} where d(i) =1 or -1

»For a new signal (pattern) x(i+1), the perceptron is
capable of telling you to which class the new signal
belongs

X(14]) e— perceptron = lor-1
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Perceptron
s Linear Threshold Unit (LTU)
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ﬁ ematically the Perceptron is

We can always treat the bias 6 as another weight with
inputs equal 1

y = f(zm:WiXi"‘b): f(zm:WiXi)

where f is the hard limiter function i.e.

~
m

Lif > w;x;+b >0
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Zmlwixi+b=0
=1

iwixi+b<0
=1

17/05/2006
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capable of solving linearly separable problem ?

D wx +b>0
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Learning rule

An algorithm to update the weights w so that finally
the input patterns lie on both sides of the line decided
by the perceptron

Let £be the time, at £ = 0, we have
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algorithm to update the weights w so that finally
Input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at ¢t = 1
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Learning rule

ate-the-weights w so that finally
input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at £ =2
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Learning rule

ights w so that finally
e input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at £ =3

w(3)
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i In Math
d (1) = {+ I'if x(t)in class +

— 11f x(t)in class -
Perceptron learning rule

w(t+1)=w(t)+n(t)d(t)-
sign - (W _(t) e x(t))] x(t)
Where n(t) is the learning rate >0,
- +1if x>0
sign(x) = 1 hard limiter function
- —1 if x<=0,
NB : d(t) is the same as d(i) and x(t) as x(i)
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i In words:

o If the classification is right, do not update the
weights

o If the classification is not correct, update the
weight towards the opposite direction so that the
output move close to the right directions.
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erceptron convergence theorem
(Rosenblatt, 1962)

Let the subsets of training vectors be linearly separable. Then
after finite steps of learning we have

lim w(t) = w which correctly separate the samples.

The idea of proof is that to consider ||w(t+1)-w|-||w(t)-w]|
which is a decrease function of t
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$Summary of Perceptron learning ...

Variables and parameters
X(t) = (m+1) dim. input vectors at time ¢

= (b/ X] (U/ XZ(U/ reer y Xm(v)

w(t) = (m+1) dim. weight vectors

=(-Z/ W](U/ G000 /7 Wm(z))

b = bias
y(t) = actual response
n(l) = |earning rate parameter, a +ve constant < 1

d(t) = desired response
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ﬁzra_m@dm), I=1...,p}

v Present the data to the network once a point

v' could be cyclic :

(x(1), d(1)), (x(2), d(2)),..., (X(p), d(p)),
(X(p+1), d(p+1)),...

v or randomly

(Hence we mix time t with i here)
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Summary of Perceptron learning (algorithm)

1. Initialisation Set w(0)=0. Then perform the following
computation for time step t=1,2,...
2. Activation At time step t, activate the perceptron by applying

input vector X(¢) and desired response d(t)
3. Computation of actual response Compute the actual response
of the perceptron
) = sign ( W(t) " x(t))

where sign is the sign function
4. Adaptation of weight vector Update the weight vector of the
perceptron

w(t+1) = W)+ n@®) [ at) - yt) ] x(t)

5. Continuation
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ﬁ Questions remain

Where or when to stop?

By minimizing the generalization error

For training data {(X(7), d(i)), i=1,...p}

How to define training error after t steps of learning?

E(t)= >Pi_; [d(i)-sign(w(t) . x(i)]
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After
learning
t steps

E(t) = 0
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How to define generalisation error?

g

After
learning
t steps

17/05/2006

or a new signal {x(t+1),d(t+1)}, we have

E, = [d(t+1)-sign (x(t+1)w (t)) 12
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.

We next turn to ADALINE learning,
from which we can understand
the learning rule, and more general the

Back-Propagation (BP) learning
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»

Simple Neural Network

Lecture 4:
ADALINE Learning
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ﬁ Outlines

= ADALINE
m Gradient descending learning

= Modes of training
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Lﬂhappy Over Perceptron Training

= When a perceptron gives the right answer, no

learning takes place

= Anything below the threshold is interpreted
as ‘no’, even it is just below the threshold.

= It might be better to train the neuron based

on how far below the threshold it is.
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ﬁ ADALINE
A

DALINE is an acronym for ADAptive LINear Element
(or ADAptive LInear NEuron) developed by Bernard
Widrow and Marcian Hoff (1960).

e There are several variations of Adaline. One has
threshold same as perceptron and another just a bare
linear function.

*The Adaline learning rule is also known as the least-
mean-squares (LMS) rule, the delta rule, or the Widrow-
Hoff rule.

e [t is a training rule that minimizes the output error

using (approximate) gradient descent method.
17/05/2006 51/147
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e Replace the step function in the perceptron with a
cpntinuous (differentiable) function 7/ e.g the simplest is

e With or without the threshold, the Adaline is trained based
on the output of the function 7 rather than the final output.

