Automazione (Laboratorio) ***

Tecniche di Controllo

Reti Neurali e Modelli Fuzzy per L'identificazione, Predizione E Controllo

SILVIO SIMANI

silvio.simani@unife.it

References

Textbook (suggested):

- *Neural Networks for Identification, Prediction, and Control*, by Duc Truong Pham and Xing Liu. Springer Verlag; (December 1995). ISBN: 3540199594
- Nonlinear Identification and Control: A Neural Network Approach, by G.
 P. Liu. Springer Verlag; (October 2001). ISBN: 1852333421.
- Fuzzy Modeling for Control, by Robert Babuska. Springer; 1st edition (May 1, 1998) ISBN-10: 0792381548, ISBN-13: 978-0792381549.
- *Multi-Objective Optimization using Evolutionary Algorithms*, by Deb Kalyanmoy. John Wiley & Sons, Ltd, Chichester, England, 2001.

14/04/2009 2/148

Course Overview

- Introduction

 - Course introduction Introduction to neural network Issues in neural network
- 2. Simple neural network
 i. Perceptron
 ii. Adaline
- 3. Multilayer Perceptron

 i. Basics
- Genetic Algorithms: overview
- Radial basis networks: overview
- Fuzzy Systems: overview
- 7. Application examples

14/04/2009

- Improve automatically with experience
- Imitating human learning
 - Human learning
 Fast recognition and classification of complex classes of objects and concepts and fast adaptation
 - Example: neural networks
- Some techniques assume statistical source
 Select a statistical model to model the source
- Other techniques are based on reasoning or inductive inference (e.G. Decision tree)

14/04/2009 4/148

Machine Learning Definition

A computer program is said to **learn** from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience.

Examples of Learning Problems

Example 1: handwriting recognition.

- T: recognizing and classifying handwritten words within images.
- P: percentage of words correctly classified.
- E: a database of handwritten words with given classification.

Example 2: learn to play checkers.

- T: play checkers.
- P: percentage of games won in a tournament.
- E: opportunity to play against itself (war games...).

Issues in Machine Learning

- What algorithms can approximate functions well and when?
- How does the number of training examples influence accuracy?
- How does the complexity of hypothesis representation impact it?
- How does noisy data influence accuracy?
- How do you reduce a learning problem to a set of function approximation?

14/04/2009 7/148

Summary

- Machine learning is useful for data mining, poorly understood domain (face recognition) and programs that must dynamically adapt.
- Draws from many diverse disciplines.
- Learning problem needs well-specified task, performance metric and training experience.
- Involve searching space of possible hypotheses. Different learning methods search different hypothesis space, such as numerical functions, neural networks, decision trees, symbolic rules.

