Automazione (Laboratorio)

Reti Neurali Per L'identificazione, Predizione Ed II Controllo

Lecture 1:

Introduction to Neural Networks (Machine Learning)

SILVIO SIMANI

ssimani@ing.unife.it

Lecture Notes on Neural Networks

Silvio Simani

References

Textbook (suggested):

- Neural Networks for Identification, Prediction, and Control, by Duc Truong Pham and Xing Liu. Springer Verlag; (December 1995). ISBN: 3540199594
- Nonlinear Identification and Control: A Neural Network Approach, by G. P. Liu. Springer Verlag; (October 2001). ISBN: 1852333421

17/05/2006 2/147

Course Overview

- 1. Introduction
 - Course introduction
 - Introduction to neural network
 - iii. Issues in neural network
- Simple neural network
 - i. Perceptronii. Adaline
- 3. Multilayer Perceptron
 i. Basics
- 4. Radial basis networks
- Application examples

17/05/2006 3/147

Lecture Notes on Neural Networks

Silvio Simani

Improve automatically with experience

- Imitating human learning
 - Human learning Fast recognition and classification of complex classes of objects and concepts and fast adaptation
 - Example: neural networks
- Some techniques assume statistical source Select a statistical model to model the source
- Other techniques are based on reasoning or inductive inference (e.G. Decision tree)

17/05/2006 4/147

Disciplines Relevant to ML

- Artificial intelligence
- Bayesian methods
- Control theory
- Information theory
- Computational complexity theory
- Philosophy
- Psychology and neurobiology
- Statistics

17/05/2006 5/147

Lecture Notes on Neural Networks

Silvio Simani

Machine Learning Definition

A computer program is said to **learn** from *experience* **E** with respect to some class of *tasks* **T** and *performance measure* **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience.

17/05/2006 6/147

Examples of Learning Problems

Example 1: handwriting recognition.

- T: recognizing and classifying handwritten words within images.
- P: percentage of words correctly classified.
- E: a database of handwritten words with given classification.

Example 2: learn to play checkers.

- T: play checkers.
- P: percentage of games won in a tournament.
- E: opportunity to play against itself (war games...).

17/05/2006 7/147

Lecture Notes on Neural Networks

Silvio Simani

Type of Training Experience

Direct or indirect?

- Direct: board state -> correct move
- Indirect: credit assignment problem (degree of credit or blame for each move to the final outcome of win or loss)

Teacher or not ?

- Teacher selects board states and provide correct moves or
- Learner can select board states

Is training experience representative of performance goal?

- Training playing against itself
- Performance evaluated playing against world champion

17/05/2006 8/147

Issues in Machine Learning

- What algorithms can approximate functions well and when?
- How does the number of training examples influence accuracy?
- How does the complexity of hypothesis representation impact it?
- How does noisy data influence accuracy?
- How do you reduce a learning problem to a set of function approximation?

17/05/2006 9/147

Lecture Notes on Neural Networks
Summary

Silvio Simani

- Machine learning is useful for data mining, poorly understood domain (face recognition) and programs that must dynamically adapt.
- Draws from many diverse disciplines.
- Learning problem needs well-specified task, performance metric and training experience.
- Involve searching space of possible hypotheses.
 Different learning methods search different hypothesis space, such as numerical functions, neural networks, decision trees, symbolic rules.

17/05/2006 10/147

Topics in Neural Networks

Lecture 2: Introduction

Lecture Notes on Neural Networks

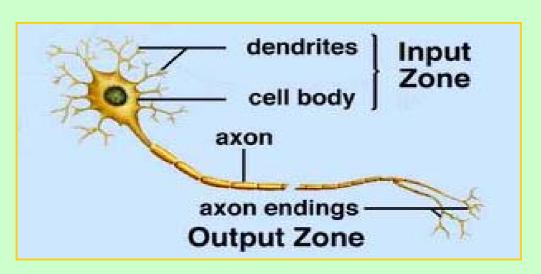
Silvio Simani

Introduction to Neural Networks

17/05/2006 12/147

Brain

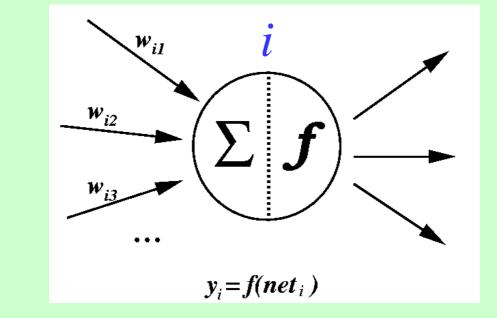
- 10¹¹ neurons (processors)
- On average 1000-10000 connections



17/05/2006 13/147

Silvio Simani

 $net_i = \sum_j w_{ij} y_j + b^*$



17/05/2006 14/147

Artificial Neuron

- Input/Output Signal may be.
 - Real value.
 - Unipolar {0, 1}.
 - Bipolar {-1, +1}.
- Weight : W_{ij} strength of connection.

Note that w_{ij} refers to the weight from unit j to unit i (not the other way round).

17/05/2006 15/147

Lecture Notes on Neural Networks

Silvio Simani

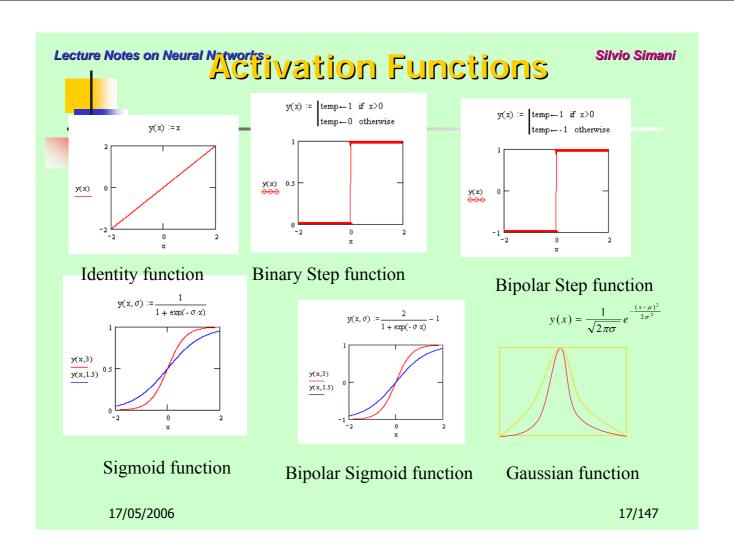
Artificial Neuron

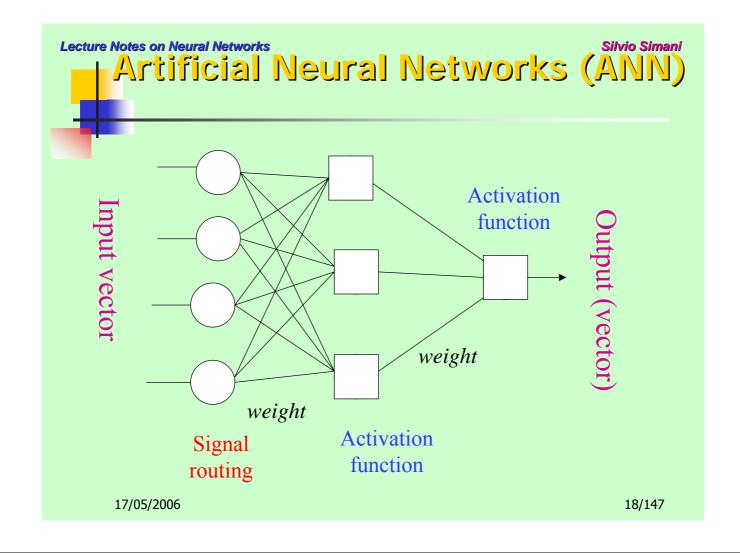
• The bias b is a constant that can be written as $w_{i0}y_0$ with $y_0 = b$ and $w_{i0} = 1$ such that

$$net _{i} = \sum_{j=0}^{n} w_{ij} y_{j}$$

- The function f is the unit's activation function. In the simplest case, f is the identity function, and the unit's output is just its net input. This is called a *linear unit*.
- Other activation functions are: step function, sigmoid function and Gaussian function.

17/05/2006 16/147





Historical Development of ANN...

- William James (1890): describes in words and figures simple distributed networks and Hebbian learning
- McCulloch & Pitts (1943): binary threshold units that perform logical operations (they proof universal computation)
- Hebb (1949): formulation of a physiological (local) learning rule
- Roseblatt (1958): the perceptron— a first real learning machine
- Widrow & Hoff (1960): ADALINE and the Widrow-Hoff supervised learning rule

17/05/2006 19/147

Lecture Notes on Neural Networks

Silvio Simani

Historical Development of ANN

- Kohonen (1982): Self-organizing maps
- Hopfield (1982): Hopfield Networks
- Rumelhart, Hinton & Williams (1986): Back-propagation & Multilayer Perceptron
- Broomhead & Lowe (1988) : Radial basis functions (RBF)
- Vapnik (1990) -- support vector machine

17/05/2006 20/147

When Should ANN Solution Be Considered?

- The solution to the problem cannot be explicitly described by an algorithm, a set of equations, or a set of rules.
- There is some evidence that an input-output mapping exists between a set of input and output variables.
- There should be a large amount of data available to train the network.

17/05/2006 21/147

Lecture Notes on Neural Networks

Silvio Simani

Problems That Can Lead to Poor Performance?

- The network has to distinguish between very similar cases with a very high degree of accuracy.
- The train data does not represent the ranges of cases that the network will encounter in practice.
- The network has a several hundred inputs.
- The main discriminating factors are not present in the available data. *E.g.* Trying to assess the loan application without having knowledge of the applicant's salaries.
- The network is required to implement a very complex function.

17/05/2006 22/147

Applications of Artificial Neural Networks

- Manufacturing : fault diagnosis, fraud detection.
- Retailing: fraud detection, forecasting, data mining.
- Finance: fraud detection, forecasting, data mining.
- Engineering: fault diagnosis, signal/image processing.
- Production : fault diagnosis, forecasting.
- Sales & marketing : forecasting, data mining.

17/05/2006 23/147

Lecture Notes on Neural Networks

Silvio Simani

Data Pre-processing

Neural networks very **rarely** operate on the raw data. An initial **pre-processing** stage is essential. Some examples are as follows:

- Feature extraction of images: for example, the analysis of x-rays requires pre-processing to extract features which may be of interest within a specified region.
- Representing input variables with numbers. For example "+1" is the person is married, "0" if divorced, and "-1" if single. Another example is representing the pixels of an image: 255 = bright white, 0 = black. To ensure the generalization capability of a neural network, the data should be encoded in form which allows for interpolation.