Teacher ot Ot

L i
2 [ e
é) ] 2| F(x)
Perceptron Learning Delta Rule
(Adaline)
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»

After each training pattern x(i) is presented, the correction to
apply to the weights is proportional to the error.

Silvio Simani

EGY) =2r[di)-fWb  x(1)]° I=1..,p
N.B. If Fis a linear function fiw(t) - x(i)) = w(t) * x(i)
Summing together, our purpose is to find W which minimizes

E®)=2; EGt)
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i General Appreach gradient descent method

/o find g
w(t+1) = w(O)+g( E(w(t) )

so that w automatically tends to the
global minimum of E(w).

w(t+1) = w(t)- E(w())n®)
(see figure below)
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radient dlrectlon s the direction of uphill
Figure, at position 0.4, the
( Fis E, consider one dim case )

radient is uphill

F(w),.|

0.8 r

0.7
e Gradient direction

T F'{0.4) T
0.4} ,ff -

0.3 F

0.2r

0.1 r /
I:I 1 1 1 1 L 1 1

1 1
1 08 0B 04 D2 0 02 04 06 08 1
A%
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e In gradient descent algorithm, we have

w(t+1) = w(t) — FIm(t)) n(z)
therefore the ball goes downhill since — F'(w(t))
is downhill direction

F(w) -
0.9
0.5 F
0.7 F
et Gradient direction
0s b |
0.4 F /
0.3 F :
0.2 F
0.1 F /

1 1
-1 -0.5 -0.6 -0.4 -0.2 o 0.2 o4 0.5 0.a 1

w

17/05/2006 56/147



Lecture Notes on Neural Networks

e In gradient descent algorithm, we have

wt+1) = w(t) = FIm()) n(z)

Silvio Simani

therefore the ball goes downhill since — F'(w(t))
is downhill direction

F(w)
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F(W)D; _
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]
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e|Gradually the ball will stop at a local minima where
' ' ro

———

(Gradient

Vj

rrection

-1
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* In words

adient method could be thought of as a ball rolling down
from a hill: the ball will roll down and finally stop at the valley

Thus, the weights are adjusted by

w(t+1) = w(t) +n®) 5 [d() - Fw() X)) F

This corresponds to gradient descent on the quadratic error
surface E

When " =1, we have the perceptron learning rule (we have in
general f’>0 in neural networks). The ball moves in the right
direction.
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ﬁ Two types of network training:

Sequential mode (on-line, stochastic, or
per-pattern) :

Weights upaated after each pattern is
presented (Perceptron is in this class)

Batch mode (off-line or per-epoch) :
Weights updated after all patterns are
presented
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omparison Perceptron and
Gradient Descent Rules

d Perceptron learning rule guaranteed to succeed if
= Training examples are linearly separable

= Sufficiently small learning rate n

dLinear unit training rule uses gradient descent
guaranteed to converge to hypothesis with
minimum squared error given sufficiently small
learning rate n
= Even when training data contains noise
=« Even when training data not separable by hyperplanes
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Renaissance of Perceptron

Multi-Layer

T Perceptron

Back-Propagation, 80’

Perceptron

Learning Theory, 90’

T

Support Vector
Machine
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ﬁ Summary

Perceptron
W(t+1)= W(t)+n(t) [ d(t) - sign (w(t) . X)] X

Adaline (Gradient descent method)
W(t+1)= W(t)+n(t) [ d(t) - f(w(t) . x)] x
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ﬁ Multi-Layer Perceptron (MLP)

/dea: Credit assignment problem

e Problem of assigning ‘credit’ or ‘blame’ to
individual elements involving in forming overall
response of a learning system (hidden units)

e In neural networks, problem relates to dividing

which weights should be altered, by how much
and in which direction.
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Example: Three-layer networks

ypr Output

Sigf;a/ routing
Input layer  Hidden layer Output layer
17/05/2006 65/147



Lecture Notes on Neural Networks Silvio Simani

Properties of architecture

« WO"connections within a layer

e No direct connections between input and output layers

e Fully connected between layers

e Often more than 2 layers

o Number of output units need not equal humber of input units

e Number of hidden units per layer can be more or less than
input or output units

= - Each unit ‘s’ is a perceptron
]

Y, = f(fwijxj_i_b.)
]
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iBP (Back Propagation)
N

gradient descent method
_|_

multilayer networks
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»

Lecture 5
MultiLayer Perceptron |

Back Propagating
Learning
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ﬁ BP learning algorithm

Solution to “credit assignment problem” in MLP

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes ‘functional signal’,
feedforward propagation of input pattern signals through
network

Backward pass phase: computes ‘error signal’,
propagation of error (difference between actual and desired
output values) backwards through network starting at output
units
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|BP Learnlng for Simplest MLP,
,d} to minimize

E = (d oF /2 W(t)/
= [d - [MON©®) P12,
= [d - AWDRAW(EL)) F /2 jw(t)

Error function at the output unit

I 2layers
Weight at time t is w(t) and W(t), example

intend to find the weight w and W at time t+1

Where y = f(w(t)I), output of the input unit
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ﬁ Forward pass phase
S