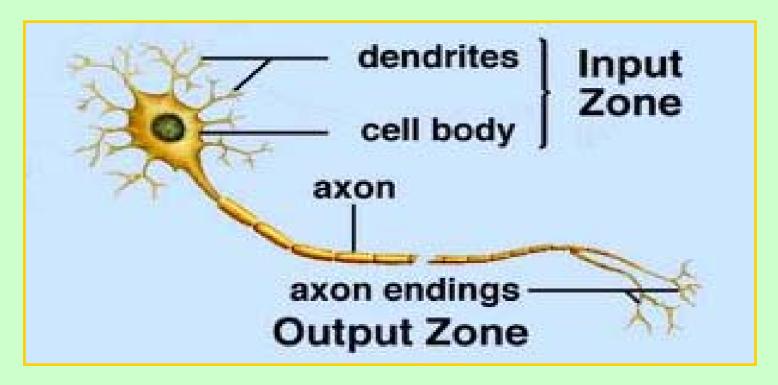
14/04/2009 8/148

Introduction to Neural Networks

14/04/2009 9/148

Brain

- 10¹¹ neurons (processors)
- On average 1000-10000 connections

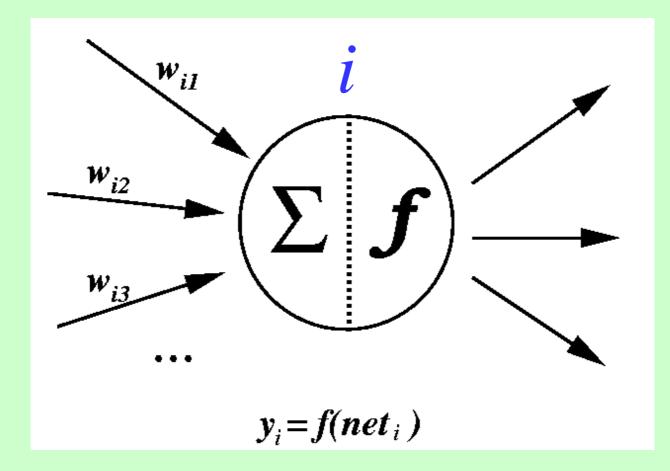


14/04/2009 10/148

Artificial Neuron

bias

$$net_i = \sum_j w_{ij} y_j + b^{2}$$



14/04/2009

Artificial Neuron

- Input/Output Signal may be.
 - Real value.
 - Unipolar {0, 1}.
 - Bipolar {-1, +1}.
- Weight: W_{ij} strength of connection.

Note that w_{ij} refers to the weight from unit j to unit i (not the other way round).

14/04/2009 12/148

Artificial Neuron

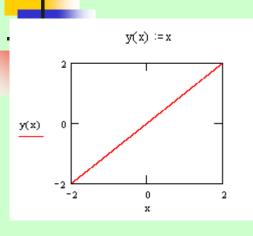
The bias b is a constant that can be written as $w_{i0}y_0$ with $y_0 = b$ and $w_{i0} = 1$ such that

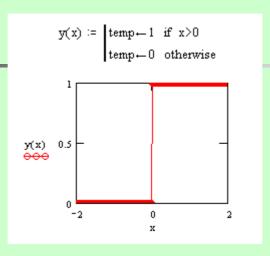
$$net _{i} = \sum_{j=0}^{n} w_{ij} y_{j}$$

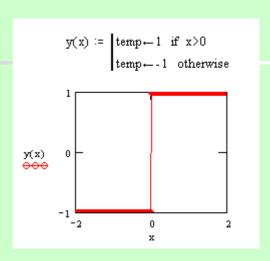
- The function f is the unit's activation function. In the simplest case, f is the identity function, and the unit's output is just its net input. This is called a *linear unit*.
- Other activation functions are: step function,
 sigmoid function and Gaussian function.

14/04/2009 13/148

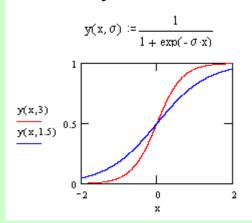
Lecture Notes on Neural Natworks and Fuzzy-Systems FUNCTIONS



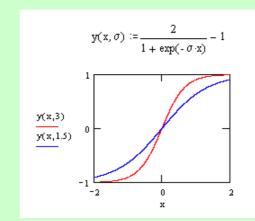




Identity function



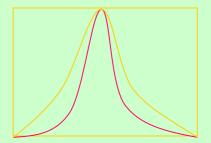
Binary Step function



Bipolar Sigmoid function

Bipolar Step function

$$y(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$



Gaussian function

14/04/2009

Sigmoid function

14/148

When Should ANN Solution Be Considered?

- The solution to the problem cannot be explicitly described by an algorithm, a set of equations, or a set of rules.
- ➤ There is some evidence that an input-output mapping exists between a set of input and output variables.
- There should be a large amount of data available to train the network.

14/04/2009 15/148

Problems That Can Lead to Poor Performance ?

- The network has to distinguish between very similar cases with a very high degree of accuracy.
- The train data does not represent the ranges of cases that the network will encounter in practice.
- The network has a several hundred inputs.
- The main discriminating factors are not present in the available data, e.g. trying to assess the loan application without having knowledge of the applicant's salaries.
- The network is required to implement a very complex function.

14/04/2009

Applications of Artificial Neural Networks

- Manufacturing: fault diagnosis, fraud detection.
- Retailing: fraud detection, forecasting, data mining.
- Finance: fraud detection, forecasting, data mining.
- Engineering: fault diagnosis, signal/image processing.
- Production : fault diagnosis, forecasting.
- Sales & marketing : forecasting, data mining.