17/05/2006 24/147

Data Pre-processing

Categorical Variable

- A categorical variable is a variable that can belong to one of a number of discrete categories. For example, red, green, blue.
- Categorical variables are usually encoded using 1 out-of n coding. e.g. for three colors, red = (1 0 0), green =(0 1 0) Blue =(0 0 1).
- If we used red = 1, green = 2, blue = 3, then this type of encoding imposes an ordering on the values of the variables which does not exist.

17/05/2006 25/147

Lecture Notes on Neural Networks

Silvio Simani

Data Pre-processing

CONTINUOUS VARIABLES

A continuous variable can be directly applied to a neural network. However, if the dynamic range of input variables are not approximately the same, it is better to *normalize* all input variables of the neural network.

17/05/2006 26/147

Example of Normalized Input Vector

- Input vector : (2 4 5 6 10 4)*
- Mean of vector : $\mu = \frac{1}{6} \sum_{i=1}^{6} x_i = 5.167$
- Standard deviation : $\sigma = \sqrt{\frac{1}{6-1} \sum_{i=1}^{6} (x_i \mu)^2} = 2.714$
- Normalized vector: $x_N = \frac{x_i \mu}{\sigma} = (-1.17 0.43 0.06 \ 0.31 \ 1.78 0.43)^t$
- Mean of normalized vector is zero
- Standard deviation of normalized vector is unity

17/05/2006 27/147

Lecture Notes on Neural Networks

Silvio Simani

Simple Neural Networks

Lecture 3: Simple Perceptron

17/05/2006 28/147

Outlines

- > The Perceptron
- Linearly separable problem
- Network structure
- Perceptron learning rule
- Convergence of Perceptron

17/05/2006 29/147

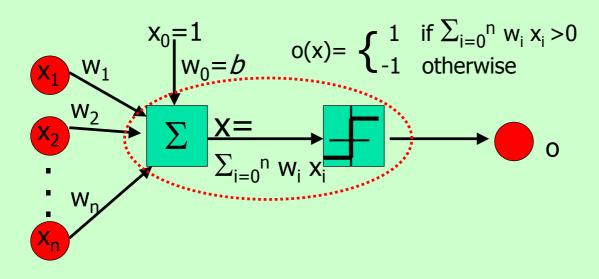
Lecture Notes on Neural Networks THE PERCEPTRON

Silvio Simani

- The perceptron was a simple model of ANN introduced by Rosenblatt of MIT in the 1960' with the idea of learning.
- Perceptron is designed to accomplish a simple pattern recognition task: after learning with real value training data $\{\underline{x(i)}, d(i), i = 1, 2, ..., p\}$ where d(i) = 1 or -1
- For a new signal (pattern) $\underline{x(i+1)}$, the perceptron is capable of telling you to which class the new signal belongs

Perceptron

Linear Threshold Unit (LTU)



17/05/2006 31/147

Mathematically the Perceptron is

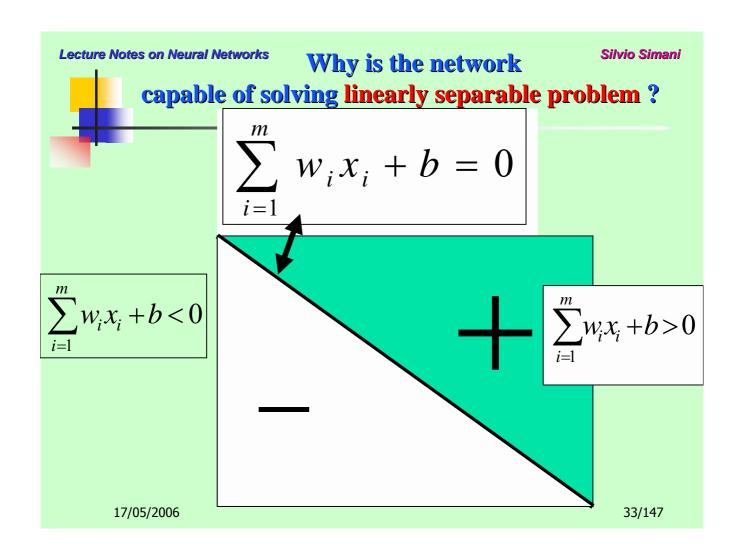
$$y = f(\sum_{i=1}^{m} w_{i}x_{i} + b) = f(\sum_{i=0}^{m} w_{i}x_{i})$$

We can always treat the bias b as another weight with inputs equal 1

where f is the hard limiter function i.e.

$$y = \begin{cases} 1 & \text{if } \sum_{i=1}^{m} w_{i} x_{i} + b > 0 \\ -1 & \text{if } \sum_{i=1}^{m} w_{i} x_{i} + b \leq 0 \end{cases}$$

17/05/2006 32/147

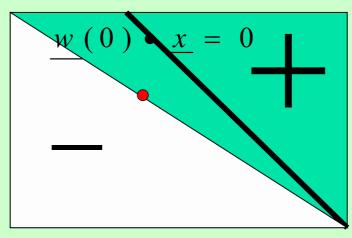


Silvio Simani

Learning rule

An algorithm to update the weights \underline{w} so that finally the input patterns lie on both sides of the line decided by the perceptron

Let t be the time, at t = 0, we have



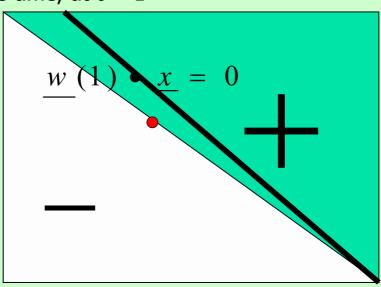
17/05/2006 34/147

Lecture Notes on Neural Network Learning rule

Silvio Simani

An algorithm to update the weights <u>w</u> so that finally the input patterns lie on both sides of the line decided by the perceptron

Let t be the time, at t = 1



17/05/2006

35/147

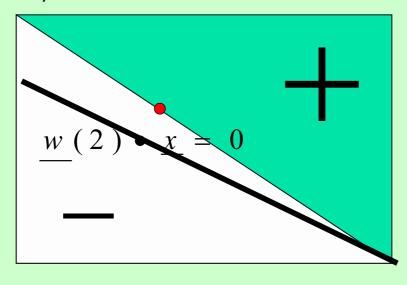
Lecture Notes on Neural Networks

Learning rule

Silvio Simani

An algorithm to update the weights <u>w</u> so that finally the input patterns lie on both sides of the line decided by the perceptron

Let t be the time, at t = 2



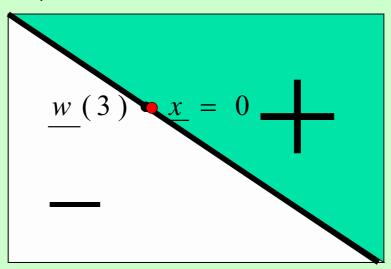
17/05/2006

36/147

Learning rule

An algorithm to update the weights w so that finally the input patterns lie on both sides of the line decided by the perceptron

Let t be the time, at t = 3



17/05/2006

37/147

Silvio Simani

Lecture Notes on Neural Networks

In Math

$$d(t) = \begin{cases} +1 & if & x(t) & in class \\ -1 & if & x(t) & in class \end{cases} -$$

Perceptron learning rule

$$\underline{w}(t+1) = \underline{w}(t) + \eta(t)[d(t) - sign(\underline{w}(t) \bullet \underline{x}(t))] \underline{x}(t)$$

Where $\eta(t)$ is the learning rate >0,

Where
$$\eta(t)$$
 is the learning rate >0,
$$sign(x) = \begin{cases} +1 & \text{if } x > 0 \\ -1 & \text{if } x < = 0, \end{cases}$$
hard limiter function

NB: d(t) is the same as d(i) and x(t) as x(i)

17/05/2006 38/147

In words:

- If the classification is right, do not update the weights
- If the classification is not correct, update the weight towards the opposite direction so that the output move close to the right directions.

17/05/2006 39/147

Lecture Notes on Neural Networks

Silvio Simani

Perceptron convergence theorem (Rosenblatt, 1962)

Let the subsets of training vectors be linearly separable. Then after finite steps of learning we have

 $\lim \underline{w}(t) = \underline{w}$ which correctly separate the samples.

The idea of proof is that to consider $||\underline{w}(t+1)-\underline{w}||-||\underline{w}(t)-\underline{w}||$ which is a decrease function of t

17/05/2006 40/147

Variables and parameters

$$\underline{x}(t) = (m+1)$$
 dim. input vectors at time $t = (b, x_1(t), x_2(t), \dots, x_m(t))$

$$\underline{w}(t) = (m+1)$$
 dim. weight vectors $= (1, w_1(t), ..., w_m(t))$

b = bias

y(t) = actual response

 $\eta(t)$ = learning rate parameter, a +ve constant < 1

d(t) = desired response

17/05/2006 41/147

Lecture Notes on Neural Networks F Perceptron learning ... Silvio Simani

- Present the data to the network once a point
- ✓ could be cyclic : $(\underline{x}(1), d(1)), (\underline{x}(2), d(2)), ..., (\underline{x}(p), d(p)), (\underline{x}(p+1), d(p+1)), ...$
- √ or randomly

(Hence we mix time t with i here)

17/05/2006 42/147

Summary of Perceptron learning (algorithm)

- **1. Initialisation** Set $\underline{w}(0)=0$. Then perform the following computation for time step t=1,2,...
- **2. Activation** At time step t, activate the perceptron by applying input vector $\underline{X}(t)$ and desired response d(t)
- **3. Computation of actual response** Compute the actual response of the perceptron

$$y(t) = sign\left(\underline{w}(t) \cdot \underline{x}(t)\right)$$

where *sign* is the sign function

4. Adaptation of weight vector Update the weight vector of the perceptron

$$\underline{w}(t+1) = \underline{w}(t) + \eta(t) [d(t) - y(t)] \underline{x}(t)$$

5. Continuation

17/05/2006 43/147

Lecture Notes on Neural Networks

Silvio Simani

Questions remain

Where or when to stop?