Silvio Simani

uppose that we have w(t), W(t) of time t ..............05% O
For given input I, we can calculate W() /
y = f(w(t)I) :
and y
o= f(W({)y) ] w(b)
= fiWitgf(W(t)I))
Error function of output unit will be I
E= (d - 0)2/2 2 layers
example
17/05/2006
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;ﬁ Backward Pass Phase
d ¥
dE
Wi+ =W (1) - W(t)
(1) =W ()= s
dE df
—W (1) - $2
O~ 5w © 2
“W (1) +7(d - 0) F' (W (t)y)y
I
E= (d-oF/2 o= f(W({)y)

17/05/2006
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“dE
dW (t)

Wit+1)=W(t)—n

0 o*
.......

=W ((t)+n(d-0)f"(W (t)y)y
=W (1) + nAy

| Backward pass phase

where A=(d-0)f’

17/05/2006
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W()

w(t)
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i dE ;

w(t+1)=w(t)-— nd (t)

| Backward pass phase

W(b)

o= f(W{HYy)

= F(WE(w®) 1))

17/05/2006

w(t)
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Review:
Two Layer Network

I inputs, Ooutputs, w connections for input
units, I/ connections for output units, v is the
activity of input unit

net (t) = network input to the unit at time t
Output units

w__ W |
I ié
\

y

Input units

Vob
O
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Forward pass

eights are fixed during forward & backward pass

at time t Oy
Wi,(0)
Y]
w;i(t)
2. compute values for output units O
Net, (t) = T W, (t)y, L.
J

0, = f (Net,(t))
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L Recall delta rule , error measure for pattern n is
| |
E(t) = 2(d, ()= O, ()’

We want to know how to modify weights in order to decrease E
where

AE (1)
é’Wij (t)

Wij(t-l-l)— Wij(t)oc—

both for input units and output units

This can be rewritten as product of two terms using chain rule
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FE()— CFE(t)  ohet (1)

A, (t)  onet (1)  Aw; (t)

both for input units and output units

Term A How error for pattern changes as function of change
in network 1nput to unit |

How net input to unit | changes as a function of

ferm B change in weight W
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welight updates are local

it+)—w; (t)=mno,;()I;(t) (inputunit)
Wy (T+1) =W, (1) =nA, ()Y, (t) (output unit)
outputunit
Wy (t+1) =W (1) =.7A, (1)y; (1)
n(d, (1) -0, (V) f T Net )y (1)

mput unit

Wy (L 1) = wy (1) = 775 (1) I (1)
= 77\]( (-net ,(t))Z Ak(t)ij I (1)

Once weight changes are computed for all units, weights are
updated at same time (bias included as weights here)

We now compute the derivative of the activation function 7£().
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Activation Functions

o compute O; and A we need to find the derivative of

activation function 7
»to find derivative the activation function must be smooth

Sigmoidal (logistic) function-common in MLP

1
1+ exp(—knet. (1))

f (net;(t) =

where K is a positive constant. The sigmoidal function gives
value in range of O to 1

Input-output function of a neuron (rate coding assumption)
17/05/2006 80/147



Lecture Notes on Neural Networks Silvio Simani

Shape of sigmoidal function

15 T T T T i
1 saturated
0.5 o
input signal
|:| _]
saturated
_DE 1 1 1 | 1 1 1 1
-10 -a -A -4 -2 O 2 4 B a8 10

Note: when net =0, f=0.5
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Shape of sigmoidal function derivative

025+

02p

015}

01

0.05

Derivative of sigmoidal function has max at x= 0, is symmetric
about this point falling to zero as sigmoidal approaches extreme
values
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Retyirning to local error gradients in BP algorithm we have for

For input units we have

S,(t)y = f "(net ,(t) > A, (W

k

= ky (1)1 = y;(t) > A, (DHW

K

Since degree of weight change is proportional to derivative of
activation function, weight changes will be greatest when units
receives mid-range functional signal than at extremes
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Summary of BP learning algorithm

Set initial weight values (incl.. biases): w, W

Loop until stopping criteria satisfied:

present Target response to output units
compute error signal for output units
compute error signal for input units
update all weights at same time

Increment n to n+1 and select next | and d

end loop
17/05/2006 84/147



Lecture Notes on Neural Networks Silvio Simani

Network training:
oﬁ‘o raining set shown repeatedly until stopping criteria are met
ach full presentation of all patterns = ‘epoch’

% Randomise order of training patterns presented for each
epoch in order to avoid correlation between consecutive
training pairs being learnt (order effects)

Two types of network training:

» Sequential mode (on-line, stochastic, or per-pattern)
Weights updated after each pattern is presented

» Batch mode (off-line or per -epoch)
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dvantages and disadvantages of different
modes

Batch mode:
o Faster learning than sequential mode
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!'- MultiLayer Perceptron II

Dynamics of MultiLayer
Perceptron



e eGrirerTrary of Network Trainirege s«

1), w(t), net(r), y(t), W(t), Net(t), O%)
Backward phase:

Output unit

Input unit

Wi (t+1)—-w; (t)=no ()1 (1)
= nf '(net [ (1)) D A, (OW (1)1, (t)
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Network training:

Training set shown repeatedly until stopping criteria are met.