14/04/2009 17/148

Data Pre-processing

Neural networks very **rarely** operate on the raw data. An initial **pre-processing** stage is essential. Some examples are as follows:

- Feature extraction of images: for example, the analysis of x-rays requires pre-processing to extract features which may be of interest within a specified region.
- Representing input variables with numbers. For example "+1" is the person is married, "0" if divorced, and "-1" if single. Another example is representing the pixels of an image: 255 = bright white, 0 = black. To ensure the generalization capability of a neural network, the data should be encoded in form which allows for interpolation.

14/04/2009 18/148

Data Pre-processing

CONTINUOUS VARIABLES

• A continuous variable can be directly applied to a neural network. However, if the dynamic range of input variables are not approximately the same, it is better to *normalize* all input variables of the neural network.

14/04/2009 19/148

Simple Neural Networks

Simple Perceptron

14/04/2009 20/148

Outlines

- > The Perceptron
- Linearly separable problem
- Network structure
- Perceptron learning rule
- Convergence of Perceptron

14/04/2009 21/148

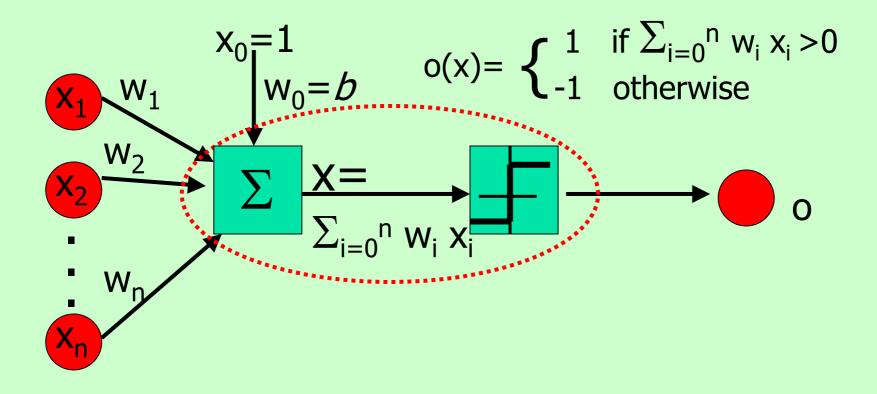
Lecture Notes on Neural Networks and Fuzzy Systems THE PERCEPTRON

- The perceptron was a simple model of ANN introduced by Rosenblatt of MIT in the 1960' with the idea of learning.
- > Perceptron is designed to accomplish a simple pattern recognition task: after learning with real value training data $\{ x(i), d(i), i = 1, 2, ..., p \}$ where d(i) = 1 or -1
- For a new signal (pattern) $\underline{x(i+1)}$, the perceptron is capable of telling you to which class the new signal belongs

$$x(i+1) \longrightarrow perceptron = 1 \text{ or } -1$$

Perceptron

Linear Threshold Unit (LTU)



14/04/2009 23/148

Lecture Notes on Neural Networks and Fuzzy Systems The Perceptron is

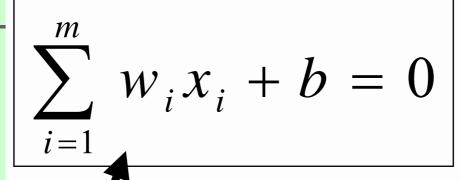
$$y = f(\sum_{i=1}^{m} w_i x_i + b) = f(\sum_{i=0}^{m} w_i x_i)$$

We can always treat the bias b as another weight with inputs equal 1

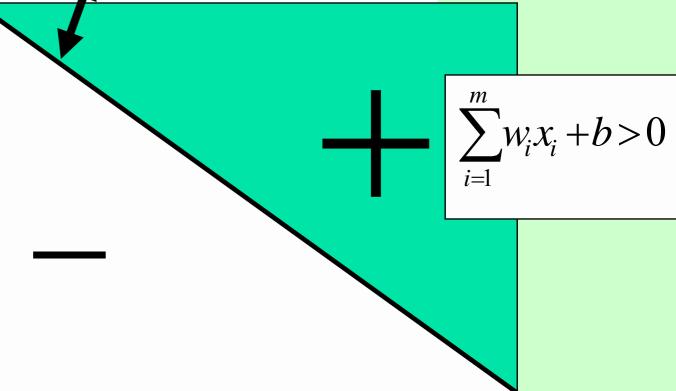
where f is the hard limiter function i.e.