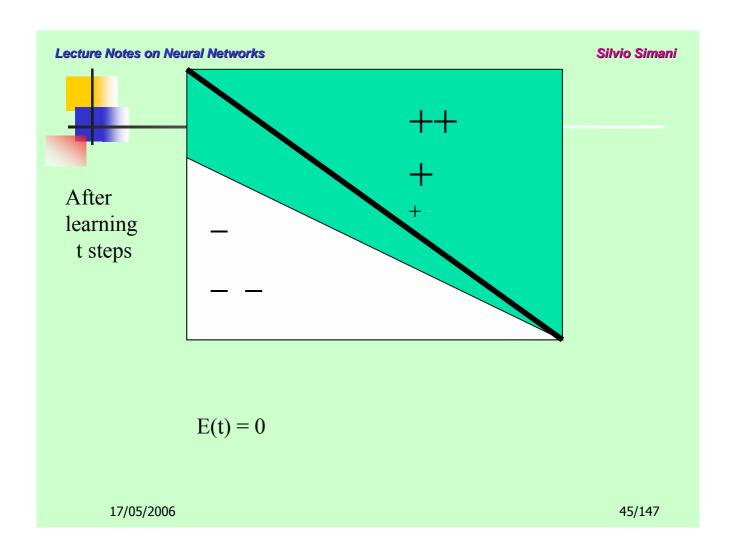
By minimizing the generalization error

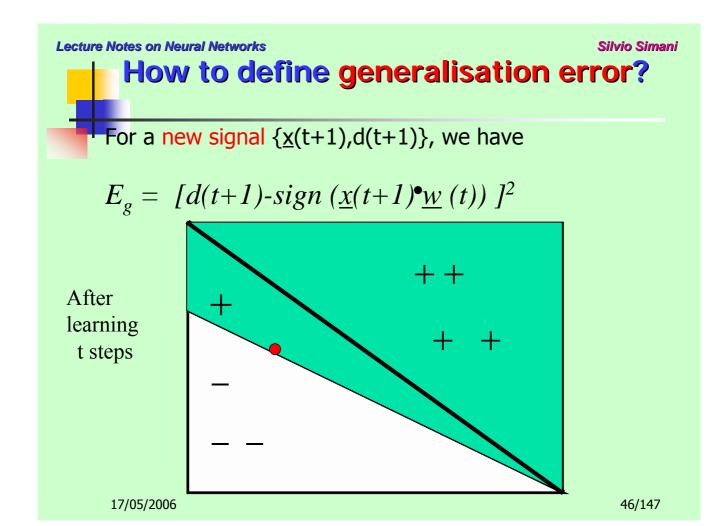
For training data $\{(\underline{x}(i), d(i)), i=1,...p\}$

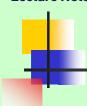
How to define training error after t steps of learning?

$$E(t) = \sum_{i=1}^{p} [d(i) - sign(\underline{w}(t) \cdot \underline{x}(i))]^{2}$$

17/05/2006 44/147







We next turn to **ADALINE learning**, from which we can understand the learning rule, and more general the **Back-Propagation (BP) learning**

17/05/2006 47/147

Lecture Notes on Neural Networks

Silvio Simani

Simple Neural Network

Lecture 4: ADALINE Learning

17/05/2006 48/147

Outlines

- ADALINE
- Gradient descending learning
- Modes of training

17/05/2006 49/147

Lecture Notes on Neural Networks

Silvio Simani

Unhappy Over Perceptron Training

- When a perceptron gives the right answer, no learning takes place
- Anything below the threshold is interpreted as 'no', even it is just below the threshold.
- It might be better to train the neuron based on how far below the threshold it is.

17/05/2006 50/147

ADALINE

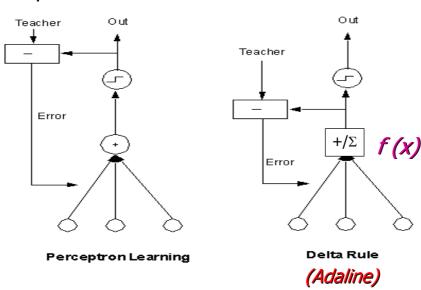
- •ADALINE is an acronym for ADAptive LINear Element (or ADAptive LInear NEuron) developed by Bernard Widrow and Marcian Hoff (1960).
- There are several variations of Adaline. One has threshold same as perceptron and another just a bare linear function.
- •The Adaline learning rule is also known as the leastmean-squares (LMS) rule, the delta rule, or the Widrow-Hoff rule.
- It is a training rule that minimizes the output error using (approximate) gradient descent method.

17/05/2006 51/147

Lecture Notes on Neural Networks

Silvio Simani

- Replace the step function in the perceptron with a continuous (differentiable) function f, e.g the simplest is linear function
- With or without the threshold, the Adaline is trained based on the output of the function f rather than the final output.



After each training pattern $\underline{x}(i)$ is presented, the correction to apply to the weights is proportional to the error.

$$E(i,t) = \frac{1}{2} [d(i) - f(\underline{w}(t) \cdot \underline{x}(i))]^2$$
 $i=1,...,p$

N.B. If f is a linear function
$$f(\underline{w}(t) \cdot \underline{x}(i)) = \underline{w}(t) \cdot \underline{x}(i)$$

Summing together, our purpose is to find \underline{W} which minimizes

$$E(t) = \sum_{i} E(i,t)$$

17/05/2006 53/147

Lecture Notes on Neural Networks

Silvio Siman

General Approach gradient descent method

To find g $\underline{w}(t+1) = \underline{w}(t) + g(E(\underline{w}(t)))$

so that \underline{w} automatically tends to the global minimum of E(w).

$$\underline{w}(t+1) = \underline{w}(t) - E'(\underline{w}(t))\eta(t)$$

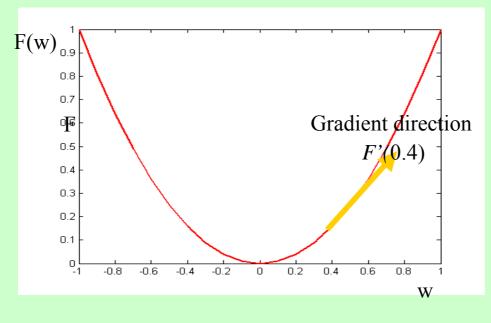
(see figure below)

17/05/2006 54/147

Lecture Notes on Neural Networks

Silvio Simani

• Gradient direction is the direction of uphill for example, in the Figure, at position 0.4, the gradient is uphill (F is E, consider one dim case)



17/05/2006 55/147

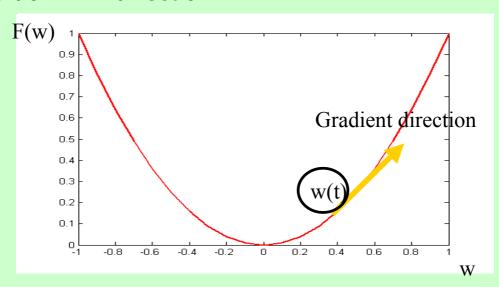
Lecture Notes on Neural Networks

Silvio Simani

In gradient descent algorithm, we have

$$\underline{w}(t+1) = \underline{w}(t) - F'(w(t)) \eta(\tau)$$

therefore the ball goes downhill since -F'(w(t)) is downhill direction



17/05/2006 56/147

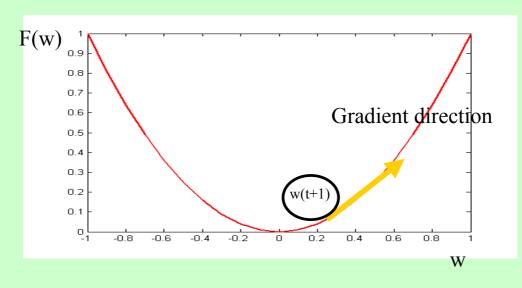
Lecture Notes on Neural Networks

Silvio Simani

In gradient descent algorithm, we have

$$w(t+1) = w(t) - F'(w(t)) \eta(\tau)$$

therefore the ball goes downhill since – F'(w(t)) is downhill direction

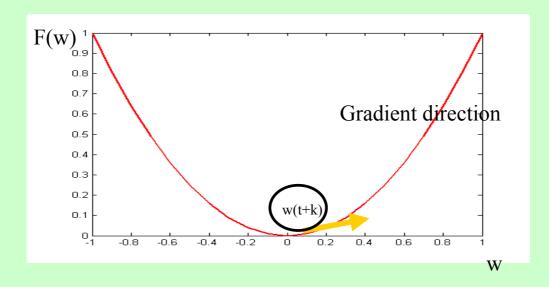


17/05/2006 57/147

Lecture Notes on Neural Networks

Silvio Simani

 Gradually the ball will stop at a local minima where the gradient is zero



17/05/2006 58/147

In words

Gradient method could be thought of as a ball rolling down from a hill: the ball will roll down and finally stop at the valley

Thus, the weights are adjusted by

$$w_{i}(t+1) = w_{i}(t) + \eta(t) \sum \left[d(i) - f(\underline{w}(t) \cdot \underline{x}(i))\right] x_{i}(i) f'$$

This corresponds to gradient descent on the quadratic error surface E

When f' = 1, we have the perceptron learning rule (we have in general f' > 0 in neural networks). The ball moves in the right direction.

17/05/2006 59/147

Lecture Notes on Neural Networks

Silvio Simani

Two types of network training:

Sequential mode (on-line, stochastic, or per-pattern):

Weights updated after each pattern is presented (Perceptron is in this class)

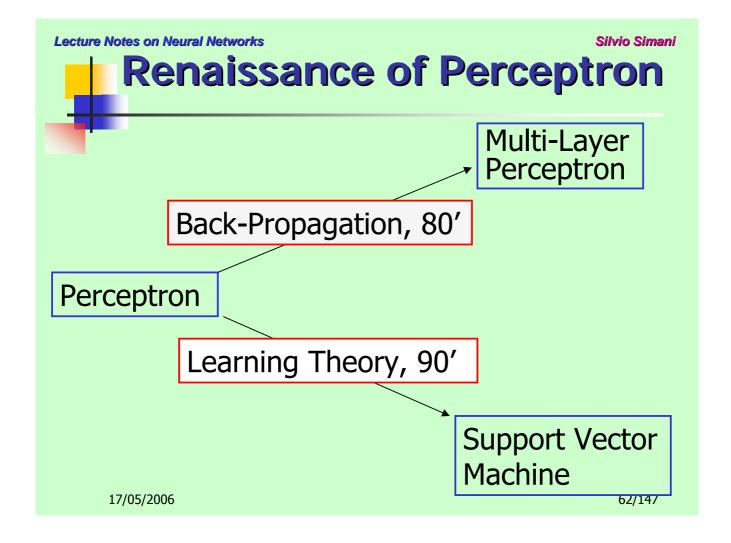
Batch mode (off-line or per-epoch): Weights updated after all patterns are presented

17/05/2006 60/147

Comparison Perceptron and Gradient Descent Rules

- Perceptron learning rule guaranteed to succeed if
 - Training examples are linearly separable
 - Sufficiently small learning rate η
- Linear unit training rule uses gradient descent guaranteed to converge to hypothesis with minimum squared error given sufficiently small learning rate η
 - Even when training data contains noise
 - Even when training data not separable by hyperplanes

17/05/2006 61/147



Summary

Perceptron

$$\underline{W}(t+1) = \underline{W}(t) + \eta(t) [d(t) - sign(\underline{w}(t) . \underline{x})] \underline{x}$$

Adaline (Gradient descent method)

$$\underline{W}(t+1) = \underline{W}(t) + \eta(t) [d(t) - f(\underline{w}(t) \cdot \underline{x})] \underline{x} f'$$