Possible convergence criteria are
» Euclidean norm of the gradient vector reaches a

sufficiently small denoted as 6.
»When the absolute rate of change in the average squared

error per epoch is sufficiently small denoted as 0.
»Validation for generalization performance : stop when
generalization reaching the peak (illustrate in this lecture)

17/05/2006 89/147



Lecture Notes on Neural Networks Silvio Simani

Network training:

Two types of network training:

>

» Batch mode (off-line or per -epoch)
Weights updated after all the patterns are presented

17/05/2006 90/147



Lecture‘&)t&s on Neural Networks Silvio Simani

vantages and disadvantages of different
modes

Batch mode:
eFaster learning than sequential mode
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Foals of Neural Network Training

To give the correct output for input
training vector (Learning)

To give good responses to new unseen
input patterns (Generalization)
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ﬁ Training and Testing Problems

e Stuck neurons: Degree of weight change is proportional
to derivative of activation function, weight changes will be
greatest when units receives mid-range functional signal than
at extremes neuron. To avoid stuck neurons weights
initialization should give outputs of all neurons approximate 0.5

e Insufficient number of training patterns: In this
case, the training patterns will be learnt instead of the
underlying relationship between inputs and output, i.e. network
just memorizing the patterns.

e Too few hidden neurons: network will not produce a
good model of the problem.

e OQver-fitting: the training patterns will be learnt instead
of the underlying function between inputs and output because
of too many of hidden neurons. This means that the network
will have a poor generalization capability.
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Dynamics of BP learning
*s to minimise an error function over all training
rns by adapting weights in MLP

Recalling the typical error function is the mean
squared error as follows

E(t)= ;—Z (d, (1) -0, (1)°

The idea is to reduce E(t) to global minimum point.
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| Dynamics of BP learning

gle Tayer perceptron with linear activation
functions, the error function is simple, described
by a smooth parabolic surface with a single
minimum

W
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Dynamics of BP learning

with nonlinear activation functions have complex error
aus, fong valleys etc. ) with no single

minimum

An Ugly Cost Surface

local
Fri AiFra

plateau

v

global
AR FALET

l

For complex error surfaces the problem is learning rate must
keep small to prevent divergence. Adding momentum term is
a simple approach dealing with this problem.

W
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Momentum
o ] of instability while increasing
the rate of convergence

e Adding term to weight update equation can
effectively holds as exponentially weight history of
previous weights changed

Modified weight update equation is

Wij(n + 1) - Wij(n) = 775,-(n)yi(n)
+ a[Wij(n)_ Wij(n - 1)]
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i Selecting Initial Weight Values

» Choice of initial weight values is important as this
decides starting position in weight space. That is,
how far away from global minimum

» Aim is to select weight values which produce
midrange function signals

> Select weight values randomly from uniform
probability distribution

» Normalise weight values so number of weighted
connections per unit produces midrange function
signal
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Convergence of Backprop

mirumum with fast convergence.

= Add momentum

= Stochastic gradient descent

= Train multiple nets with different initial weights

Nature of convergence

= Initialize weights ‘near zero’ or initial networks
near-linear

= Increasingly non-linear functions possible as
training progresses
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Uﬁe of Available Data Set for Training

available data set is normally split into three
sets as follows:

= Training set — use to update the weights.
Patterns in this set are repeatedly in random
order. The weight update equation are
applied after a certain number of patterns.

= Validation set — use to decide when to stop
training only by monitoring the error.

m Test set — Use to test the performance of the
neural network. It should not be used as part
of the neural network development cycle.
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Bz terStopping - Good Generalizatiorr=

= _Running too many epochs may overtrain the
it in overfitting and perform

poorly in generalization.

~ Keep a hold-out validation set and test accuracy
after every epoch. Maintain weights for best
performing network on the validation set and stop
training when error increases increases beyond

this.

A

Validation set
error
Training set »

No. of epochs
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MModel-Setection by Cross-validatior:

0 few hidden units prevent the network from
ely fitting the data and learning

the concept (rmore than two layer networks).

= Too many hidden units leads to overfitting.

» Similar cross-validation methods can be used to
determine an appropriate number of hidden units

by using the optimal test error to select the model
with optimal number of hidden layers and nodes.

A

Validation set
error
Training set »
No. of epochs
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History Background

= Idea of evolutionary computing was introduced in the 1960s by I.
Rechenberg in his work "Evolution strategies" (Evolutionsstrategie in
original). His idea was then developed by other researchers. Genetic
Algorithms (GAs) were invented by John Holland and developed by him
and his students and colleagues. This lead to Holland's book "Adaption in
Natural and Artificial Systems" published in 1975.