$$y = \begin{cases} 1 & \text{if } \sum_{i=1}^{m} w_i x_i + b > 0 \\ -1 & \text{if } \sum_{i=1}^{m} w_i x_i + b \le 0 \end{cases}$$

14/04/2009 24/148



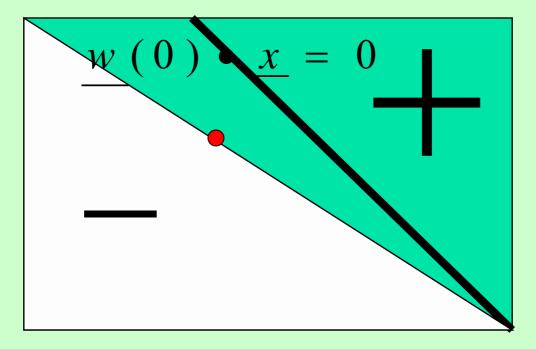
$$\sum_{i=1}^{m} w_i x_i + b < 0$$



Learning rule

An algorithm to update the weights \underline{w} so that finally the input patterns lie on both sides of the line decided by the perceptron

Let t be the time, at t = 0, we have

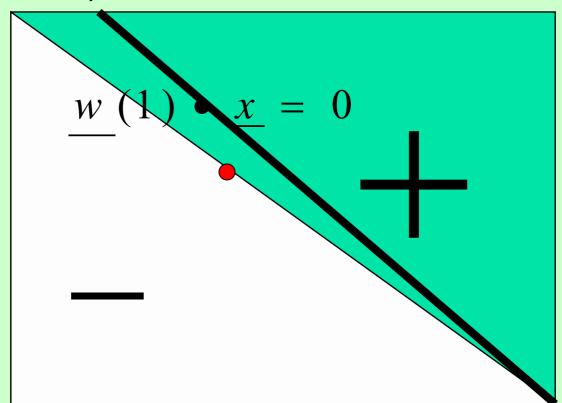


14/04/2009 26/148

Lecture Notes on Neural Network

An algorithm to update the weights <u>w</u> so that finally the input patterns lie on both sides of the line decided by the perceptron

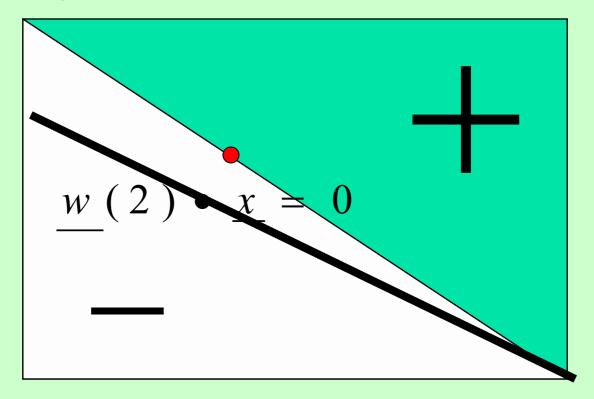
Let t be the time, at t = 1



14/04/2009 27/148

An algorithm to update the weights <u>w</u> so that finally the input patterns lie on both sides of the line decided by the perceptron

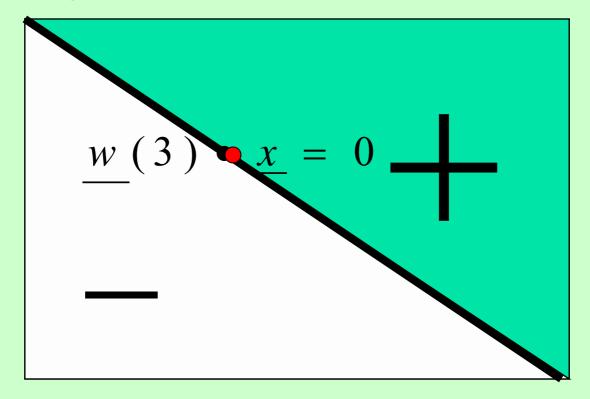
Let t be the time, at t = 2



14/04/2009

An algorithm to update the weights <u>w</u> so that finally the input patterns lie on both sides of the line decided by the perceptron