17/05/2006 63/147

Lecture Notes on Neural Networks

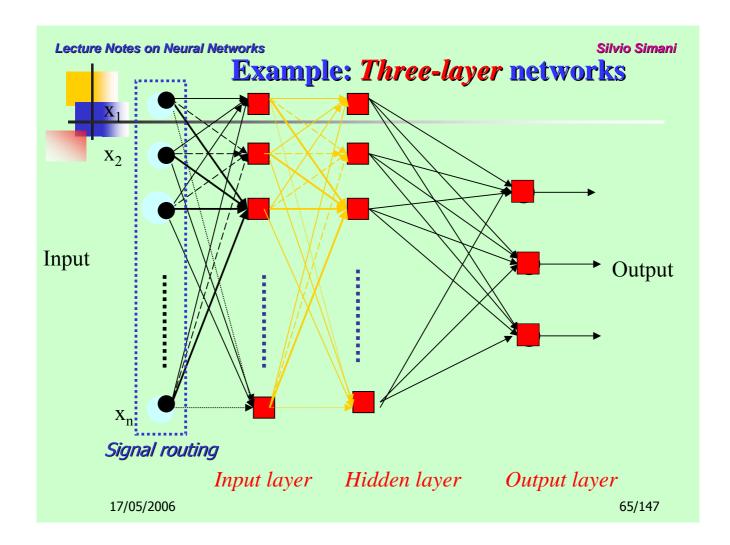
Silvio Simani

Multi-Layer Perceptron (MLP)

Idea: Credit assignment problem

- Problem of assigning 'credit' or 'blame' to individual elements involving in forming overall response of a learning system (hidden units)
- In neural networks, problem relates to dividing which weights should be altered, by how much and in which direction.

17/05/2006 64/147

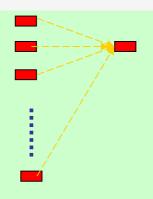


Lecture Notes on Neural Networks

Silvio Simani

Properties of architecture

- No connections within a layer
- No direct connections between input and output layers
- Fully connected between layers
- Often more than 2 layers
- Number of output units need not equal number of input units
- Number of hidden units per layer can be more or less than input or output units



Each unit 'm' is a perceptron

$$y_{i} = f(\sum_{j=1}^{m} w_{ij} x_{j} + b_{i})$$

17/05/2006 66/147

Silvio Simani

BP (Back Propagation)

gradient descent method

multilayer networks

17/05/2006 67/147

Lecture Notes on Neural Networks

Silvio Simani

Lecture 5 MultiLayer Perceptron I

Back Propagating Learning

17/05/2006 68/147

example

BP learning algorithm Solution to "credit assignment problem" in MLP

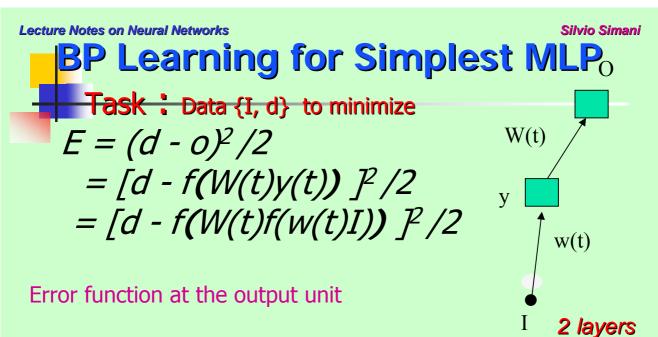
Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes 'functional signal', feedforward propagation of input pattern signals through network

Backward pass phase: computes 'error signal', propagation of error (difference between actual and desired output values) backwards through network starting at output units

17/05/2006 69/147



Weight at time t is w(t) and W(t), intend to find the weight w and W at time t+1

Where y = f(w(t)I), output of the input unit

17/05/2006 70/147

Silvio Simani

Forward pass phase

Suppose that we have w(t), W(t) of time t

For given input I, we can calculate

$$y = f(w(t)I)$$

and

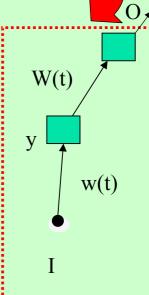
$$o = f(W(t)y)$$

= $f(W(t)f(w(t)I))$

Error function of output unit will be

$$E = (d - o)^2/2$$

17/05/2006



2 layers example

71/147

Silvio Simani

Lecture Notes on Neural Networks

Backward Pass Phase

$$W(t+1) = W(t) - \eta \frac{dE}{dW(t)}$$

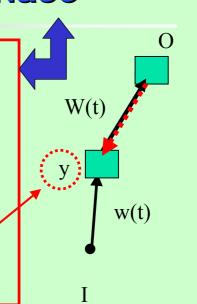
$$= W(t) - \eta \frac{dE}{df} \frac{df}{dW(t)}$$

$$= W(t) + \eta (d - o) f'(W(t)y) y$$

$$E = (d - o)^2 / 2$$

$$o = f(W(t)y)$$

17/05/2006 72/147



Silvio Simani

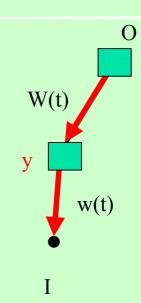
Backward pass phase

$$W(t+1) = W(t) - \eta \frac{dE}{dW(t)}$$

$$= W(t) - \eta \frac{dE}{df} \frac{df}{dW(t)}$$

$$= W(t) + \eta (d - o) f'(W(t)y) y$$

$$= W(t) + \eta \Delta y$$

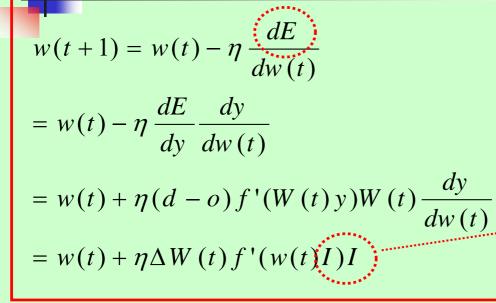


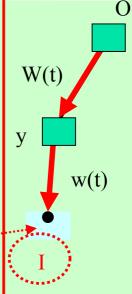
where
$$\Delta = (d - o) f$$

17/05/2006 73/147

Backward pass phase

Silvio Simani





$$o = f(W(t) y)$$

$$= f(W(t) f(w(t) I))$$

17/05/2006

74/147

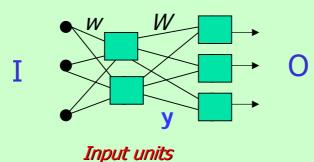
Review:

General Two Layer Network

I inputs, *O* outputs, *w* connections for input units, *W* connections for output units, *y* is the activity of input unit

net (t) = network input to the unit at time t

Output units



17/05/2006

75/147

Lecture Notes on Neural Networks

Forward pass

Silvio Simani

Weights are fixed during forward & backward pass

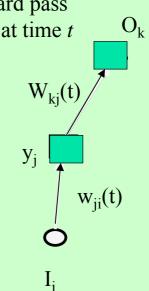
1. Compute values for input units

$$net_{j}(t) = \sum_{i} w_{ji}(t) I_{i}(t)$$
$$y_{j} = f(net_{j}(t))$$

2. compute values for output units

$$N \ e \ t_{k} \ (t) = \sum_{j} W_{kj} \ (t) \ y_{j}$$

 $O_{k} = f \ (N \ e \ t_{k} \ (t))$



17/05/2006 76/147

Recall delta rule, error measure for pattern n is

$$E(t) = \frac{1}{2} \sum_{k=1}^{k} (d_k(t) - O_k(t))^2$$

We want to know how to modify weights in order to decrease E where

$$w_{ij}(t+1) - w_{ij}(t) \propto -\frac{\partial E(t)}{\partial w_{ij}(t)}$$

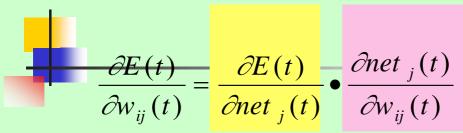
both for input units and output units

This can be rewritten as product of two terms using chain rule

17/05/2006 77/147

Lecture Notes on Neural Networks

Silvio Simani



both for input units and output units

Term A

How error for pattern changes as function of change in network input to unit j

Term B

How net input to unit j changes as a function of change in weight w

17/05/2006 78/147

Silvio Simani

weight updates are local

$$w_{ii}(t+1) - w_{ii}(t) = \eta \delta_i(t) I_i(t)$$
 (input unit)

$$W_{kj}(t+1) - W_{kj}(t) = \eta \Delta_k(t) y_j(t)$$
 (output unit)

output unit

$$W_{kj}(t+1) - W_{kj}(t) = \eta \Delta_{k}(t) y_{j}(t)$$

$$= \eta (d_{k}(t) - O_{k}(t)) f'(Net_{k}(t)) y_{j}(t)$$

input unit

$$w_{ji}(t+1) - w_{ji}(t) = \eta \delta_{j}(t) I_{i}(t)$$

$$= \eta f'(net_{j}(t)) \sum_{k} \Delta_{k}(t) W_{kj} I_{i}(t)$$

Once weight changes are computed for all units, weights are updated at same time (bias included as weights here)

We now compute the derivative of the activation function f().