= In 1992 John Koza has used genetic algorithm to evolve programs to
perform certain tasks. He called his method “Genetic Programming"
(GP). LISP programs were used, because programs in this language can

expressed in the form of a "parse tree", which is the object the GA works

On'17/05/2006 105/147
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Biological Background
Chromosome.

= All living organisms consist of cells. In each cell there is the same set of

chromosomes. Chromosomes are strings of DNA and serves as a model for
the whole organism. A chromosome consist of genes, blocks of DNA. Each
gene encodes a particular protein. Basically can be said, that each gene
encodes a trait, for example color of eyes. Possible settings for a trait (e.g.
blue, brown) are called alleles. Each gene has its own position in the

chromosome. This position is called locus.

s  Complete set of genetic material (all chromosomes) is called genome.
Particular set of genes in genome is called genotype. The genotype is with
later development after birth base for the organism's phenotype, its physical

and mental characteristics, such as eye color, intelligence etc.
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i Reproduction.

= During reproduction, first occurs recombination (or

crossover). Genes from parents form in some way the
whole new chromosome. The new created offspring can
then be mutated. Mutation means, that the elements of
DNA are a bit changed. This changes are mainly caused by

errors in copying genes from parents.

= The fitness of an organism is measured by success of the

organism in its life.
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ﬁ Evolutionary Computation

s Based on evolution as it occurs in nature

=« Lamarck, Darwin, Wallace: evolution of species, survival
of the fittest

= Mendel: genetics provides inheritance mechanism

= Hence “genetic algorithms”

s Essentially a massively parallel search procedure
= Start with random population of individuals

= Gradually move to better individuals
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Evolutionary Algorithms

utation population of genotypes
o] h
phenotype space
b1ood] 11001 )p————
ot p
coding schem O O
recombination selection
e——
1001 1000 =
fithess
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| Pseudo Code of an Evolutionary Algorithm
Create initial random population
Evaluate fithess of each individual
v yes

Termination criteria satisfied ? _’@

¥ Nno

Select parents according to fitness
A4

Recombine parents to generate offspring
\ 4

Mutate ovffspring

Replace population by new offspring
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A Simple Genetic Algorithm

ptimization task : find the maximum of f(x)
for example f(x)=xesin(x) Xe[0,x]
« genotype: binary string s<[0,1]° e.g. 11010, 01011, 10001
* mapping : genotype = phenotype ,_s
binary integer encoding: x =7 ¢ _Zl g e 20--1 /(20-1)
| =

Initial population

genotype integ. phenotype fitness prop. fithess
11010 26 2.6349 1.2787 30%
01011 11 1.1148 1.0008 24%
10001 17 1.7228 1.7029 40%
00101 5 0.5067 0.2459 6%
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Some Other Issues Regarding
lonary Computing

= Evolution according to Lamarck.

= Individual adapts during lifetime.
= Adaptations inherited by children.

= In nature, genes don't change; but for computations we could
allow this...

= Baldwin effect.

= Individual’s ability to learn has positive effect on evolution.
= It supports a more diverse gene pool.
= Thus, more “experimentation” with genes possible.

= Bacteria and virus.

= New evolutionary computing strategies.
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Radial Basis Functions



e Hadial-basis function (RBF) networks

RBF = radial-basis function: a function which
depends only on the radial distance from a point

-~
-
- - Q ! XOR problem
P /
7 /
7/

/ quadratically separable
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Radial-basis function (RBF) networks
SﬁBFs are functions taking the form

o (I X = X; |

where ¢ is a nonlinear activation function, xis the
input and x;is the 7th position, prototype, basis or

centre vector.

The idea is that points near the centres will have
similar outputs (i.e. if x ~ x/ then F(x) ~ f (xi))
since they should have similar properties.

The simplest is the linear RBF : ¢(x) =||x — x| |
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LeEmeS on Neur eytvg'l‘scal RBFS inCIUde
¢(r) _ (rz n C2)1/2
for some c>0
p(r)y=(r>+c?) "
for some c>0
I
o(r) = exp( >)

Multiquadrics
(b) Inverse multiquadrics
(c) Gaussian )
20

for some o >0
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> Idea is to use a weighted sum of the outputs from the

basis functions to represent the data.
» Thus centers can be thought of as prototypes of input

data.