Let t be the time, at t = 3



14/04/2009

In Math

$$d(t) = \begin{cases} + 1 & if & x(t) & in class \\ - 1 & if & x(t) & in class \end{cases} -$$

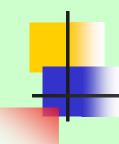
Perceptron learning rule

$$\underline{w}(t+1) = \underline{w}(t) + \eta(t)[d(t) - sign(\underline{w}(t) \bullet \underline{x}(t))] \underline{x}(t)$$

Where $\eta(t)$ is the learning rate >0,

$$sign(x) = \begin{cases} +1 & \text{if } x > 0 \\ -1 & \text{if } x < = 0, \end{cases}$$
 hard limiter function

NB: d(t) is the same as d(i) and x(t) as x(i)



In words:

If the classification is right, do not update the weights

• If the classification is not correct, update the weight towards the opposite direction so that the output move close to the right directions.

Perceptron convergence theorem (Rosenblatt, 1962)

Let the subsets of training vectors be linearly separable. Then after finite steps of learning we have

 $\lim \underline{w}(t) = \underline{w}$ which correctly separate the samples.

The idea of proof is that to consider $||\underline{w}(t+1)-\underline{w}||-||\underline{w}(t)-\underline{w}||$ which is a decrease function of t

14/04/2009 32/148

Lecture Notes on Neural Networks and Fuzzy Systems

Silvio Simani

Summary of Perceptron learning ...

Variables and parameters

$$\underline{x}(t) = (m+1)$$
 dim. input vectors at time t = $(b, x_1(t), x_2(t), \dots, x_m(t))$

$$\underline{w}(t) = (m+1)$$
 dim. weight vectors $= (1, w_1(t), ..., w_m(t))$

b = bias

y(t) = actual response

 $\eta(t)$ = learning rate parameter, a +ve constant < 1

d(t) = desired response

14/04/2009

Lecture Stotes on Neural Networks in Europe Systems tron learning ... Silvio Simani

$$pata \{ (\underline{x}(i), d(i)), i=1,...,p \}$$

- Present the data to the network once a point
- ✓ could be cyclic: (<u>x</u>(1), d(1)), (<u>x</u>(2), d(2)),..., (<u>x</u>(p), d(p)), (<u>x</u>(p+1), d(p+1)),...
- ✓ or randomly

(Hence we mix time t with i here)

14/04/2009 34/148

Summary of Perceptron learning (algorithm)

- **1. Initialisation** Set $\underline{w}(0)=0$. Then perform the following computation for time step t=1,2,...
- **2. Activation** At time step t, activate the perceptron by applying input vector $\underline{X}(t)$ and desired response d(t)
- 3. Computation of actual response Compute the actual response of the perceptron

$$y(t) = sign \left(\underline{w}(t) \cdot \underline{x}(t) \right)$$

where *sign* is the sign function

4. Adaptation of weight vector Update the weight vector of the perceptron

$$\underline{w}(t+1) = \underline{w}(t) + \eta(t) [d(t) - y(t)] \underline{x}(t)$$

5. Continuation

14/04/2009 35/148

Questions remain

Where or when to stop?

By minimizing the generalization error

For training data
$$\{(\underline{x}(i), d(i)), i=1,...p\}$$

How to define training error after t steps of learning?

$$E(t) = \sum_{i=1}^{p} [d(i) - sign(\underline{w}(t) \cdot \underline{x}(i)]^{2}$$



We next turn to ADALINE learning, from which we can understand the learning rule, and more general the Back-Propagation (BP) learning

14/04/2009 37/148

Simple Neural Network

ADALINE Learning

14/04/2009 38/148

Outlines

ADALINE

Gradient descending learning

Modes of training

14/04/2009 39/148

Unhappy Over Perceptron Training

- When a perceptron gives the right answer, no learning takes place
- Anything below the threshold is interpreted as 'no', even it is just below the threshold.
- It might be better to train the neuron based on how far below the threshold it is.