17/05/2006 79/147

Lecture Notes on Neural Networks

Silvio Simani

Activation Functions

to compute δ_i and Δ_k we need to find the derivative of activation function f

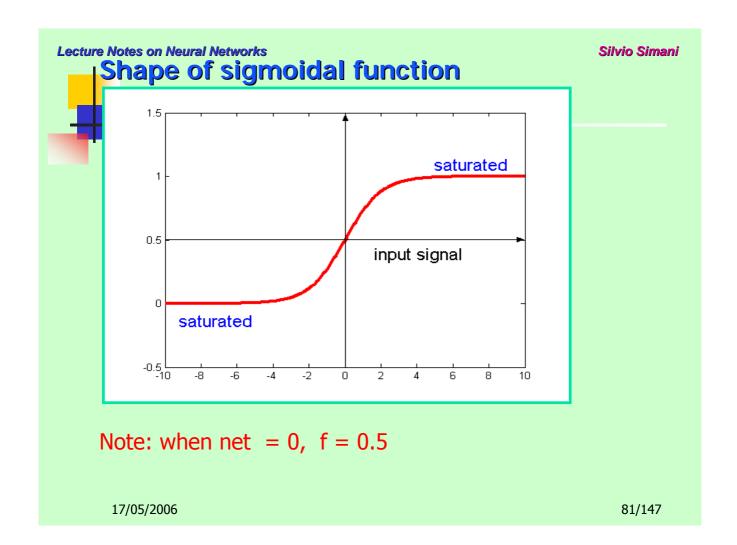
>to find derivative the activation function must be smooth

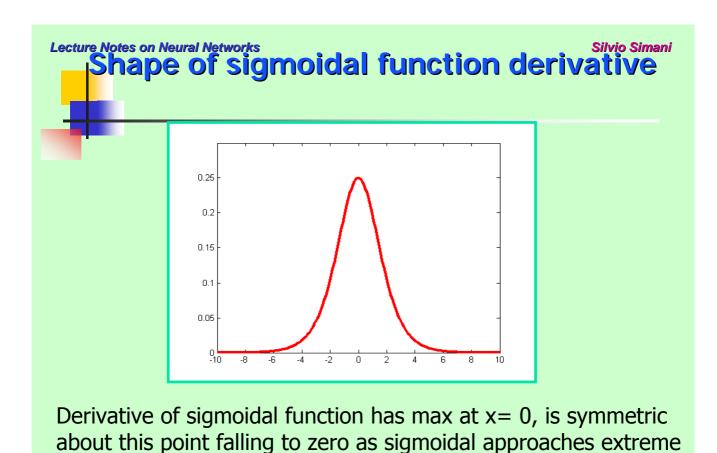
Sigmoidal (logistic) function-common in MLP

$$f(net_i(t)) = \frac{1}{1 + \exp(-knet_i(t))}$$

where k is a positive constant. The sigmoidal function gives value in range of 0 to 1

Input-output function of a neuron (rate coding assumption) 17/05/2006 80/147





17/05/2006 82/147

values

Lecture Notes on Neural Networks

Silvio Simani

Returning to local error gradients in BP algorithm we have for output units

$$\Delta_{i}(t) = (d_{i}(t) - O_{i}(t)) f'(Net_{i}(t))$$

$$= (d_{i}(t) - O_{i}(t)) kO_{i}(t)(1 - O_{i}(t))$$

For input units we have

$$\delta_{i}(t) = f'(net_{i}(t)) \sum_{k} \Delta_{k}(t) W_{ki}$$

$$= ky_{i}(t)(1 - y_{i}(t)) \sum_{k} \Delta_{k}(t) W_{ki}$$

Since degree of weight change is proportional to derivative of activation function, weight changes will be greatest when units receives mid-range functional signal than at extremes

17/05/2006 83/147

Lecture Notes on Neural Networks

Silvio Simani

Summary of BP learning algorithm

Set learning rate η

Set initial weight values (incl.. biases): w, W

Loop until stopping criteria satisfied:

present input pattern to NN inputs compute functional signal for input units compute functional signal for output units

present Target response to output units compute error signal for output units compute error signal for input units update all weights at same time increment n to n+1 and select next I and d

end loop 17/05/2006

Silvio Simani

Network training:

Training set shown repeatedly until stopping criteria are met Each full presentation of all patterns = 'epoch'

Randomise order of training patterns presented for each epoch in order to avoid correlation between consecutive training pairs being learnt (order effects)

Two types of network training:

- Sequential mode (on-line, stochastic, or per-pattern)
 Weights updated after each pattern is presented
- Batch mode (off-line or per -epoch)

17/05/2006 85/147

Lecture Notes on Neural Networks

Silvio Siman

Advantages and disadvantages of different modes

Sequential mode:

- Less storage for each weighted connection
- Random order of presentation and updating per pattern means search of weight space is stochastic-reducing risk of local minima able to take advantage of any redundancy in training set (*i.e.* same pattern occurs more than once in training set, esp. for large training sets)
- Simpler to implement

Batch mode:

Faster learning than sequential mode

17/05/2006 86/147

Lecture 5 MultiLayer Perceptron II

Dynamics of MultiLayer Perceptron

Lecture No Summary of Network Training Simani

Forward phase: $\underline{I}(t)$, $\underline{w}(t)$, $\underline{net}(t)$, $\underline{y}(t)$, $\underline{W}(t)$, $\underline{Net}(t)$, $\underline{O}(t)$

Backward phase:

Output unit

$$W_{kj}(t+1) - W_{kj}(t) = \eta \Delta_{k}(t) y_{j}(t)$$

= $\eta (d_{k}(t) - O_{k}(t)) f'(Net_{k}(t)) y_{j}(t)$

Input unit

$$w_{ji}(t+1) - w_{ij}(t) = \eta \delta_{j}(t) I_{i}(t)$$

$$= \eta f'(net_{j}(t)) \sum_{k} \Delta_{k}(t) W_{kj}(t) I_{i}(t)$$

17/05/2006 88/147

Network training:

Training set shown repeatedly until stopping criteria are met.

Possible convergence criteria are

- \triangleright Euclidean norm of the gradient vector reaches a sufficiently small denoted as θ .
- When the absolute rate of change in the average squared error per epoch is sufficiently small denoted as θ .
- ➤ Validation for generalization performance : stop when generalization reaching the peak (illustrate in this lecture)

17/05/2006 89/147

Lecture Notes on Neural Networks

Silvio Simani

Network training:

Two types of network training:

- Sequential mode (on-line, stochastic, or per-pattern)
 Weights updated after each pattern is presented
- Batch mode (off-line or per -epoch)
 Weights updated after all the patterns are presented

17/05/2006 90/147

Lecture Notes on Neural Networks
Advantages and disadvantages of different
modes

Sequential mode:

- Less storage for each weighted connection
- Random order of presentation and updating per pattern means search of weight space is stochastic--reducing risk of local minima able to take advantage of any redundancy in training set (i.e., same pattern occurs more than once in training set, esp. for large training sets)
- Simpler to implement

Batch mode:

Faster learning than sequential mode

17/05/2006 91/147

Lecture Notes on Neural Networks

Silvio Simani

Goals of Neural Network Training

To give the correct output for input training vector (Learning)

To give good responses to new unseen input patterns (Generalization)

17/05/2006 92/147

Training and Testing Problems

- Stuck neurons: Degree of weight change is proportional to derivative of activation function, weight changes will be greatest when units receives mid-range functional signal than at extremes neuron. To avoid stuck neurons weights initialization should give outputs of all neurons approximate 0.5
- Insufficient number of training patterns: In this case, the training patterns will be learnt instead of the underlying relationship between inputs and output, i.e. network just memorizing the patterns.
- Too few hidden neurons: network will not produce a good model of the problem.
- Over-fitting: the training patterns will be learnt instead of the underlying function between inputs and output because of too many of hidden neurons. This means that the network will have a poor generalization capability.

17/05/2006 93/147

Lecture Notes on Neural Networks

Silvio Simani

Dynamics of BP learning

Aim is to minimise an error function over all training

patterns by adapting weights in MLP

Recalling the typical error function is the mean squared error as follows

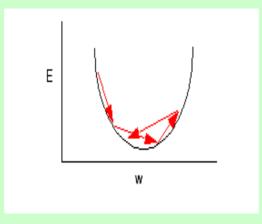
E(t)=
$$\frac{1}{2} \sum_{k=1}^{p} (d_k(t) - O_k(t))^2$$

The idea is to reduce E(t) to global minimum point.

17/05/2006 94/147

Lecture Notes on Neural Networks Dynamics of BP learning

In single layer perceptron with linear activation functions, the error function is simple, described by a smooth parabolic surface with a single minimum

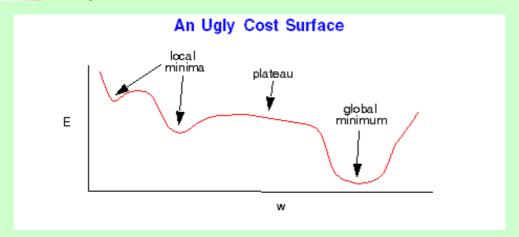


17/05/2006 95/147

Dynamics of BP learning

Silvio Simani

MLP with nonlinear activation functions have complex error surfaces (e.g. plateaus, long valleys etc.) with no single minimum



For complex error surfaces the problem is learning rate must keep small to prevent divergence. Adding momentum term is a simple approach dealing with this problem.

17/05/2006 96/147

Momentum

- Reducing problems of instability while increasing the rate of convergence
- Adding term to weight update equation can effectively holds as exponentially weight history of previous weights changed

Modified weight update equation is

$$w_{ij}(n+1) - w_{ij}(n) = \eta \delta_{j}(n) y_{i}(n) + \alpha [w_{ij}(n) - w_{ij}(n-1)]$$

17/05/2006 97/147

Effect of momentum term

ni

- ➤ If weight changes tend to have same sign momentum term increases and gradient decrease speed up convergence on shallow gradient
- ➤ If weight changes tend have opposing signs momentum term decreases and gradient descent slows to reduce oscillations (stabilizes)
- Can help escape being trapped in local minima

17/05/2006 98/147

- ➤ Choice of initial weight values is important as this decides starting position in weight space. That is, how far away from global minimum
- ➤ Aim is to select weight values which produce midrange function signals
- Select weight values randomly from uniform probability distribution
- Normalise weight values so number of weighted connections per unit produces midrange function signal

17/05/2006 99/147

Lecture Notes on Neural Networks
Convergence of Backprop

Silvio Simani

Avoid local minumum with fast convergence:

- Add momentum
- Stochastic gradient descent
- Train multiple nets with different initial weights

Nature of convergence

- Initialize weights 'near zero' or initial networks near-linear
- Increasingly non-linear functions possible as training progresses

17/05/2006 100/147

Use of Available Data Set for Training

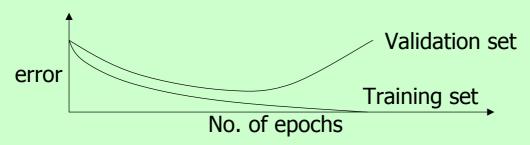
The available data set is normally split into three sets as follows:

- Training set use to update the weights. Patterns in this set are repeatedly in random order. The weight update equation are applied after a certain number of patterns.
- Validation set use to decide when to stop training only by monitoring the error.
- Test set Use to test the performance of the neural network. It should not be used as part of the neural network development cycle.

17/05/2006 101/147

Lect Earlier Stopping - Good Generalization Pani

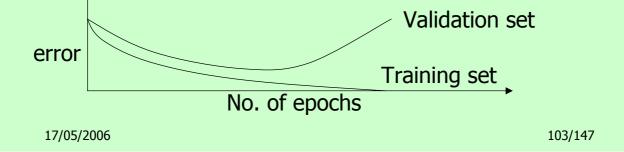
- Running too many epochs may overtrain the metwork and result in overfitting and perform poorly in generalization.
- Keep a hold-out validation set and test accuracy after every epoch. Maintain weights for best performing network on the validation set and stop training when error increases increases beyond this.



17/05/2006 102/147

Model Selection by Cross-validation ...

- the concept (more than two layer networks).
- Too many hidden units leads to overfitting.
- Similar cross-validation methods can be used to determine an appropriate number of hidden units by using the optimal test error to select the model with optimal number of hidden layers and nodes.