MLP VS
distributed
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Starting point: exact interpolation

Each input pattern x must be mapped onto a
target value d

12

| 7

-
ry

Approximation (Fitting)
MLF

| | 1 | | | | | |
a 0.1 0.2 03 04 s 0B 07 g 04 1
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hat is, given a set of N vectors X;and a corresponding set

- (the targets), find a function F that
atisfies the interpolation condition:

F(x)=d fori=1..,N

or more exactly find:
N
F(X) = Zw(1x =X,
J:
satisfying:

F (X)) = z w (1% —x;|) = d.
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o (=0, ([y-x41)

W

Input layer : On (Y)=0x ([[y-Xnl1)

e output = 2'w; ¢; (¥ - X))

e adjustable parameters are weights w;

e number of input units <number of data points
e Form of the basis functions decided in advance
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To summarize:

For a given data set containing N points (X;,d;), i=1,...,N

Choose a RBF function ¢

Calculate ¢(X; — X;)

Solve the linear equation ® W = D

Get the unique solution

Done

e

*

e

*

e

*

e

*

> Like MLP’s, RBFNs can be shown to be able to approximate
any function to arbitrary accuracy (using an arbitrarily large
numbers of basis functions).

» Unlike MLP’s, however, they have the property of ‘best
approximation’ i.e. there exists an RBFN with minimum
approximation error.
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Largec =1

Clutputs from Linear Bbf Met Clutputs from Gaussian Rbf Met

D15

011 g/ ' ES
0.05{ # 0.4 % x
w %
0 N2 | s linear .
% | —— pgaussian £
kS :
. . . . I:I I:|5 1
Difference in Activations between Prafile of rhis

~ Linear and Gaussian Mets 17
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Smallc =0.2

Cutputs from Linear Rbf Met

Difference in Activations between
Linear and Gaussian Mets

17/05/2006

Cutputs from Gaussian Rbf Met

0.5 4

OB
0.4
024

' 10
g
oy e P
1 e |inear
| — waussian | .
0.8 x, s
":-c:. =
0.6 w o ox
£
0.4 EN
0.2 _K'. .'::{_
E =3
ok : :
0 0.5 1

Frofile of rbfs

Silvio Simani
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Problems with exact interpolation
ﬁi: produce poor generalisation performance as only data
‘ ing

Overfitting problem

Bishop(1995) example

Underlying function f(x)=0.5+0.4sine(2r Xx)
sampled randomly for 30 points

added Gaussian noise to each data point
30 data points 30 hidden RBF units

fits all data points but creates oscillations due added noise
and unconstrained between data points
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All Data Points 5 Basis functions
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To fit an RBF to every data point is very

nefficient due to the computational cost of

matrix inversion and is very bad for
generalization so:

v" Use less RBF’s than data points I.e. M<N

v Therefore don't necessarily have RBFs centred at data points
v" Can include bias terms

v Can have Gaussian with general covariance matrices but
there is a trade-off between complexity and the number of

parameters to be found eg for ¢ rbfs we have:
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Nonlinear System ldentification

u@®)

)

yp&+1)

¥, [

7 2

Figure 2.1 Input-output model

Silvio Simani
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u(k) Sl
Z;.l
Fll : ypltD)
e(k+1)
Eiﬂmm e
u(k) E‘-‘T—u]—‘m:llgal
)
il
Target function: y (k+1)=1(.)

Identified function: yygp(k+1)=F(.)

Estimation error:

e(k+1)
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“{lontinear-System Neural Controt

u

*
u
C.

d: reference/desired response
Yy
u: system input/controller output

system output/desired output

desired controller input

: NN output

controller/network error

17/05/2006

The goal of training is to find an
appropriate plant control u from

the desired response d. The weights
are adjusted based on the difference
between the outputs of the networks
I & II to minimise e. If network I is
trained so that y =d, thenu=u".
Networks act as inverse dynamics

identifiers.
130/147




Lecture Notes on Neural Networks Silvio Simani

onlinear System ldentification

0 O) —
T“\\’ dlx| X,
O dt Xy 9.81sinx; — 2x,+u

: o
u(t) —w{ 1 180° 2 dt
degZrad = pi/180;
angle = [-20:40:200] *degZrad;
vel = [-90:36:90]*deg2rad: Neural network
force = -30:6:30: input generation

Pm
anglez = [-20:10:200]*degZrad;
Pm = [combvec(angle,vel,force)
l[angleZ: zeros(2,length(angle2))]]:
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Nonlinear System ldentification

S1 = 8;
[S2.Q] = size(Tm) ;
mnet = newff (minmax (Pm),[S1 S2].{'tansig' 'purelin'}, trainlm')

mnet.trainParam.goal = (0.0037"2);
mnet = train(mnet,Pm,Tm)

Pendulum and Open Network Responze

L]
o
(=1

Z
(Y
S
=
Q9
j_
)—
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<
X
-
-
)

(S|
Qs
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e
QY
—

Anggha {dagh P+ N -
=z o
[= (=)

o
(=1
T

=%

Neural network response 20—

Welosty (degsec) B 4N -
.
i

Time (sac)
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,Jl Model Reference Control

0°r O

N

u(f) ' 180°

Linear reference model

17/05/2006

Silvio Simani

alx) 2
dt » 9.81sinx, — 2x,+u

X =
X :@
2 dt

Antenna arm nonlinear model

_t.f_ Xl = XE + 0
dt Xy -9x, - 6x, Or
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Model Reference Control