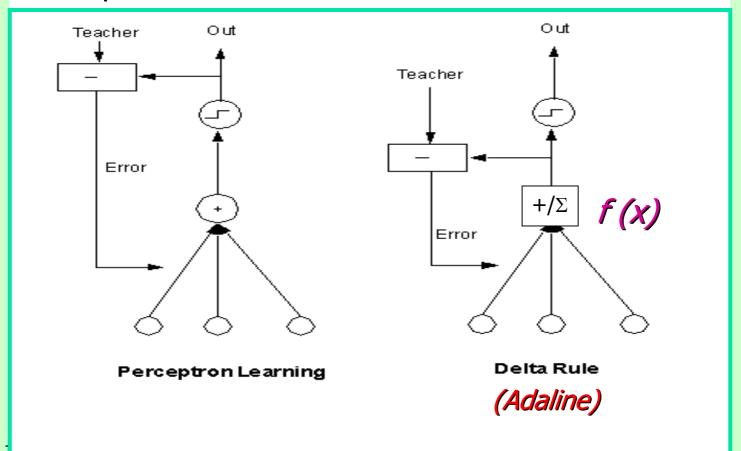
14/04/2009 40/148

- ••ADALINE is an acronym for ADAptive LINear Element (or ADAptive LInear NEuron) developed by Bernard Widrow and Marcian Hoff (1960).
- There are several variations of Adaline. One has threshold same as perceptron and another just a bare linear function.
- •The Adaline learning rule is also known as the leastmean-squares (LMS) rule, the delta rule, or the Widrow-Hoff rule.
- It is a training rule that minimizes the output error using (approximate) gradient descent method.

14/04/2009 41/148

Lecture Notes on Neural Networks and Fuzzy Systems

- Replace the step function in the perceptron with a continuous (differentiable) function f, e.g the simplest is linear function
- With or without the threshold, the Adaline is trained based on the output of the function f rather than the final output.



After each training pattern $\underline{x}(i)$ is presented, the correction to apply to the weights is proportional to the error.

$$E(i,t) = \frac{1}{2} \left[d(i) - f(\underline{w}(t) \cdot \underline{x}(i)) \right]^{2} \qquad i=1,...,p$$

N.B. If f is a linear function
$$f(\underline{w}(t) \cdot \underline{x}(i)) = \underline{w}(t) \cdot \underline{x}(i)$$

Summing together, our purpose is to find \underline{W} which minimizes

$$E(t) = \sum_{i} E(i,t)$$

14/04/2009 43/148

General Approach gradient descent method

To find g $\underline{w}(t+1) = \underline{w}(t) + g(E(\underline{w}(t)))$

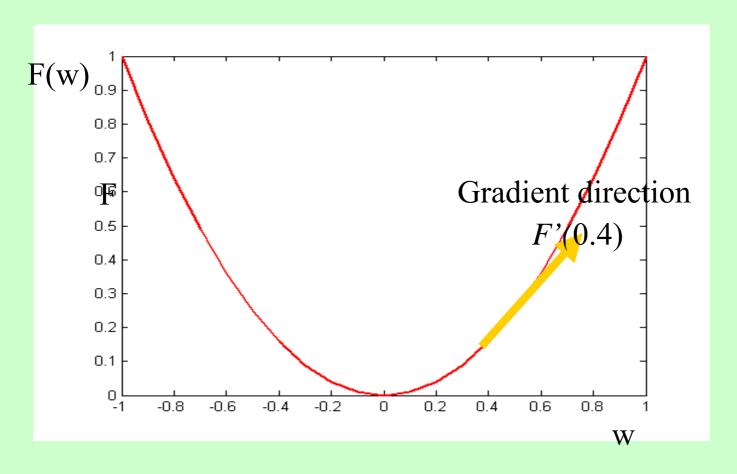
so that \underline{w} automatically tends to the global minimum of E(w).

$$\underline{w}(t+1) = \underline{w}(t) - E'(\underline{w}(t))\eta(t)$$

(see figure in the following...)