Alternative training algorithm

Lecture 8 : Genetic Algorithms

Lecture Notes on Neural Networks History Background

- Rechenberg in his work "*Evolution strategies*" (*Evolutionsstrategie* in original). His idea was then developed by other researchers. **Genetic**Algorithms (GAs) were invented by John Holland and developed by him and his students and colleagues. This lead to Holland's book "*Adaption in Natural and Artificial Systems*" published in 1975.
- In 1992 John Koza has used genetic algorithm to evolve programs to perform certain tasks. He called his method "Genetic Programming" (GP). LISP programs were used, because programs in this language can expressed in the form of a "parse tree", which is the object the GA works on. 105/147

Lecture Notes on Neural Networks

Silvio Simani

Biological Background

Chromosome.

- All living organisms consist of cells. In each cell there is the same set of chromosomes. Chromosomes are strings of <u>DNA</u> and serves as a model for the whole organism. A chromosome consist of genes, blocks of DNA. Each gene encodes a particular protein. Basically can be said, that each gene encodes a trait, for example color of eyes. Possible settings for a trait (e.g. blue, brown) are called alleles. Each gene has its own position in the chromosome. This position is called locus.
- Complete set of genetic material (all chromosomes) is called genome.
 Particular set of genes in genome is called genotype. The genotype is with later development after birth base for the organism's phenotype, its physical and mental characteristics, such as eye color, intelligence etc.
 17/05/2006
 106/147

Reproduction. Lecture Notes Birological Background Silvio Simani Reproduction.

- During reproduction, first occurs recombination (or crossover). Genes from parents form in some way the whole new chromosome. The new created offspring can then be mutated. Mutation means, that the elements of DNA are a bit changed. This changes are mainly caused by errors in copying genes from parents.
- The fitness of an organism is measured by success of the organism in its life.

17/05/2006 107/147

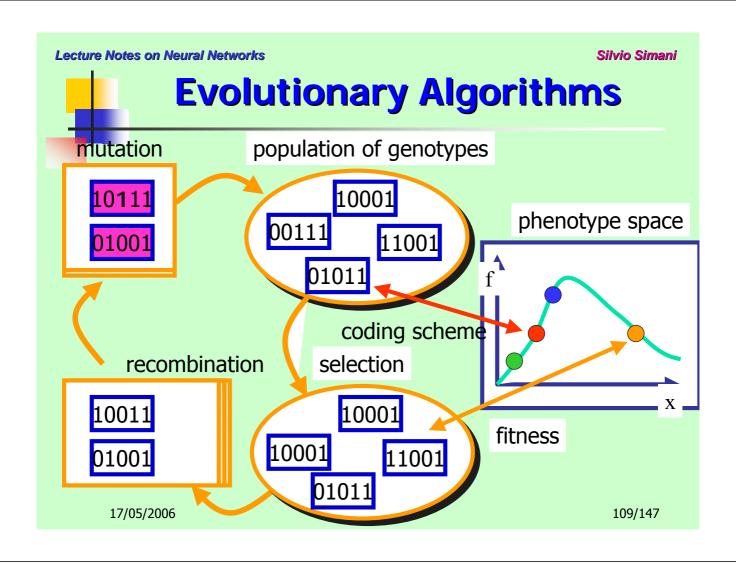
Lecture Notes on Neural Networks

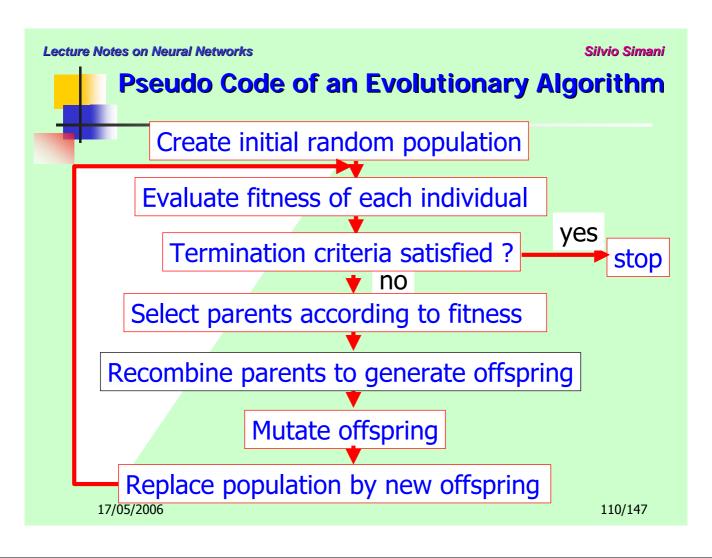
Silvio Simani

Evolutionary Computation

- Based on evolution as it occurs in nature
 - Lamarck, Darwin, Wallace: evolution of species, survival of the fittest
 - Mendel: genetics provides inheritance mechanism
 - Hence "genetic algorithms"
- Essentially a massively parallel search procedure
 - Start with random population of individuals
 - Gradually move to better individuals

17/05/2006 108/147





A Simple Genetic Algorithm

Optimization task: find the maximum of f(x) for example $f(x)=x \cdot \sin(x)$ $x \in [0,\pi]$

- genotype: binary string $s \in [0,1]^5$ e.g. 11010, 01011, 10001
- mapping : genotype \Rightarrow phenotype $_{n=5}$ binary integer encoding: $x = \pi \bullet \sum_{i=1}^{n} s_i \bullet 2^{n-i-1} / (2^n-1)$

Initial population

genotype	integ.	phenotype	fitness	prop. fitness
11010	26	2.6349	1.2787	30%
01011	11	1.1148	1.0008	24%
10001	17	1.7228	1.7029	40%
00101	5	0.5067	0.2459	6%

17/05/2006 111/147

Lecture Notes on Neural Networks

Silvio Simani

Evolution according to Lamarck.

- Individual adapts during lifetime.
- Adaptations inherited by children.
- In nature, genes don't change; but for computations we could allow this...

Baldwin effect.

- Individual's ability to learn has positive effect on evolution.
 - It supports a more diverse gene pool.
 - Thus, more "experimentation" with genes possible.

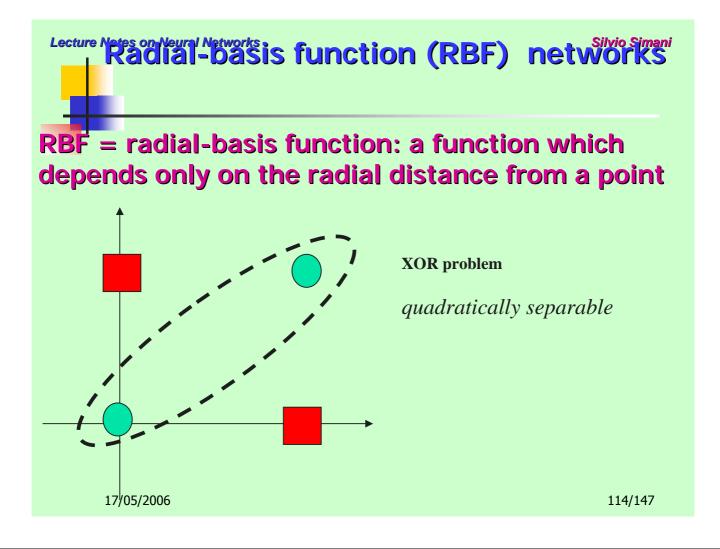
Bacteria and virus.

New evolutionary computing strategies.

17/05/2006 112/147

Lecture 7 Radial Basis Functions

Radial Basis Functions



$$\phi (\parallel \underline{x} - \underline{x}_i \parallel)$$

where ϕ is a nonlinear activation function, \underline{x} is the input and \underline{x}_i is the *i'th* position, prototype, *basis* or *centre* vector.

The idea is that points near the centres will have similar outputs (i.e. if $\underline{x} \sim \underline{x}i$ then $f(\underline{x}) \sim f(\underline{x}i)$) since they should have similar properties.

The simplest is the linear RBF : $\phi(x) = ||\underline{x} - \underline{x}_i||$

17/05/2006 115/147

Lecture Notes on Neural Networks

Typical RBFs include

$$\phi(r) = (r^2 + c^2)^{1/2}$$

for some c>0

(b) Inverse multiquadrics

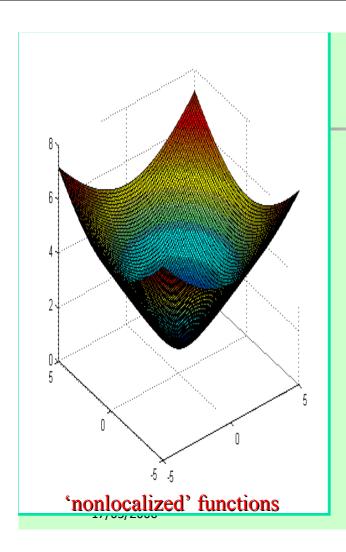
$$\phi(r) = (r^2 + c^2)^{-1/2}$$

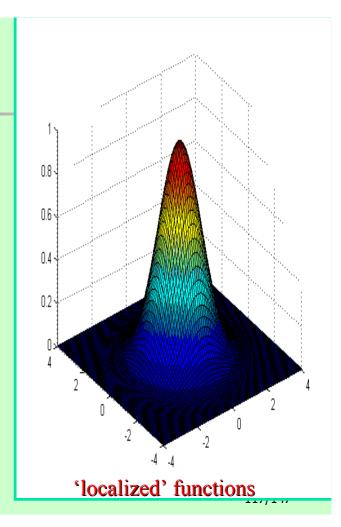
for some c>0

(c) Gaussian

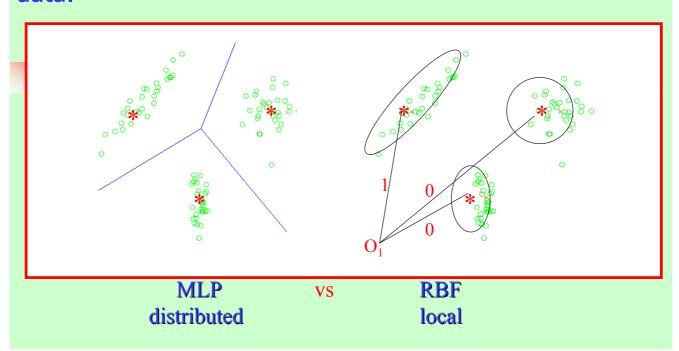
$$\phi(r) = \exp(-\frac{r^2}{2\sigma^2})$$

for some $\sigma > 0$



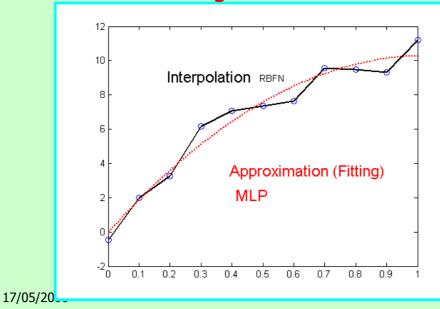


- ➤ Idea is to use a weighted sum of the outputs from the basis functions to represent the data.
- > Thus centers can be thought of as prototypes of input data.