State l Next

Controller State
Demand Force Pendulum p———p
Network

Neural controller + nonlinear system diagram

Reference 9
Model
®
@ Controller Model State
Demand Network rorce Network

\ Error

= o=
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Control of a Robot Arm Example

Muodel Reference Controller

]
M Clock
] L p
Random Reference . > O
Angle
—P
X2
Flant Gmph
(Robot Arm)
Meural Metwork Model Reference Control of a Robot Arm ]
{Double click on the 7" for more info) DGhU;?'rE f'f]"rf?“

Simulink Help

To start and stop the simulation, use the "Start/Stop”
selection in the "Simulation” pull-down menu
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Control of a Robot Arm Example

<} Model Reference Control
File Window Help

Madel Reference Control

M etwark, Architecture

Size of Hidden Layer 13 Meo. Delayed Reference Inputs 2
Mo, Delaped Controller Outputs 1
[ Mo, Delayed Plant Outputs 2

Model Reference Contraller

A

Controller |Signal  fTorau= T

M Neural
Random Reference Network | Cantral

Angle

Training Data

Maxirmurn Reference Value 0.7 Contraller Training 5 arnples G000
Mirimurn Reference Walue 07
t amimurn [Rterval Walue [zec) o

Minirnurn [ rtereal Walue [sec) | 0.1

Reference Maodel:

Browze |

| robatref

Generate Training Data I Irmpart Data | Export Data I

Training Parameters

Contraller Training Epochs 10 Contraller Training Segments an

[ Usze Cumrent ‘Weights [ Usze Cumulative Training

F'Iantldentificatil:unl e Eartraller | ] Cancel | e [ |

.| Plant Qutput
Plant
{Robot Arm)
Neural Metwork Model Reference Control of a Robat Arm
(Double click on the "2" for more info) Double click
here for
Simulink Help
To start and stop the simulation, use the "Start/Stop"
selection in the "Simulation” pull-down menu
CO—
- 1 1=
S S
Velocity Position
Friction

10*sin(u(1))

Gravity

Perform plant identification before controller training.

I7[0J[Z000
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Control of a Robot Arm Example

<} Plant Identification
File ‘Window Help

Plant Identification

indom Reference Network | Cantral

g

Mebmark Architecture

Size of Hidden Layer 10 Ma. Delaved Plant Inputs | 2
Sampling Interval [sec) 0.05 Mo, Delaped Plant Outputs | 2

[ Maormalize Training Data

Training Data

Training 5 amples IW
M airnunn Flant Input IT M asimuirn Flant Output IT
Minirnum Plart Input IT Minirum Plant Output IT

i axirium Interval Y alue [zec) IT Simulink Plant Model: Browse

Mirirnurmn Intereal Walue [sec) | 0.1 | robatarm

[ Lirnit Dutput Data

Generate Training Data | Irmpart Crata | Ew=port Data |

Model Reference Contraller

Neural

Controller |Signal  fTorau= T

Plant
{Robot Arm)

Neural Metwork Model Reference Control of a Robat Arm
(Double click on the *?" for more info) D:;Ll\]\e click
r

fo
Simulink Help

To start and stop the simulation, use the "Start/Stop"
selection in the "Simulation” pull-down menu

Training Parameters

Training Epochs 300

Training Function Im

v Usze Curent "Weights v Uszealidation Data [v Usze Testing Data
i etk | ] | Cancel | [ |

Generate or import data before training the neural network plant.
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Plant ldentification:

Data generation from the
Reference Model for
Neural Network training
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) o
7 [Plant Input-Output Data Model Reference Controller

Plant Input
15 T T T T T

Random Reference

Angle

Plant
{Robot Arm)

Neural Metwork Model Reference Control of a Robat Arm
-0 (Double click on the "2" for more info) . Double click
here for
Simulink Help

L L L L L L L L To start and stap the simulation, use the "Start/Stop"
50 100 150 200 250 300 350 400 450 selection in the "Simulation” pull-down menu

time (s)

Plant Qutput
4 T T T T T

il After Plant
| dentification:

¥ 1 1 L L L 1 1 L L
0 a0 100 150 200 250 300 350 400 450
time (s)
- Simulation concluded.
Accept Data Fieect Data | Please Accept or Reject Data to continue.