14/04/2009

For example, in the Figure, at position 0.4, the gradient is uphill (F is E, consider one dim case)

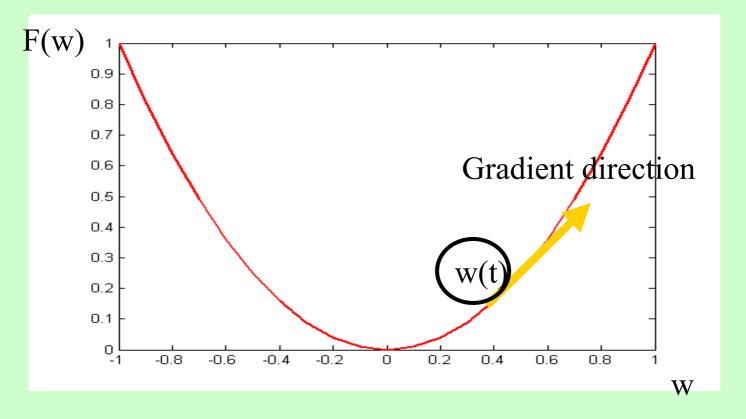


14/04/2009 45/148

In gradient descent algorithm, we have

$$\underline{w}(t+1) = \underline{w}(t) - F'(w(t)) \eta(\tau)$$

therefore the ball goes downhill since -F'(w(t)) is downhill direction

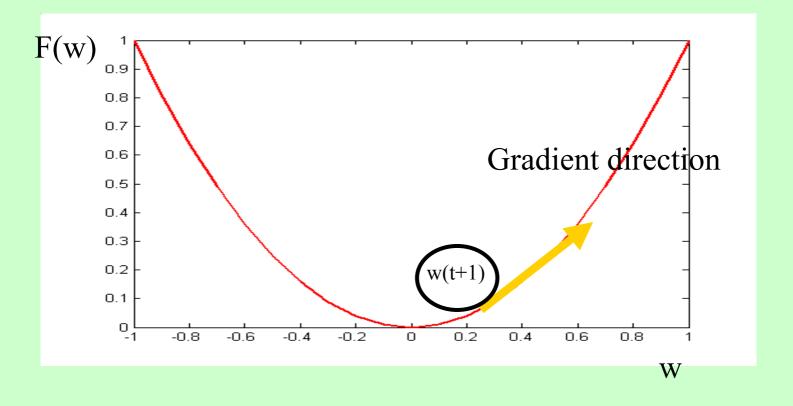


14/04/2009

In gradient descent algorithm, we have

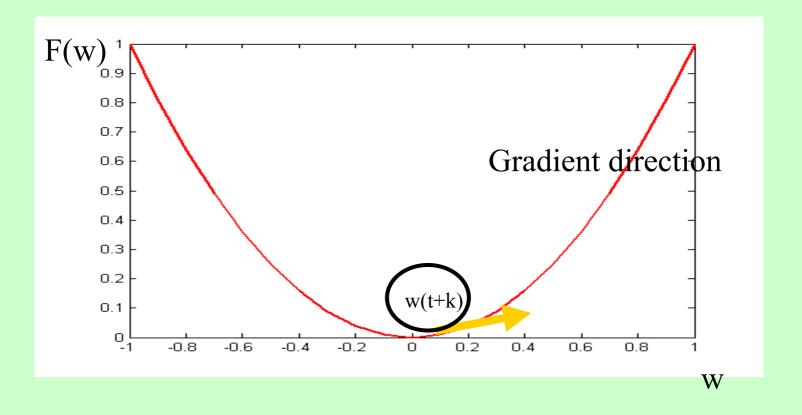
$$w(t+1) = w(t) - F'(w(t)) \eta(\tau)$$

therefore the ball goes downhill since – F'(w(t)) is downhill direction



14/04/2009 47/148

 Gradually the ball will stop at a local minima where the gradient is zero



14/04/2009 48/148

In words

Gradient method could be thought of as a ball rolling down from a hill: the ball will roll down and finally stop at the valley

Thus, the weights are adjusted by

$$w_{j}(t+1) = w_{j}(t) + \eta(t) \sum \left[d(i) - f(\underline{w}(t) \cdot \underline{x}(i))\right] x_{j}(i) f'$$

This corresponds to gradient descent on the quadratic error surface E

When f' = 1, we have the perceptron learning rule (we have in general f'>0 in neural networks). The ball moves in the right direction.