Starting point: exact interpolation

Each input pattern x must be mapped onto a target value d



119/147

Lecture Notes on Neural Networks

Silvio Simani

That is, given a set of N vectors \underline{X}_i and a corresponding set of N real numbers, d_i (the targets), find a function F that satisfies the interpolation condition:

$$F(\underline{x}_i) = d_i$$
 for $i = 1,...,N$

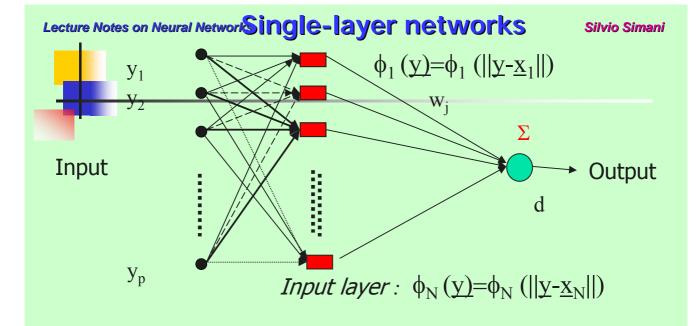
or more exactly find:

$$F(\underline{x}) = \sum_{j=1}^{N} w_j \phi(||\underline{x} - \underline{x}_j||)$$

satisfying:

$$F(\underline{x}_i) = \sum_{j=1}^{N} w_j \phi(||\underline{x}_i - \underline{x}_j||) = d_i$$

17/05/2006 120/147



- output = $\Sigma W_i \phi_i (\underline{Y} \underline{X}_i)$
- adjustable parameters are weights w_i
- number of input units ≤ number of data points
- Form of the basis functions decided in advance

17/05/2006 121/147

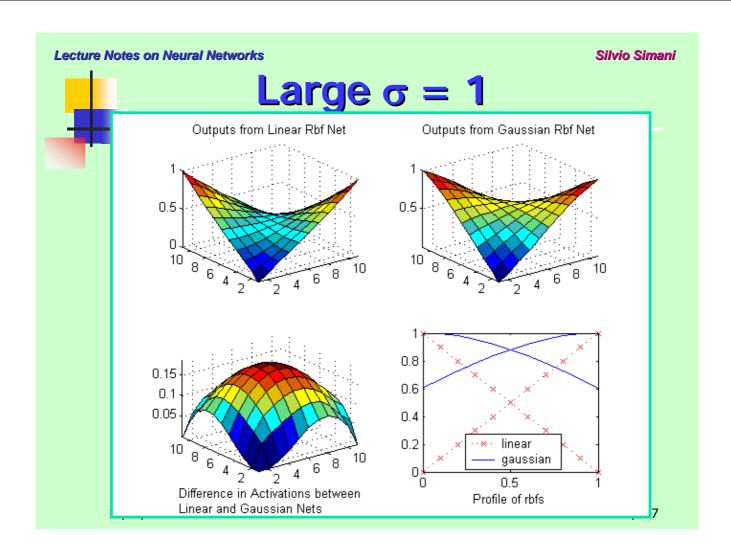
Lecture Notes on Neural Networks

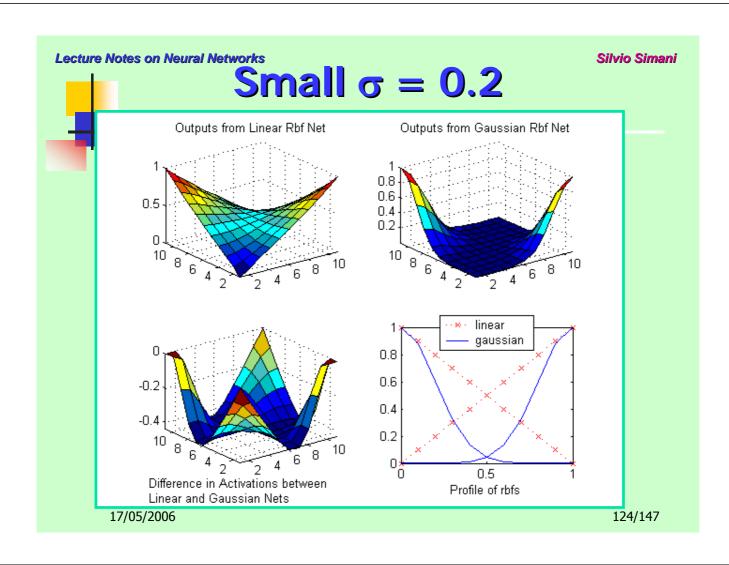
Silvio Simani

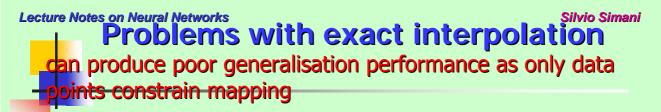
For a given data set containing N points (\underline{x}_i, d_i) , i=1,...,N

- Choose a RBF function ϕ
- \bullet Calculate $\phi(\underline{x}_i \underline{x}_i)$
- Solve the <u>linear</u> equation $\Phi W = D$
- Get the unique solution
- Done
- Like MLP's, RBFNs can be shown to be able to approximate any function to arbitrary accuracy (using an arbitrarily large numbers of basis functions).
- ➤ Unlike MLP's, however, they have the property of 'best approximation' i.e. there exists an RBFN with minimum approximation error.

17/05/2006 122/147







Overfitting problem

Bishop(1995) example

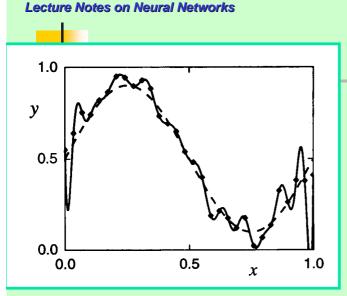
Underlying function f(x)=0.5+0.4sine $(2\pi x)$ sampled randomly for 30 points

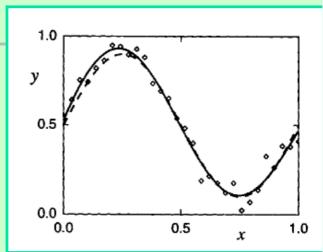
added Gaussian noise to each data point

30 data points 30 hidden RBF units

fits all data points but creates oscillations due added noise and unconstrained between data points

17/05/2006 125/147





Silvio Simani

All Data Points

5 Basis functions

17/05/2006 126/147

To fit an RBF to every data point is very inefficient due to the computational cost of matrix inversion and is very bad for generalization so:

- ✓ Use less RBF's than data points I.e. M<N
 </p>
- ✓ Therefore don't necessarily have RBFs centred at data points
- ✓ Can include bias terms
- ✓ Can have Gaussian with general covariance matrices but there is a trade-off between complexity and the number of parameters to be found eg for *d* rbfs we have:

17/05/2006 127/147

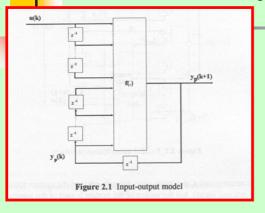
Application Examples

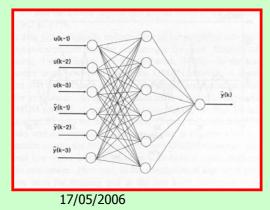
Lecture 9:
Nonlinear Identification, Prediction and Control

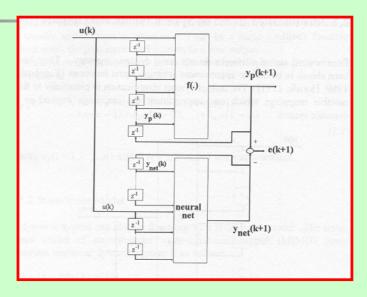
Lecture Notes on Neural Networks

Silvio Simani

Nonlinear System Identification







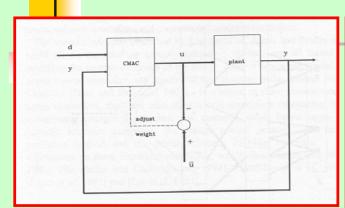
Target function: $y_p(k+1) = f(.)$

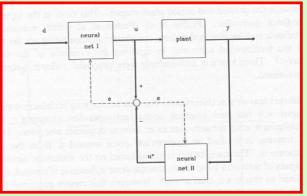
Identified function: $\hat{y}_{NET}(k+1) = F(.)$

Estimation error: e(k+1)

129/147

Lect Nonliniear System Neural Control





d: reference/desired response

y: system output/desired output

u: system input/controller output

ū: desired controller input

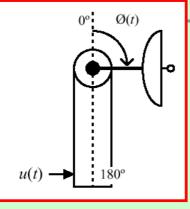
u*: NN output

e: controller/network error

The goal of training is to find an appropriate plant control u from the desired response d. The weights are adjusted based on the difference between the outputs of the networks I & II to minimise e. If network I is trained so that y = d, then u = u*. Networks act as inverse dynamics identifiers.

17/05/2006 130/147

Notes on Neural Networks Nonlinear System Identification



$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ 9.81 \sin x_1 - 2x_2 + u \end{bmatrix}$$

$$X_1 = \emptyset$$

$$x_2 = \frac{d\emptyset}{dt}$$

```
deg2rad = pi/180;
angle = [-20:40:200]*deg2rad;
vel = [-90:36:90]*deg2rad;
force = -30:6:30;
```

Neural network input generation Pm

angle2 = [-20:10:200]*deg2rad;
Pm = [combvec(angle,vel,force);
 [angle2; zeros(2,length(angle2))]];

131/147

Lecture Notes on Neural Networks

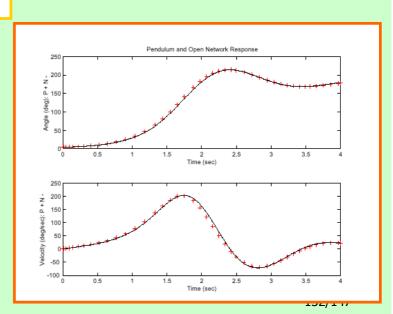
Nonlinear System Identification


```
S1 = 8;
[S2,Q] = size(Tm);
mnet = newff(minmax(Pm),[S1 S2],{'tansig' 'purelin'},'trainlm');
```

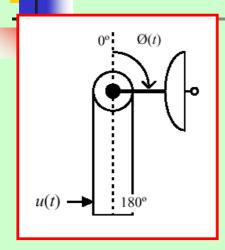
mnet.trainParam.goal = (0.0037^2);
mnet = train(mnet.Pm.Tm);

Neural network target Tm

Neural network response (angle & velocity)