Neural Network training
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<) Plant Identification
File ‘Window Help

Plant Identification

M etwark. Architecture

Size of Hidden Layer 10

[ Marmalize Training Data

Mo, Delayed Plant [nputs 2
Mo, Delayed Plant Outputs 2

m >
>
Neural
andom Reference Network | Cantral
Controller | Signal fTorqus " | Ang
.| Plant Qutput
Plant
{Robot Arm)
Neural Metwork Model Reference Control of a Robat Arm
(Double click on the "2" for more info) Double click
here for
Simulink Help

Training Data

v

il

LRRE

Eraze Generated Data I Irpart D ata |

Ewxport Data

Model Reference Contraller

To start and stop the simulation, use the "Start/Stop"
selection in the "Simulation” pull-down menu

Training Parameters

Training Epochs 300

v Usze Cumrent "Weights [v UszeYalidation Data [v Usze Testing Data

Train Mebwork | ] I Cancel | [

Training Function Im

Your training data set haz 10000 zamples.
You can now train the network.
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After Plant
Identification:

Neural Network training
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File Edit “iew Insert Tools Sindow  Help

Input Plant Output Input Plant Output

20 20
L I
10 2 1 m 2
0 | 0f 0 0
-0 5 Il 10 | 5 _
20 : : : : 20 : : : :
100

a 100 200 a 100 200 a 50 100 a £0
w10t Error NN Output w10t Error NN Output
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| 0
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| -2 :
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a 100 200 a 100 200 a 50 100 a 50 oo
tirme (s) tirne (s) | time (s) tirme (s)

Training and Validation Data
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E 7 Training with TRAINLM

File Edit Wiew Insert Tools ‘Window Help
- Input Plant Qutput " Perfarmance is 2.46086e-010, Gaal is 0
1':' 1 1 1 1 1
10 2
=3
[k}
a a -
o
uk}
10 i
- - .
o
20 - - - - <
a a0 100 a a0 100 I=
T -
“  Error NN Qutput =
uk}
=
2 @
eyt
=
=
a a E
E 1|:|'m 1 1 1 1 1 1
2 . . . . a 1 2 3 4 5 B 7
a A0 100 a A0 100 Stop Training | 7 Epochs
time () time (=)

Testing Data and Training Results
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<} Model Reference Control

] File Window Help

Model Reference Control

Metwark Architecture

Size of Hidden Layer 12 Mo. Delayed Reference Inputs a

Model Reference Contraller

A

Mo, Delayed Contraller Dutputs 1 M
Neural

[ Mo. Delayed Plant Outputs 2 Random Reference Controller [ Sanai-

Training Data

M aximurn Reference Yalue 0.7 Contraller Training 5 amples E000

Torque ™ |

3

Angle

Plant
{Robot Arm)

[

Mirirmurn Beference Yalue 07 |Defines how many daka points will be general

Neural Metwork Model Reference Control of a Robat Arm

. {Double click on the "?" for more info)
M aximurn Interval Walue [zec) 2 Reference todel: Browse

To start and stop the simulation, use the "Start/Stop"
selection in the "Simulation” pull-down menu

Minirum |nterval ¥alue [sec) | 0.1 | rabotref

Double click
here for
Simulink Help

Generate Training Data | Import Data | Export Data |

Training Parameters

Contraller Training Epochs 10 Contraller Training Segments a0

[v Use Current Weights [ Usze Curnulative Training

F'Iantldentifiu:atiu:unl rar Eamtnallen I ] Cancel I Sy I

Generate or import data before training the neural network controller.

Plant identification with a NN

Data Generation for NN Controller Identification

17/05/2006

143/147




Lecture Notes on Neural Networks Silvio Simani

Control of a Robot Arm Example

<} [ Input-Qutput Data for, NN Model Reference Control |Z|@E|
‘ Reference Model Input
1
0.5
I:I B Model Reference Controller
|:| 5 c@lr&nce ] %ﬂ g.ﬂn'r;ll » i
5| Plant Quiput
_1 1 1 1 1 1 ( nEcET\mw)
a 50 100 150 200 250
time ()
Reference Model Output s .
1 I I I e S\muﬁ kkkkk
I:I5 selection in the “Simulation” pull-dow u
|:| L
05F
_1 1 1 1 1 1
a a0 100 150 200 250

tirme (=)
Simulation concluded.
Accept Data | Fefuse Data | Pleaze Accept or Reject Data to continue.

Accept the Data Generated for
NN Controller Identification
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<) Model Reference Control
File “Window Help

Model Reference Control

Model Reference Contraller

Metwark Architecture
Size of Hidden Layer 13 Mo, Delayed Reference Inputs | 2 i’ e e i
o | Plant Quiput e "
Mo, Delayed Controller Dutputs 1 R Ar)

[ Mo, Delayed Plant Dutputs 2

.. ral Network Model Reference Control of a Robot Arm
T [Ellr'llr'lg D EltEl {Double click on the "?" for more info) Double click

here for

Simulink Help
[0 start and stop the simulation, use the “Start/Stop"
selection in the "Simulation” pull-down menu

—

[
| |

Eraze Generated Data | Impart Oata | Export Data |

Training Parameters N N CO n t ro l l er
Cantraller Training Epochs IT Cantraller Training Segments IT Tr ai n i n g

v Usze Curnent Weights [ Usze Curnulative Training

F'Iantll:lentificati-:unl Train Contraoller | ] Cancel | Al |

Your training data set has 6000 samples.
You can now train the network.

17709/ Z000 145/147




Lecture Notes on Neural Networks

<} | Training with TRAINBEGC
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NN Controller Training and Results
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