17/05/2006



$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ 9.81 \sin x_1 - 2x_2 + u \end{bmatrix}$$

$$x_1 = \emptyset$$

$$x_2 = \frac{d\emptyset}{dt}$$

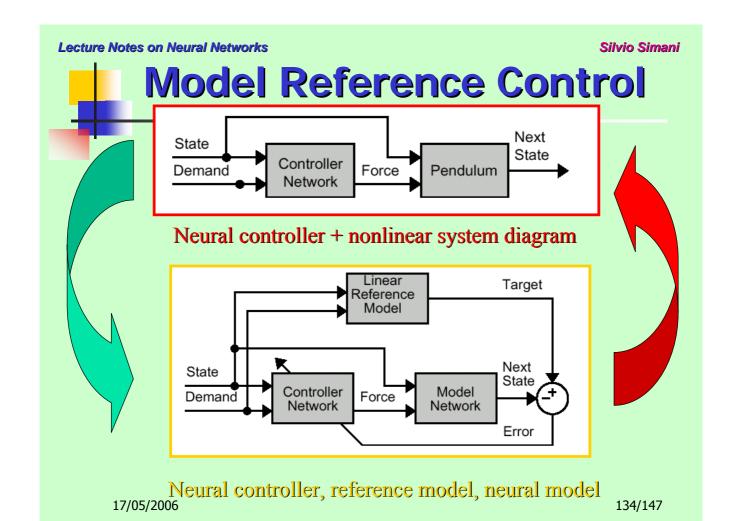
Antenna arm nonlinear model

Linear reference model

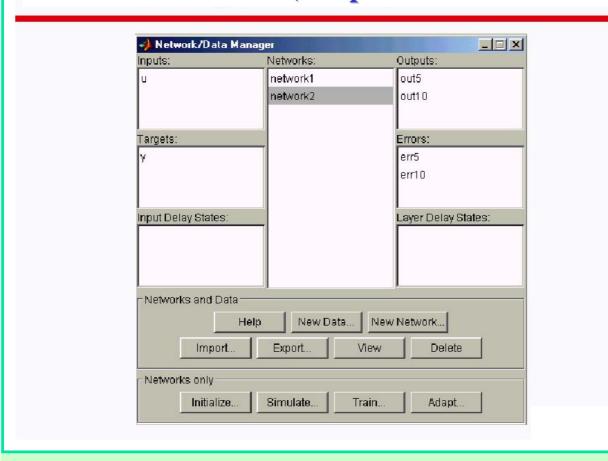
17/05/2006

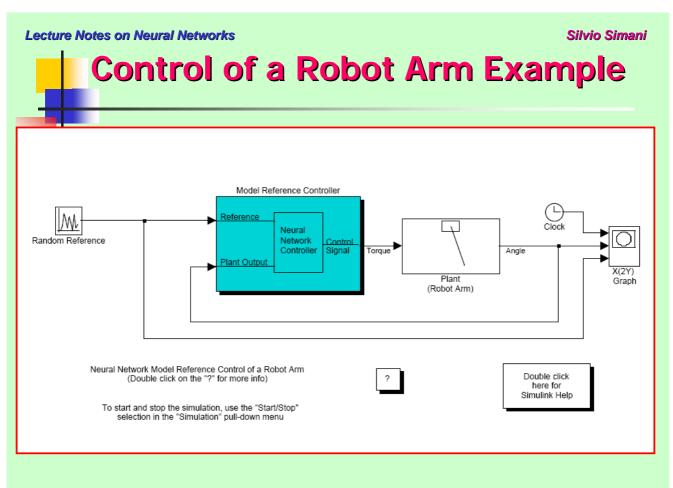
$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -9x_1 - 6x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 9r \end{bmatrix}$$

133/147

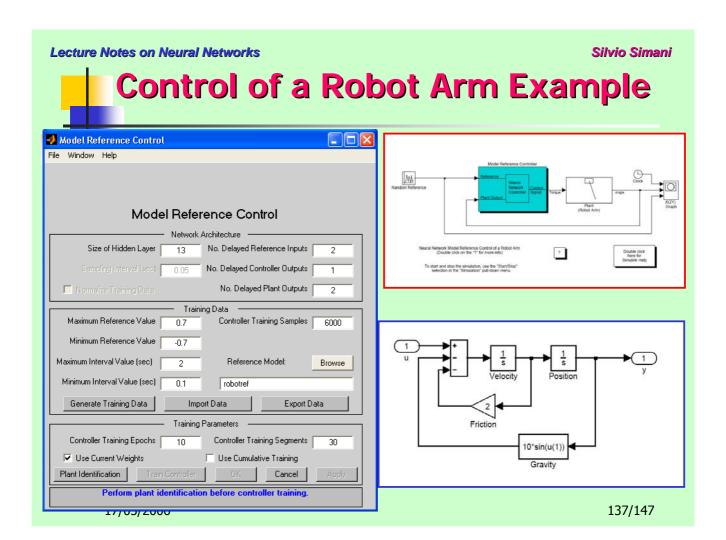


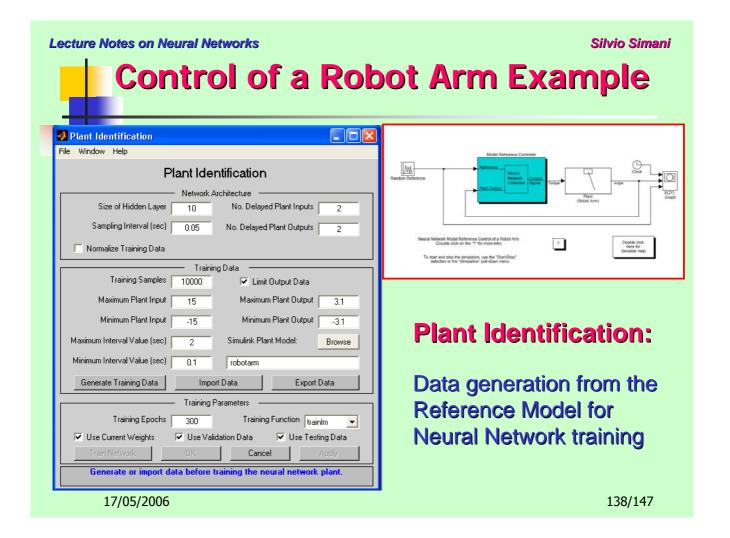
Matlab NNtool GUI (Graphical User Interface)

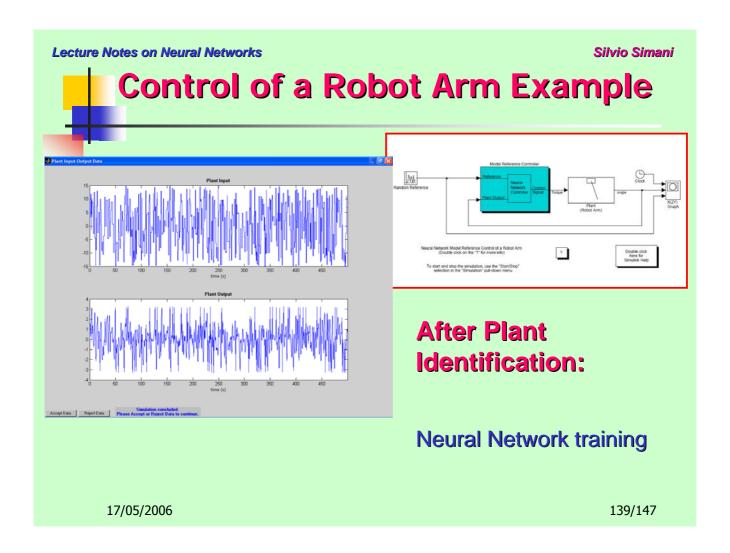


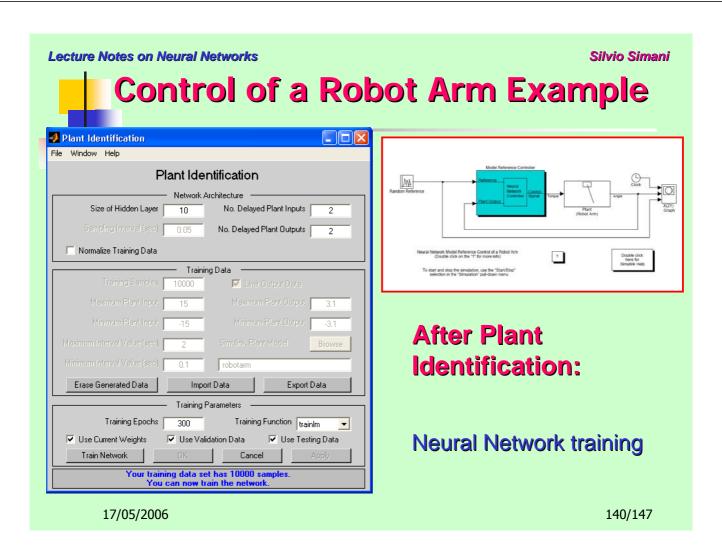


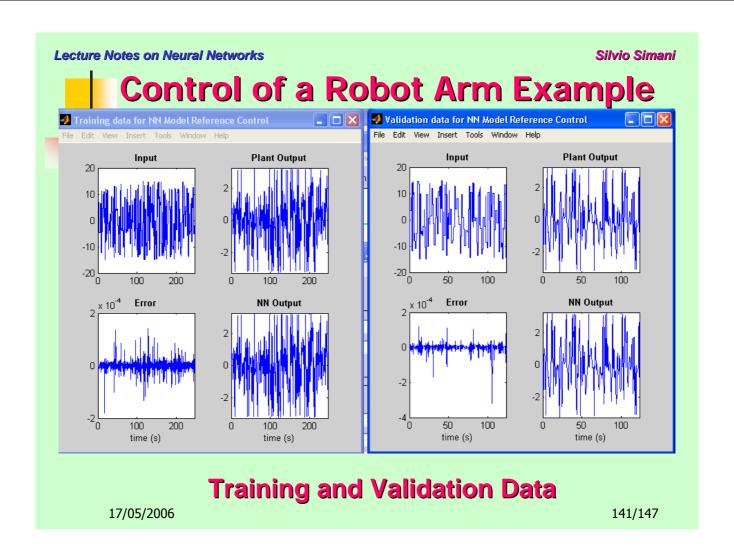
17/05/2006 136/147











Silvio Simani Lecture Notes on Neural Networks Control of a Robot Arm Example Testing data for NN Model Reference Control Training with TRAINLM File Edit View Insert Tools Window Help **Plant Output** Input Performance is 2.46086e-010, Goal is 0 10-9 Test-Red Fraining-Blue Validation-Green -20 L **NN** Output 10⁻¹⁰ 6 50 100 0 50 100 7 Epochs time (s) time (s) **Testing Data and Training Results**

142/147

17/05/2006