14/04/2009 49/148

Two types of network training:

Sequential mode (on-line, stochastic, or per-pattern):

Weights updated after each pattern is presented (Perceptron is in this class)

Batch mode (off-line or per-epoch): Weights updated after all patterns are presented

14/04/2009 50/148

Lecture Notes on Neural Networks and Fuzzy Systems Comparison Perceptron and **Gradient Descent Rules**

- Perceptron learning rule guaranteed to succeed if
 - Training examples are linearly separable
 - Sufficiently small learning rate η
- Linear unit training rule uses gradient descent guaranteed to converge to hypothesis with minimum squared error given sufficiently small learning rate η
 - Even when training data contains noise
 - Even when training data not separable by hyperplanes

14/04/2009 51/148

Summary

Perceptron

$$\underline{W}(t+1) = \underline{W}(t) + \eta(t) [d(t) - sign(\underline{w}(t) \cdot \underline{x})] \underline{x}$$

Adaline (Gradient descent method)

$$\underline{W}(t+1) = \underline{W}(t) + \eta(t) [d(t) - f(\underline{w}(t) . \underline{x})] \underline{x} f'$$

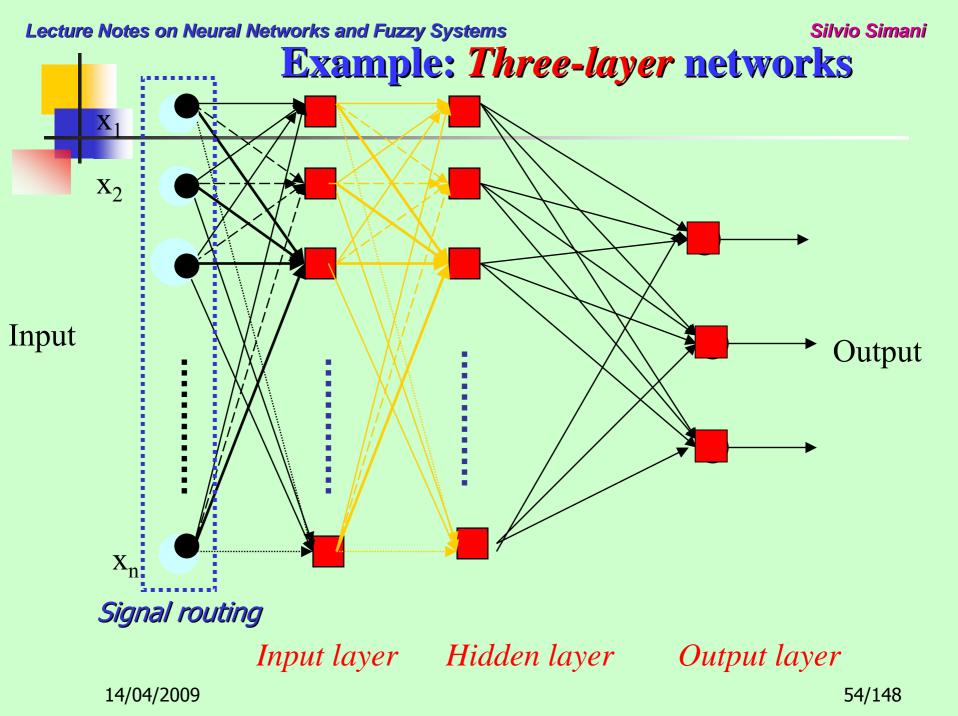
14/04/2009 52/148

Multi-Layer Perceptron (MLP)

Idea: "Credit assignment problem"

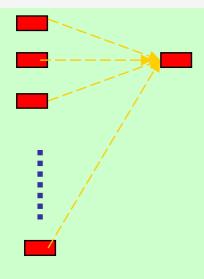
- Problem of assigning 'credit' or 'blame' to individual elements involving in forming overall response of a learning system (hidden units)
- In neural networks, problem relates to dividing which weights should be altered, by how much and in which direction.

14/04/2009 53/148



Properties of architecture

- No connections within a layer
- No direct connections between input and output layers
- Fully connected between layers
- Often more than 2 layers
- Number of output units need not equal number of input units
- Number of hidden units per layer can be more or less than input or output units



Each unit 'm' is a perceptron

$$y_{i} = f \left(\sum_{j=1}^{m} w_{ij} x_{j} + b_{i} \right)$$

14/04/2009

BP (Back Propagation)

gradient descent method

multilayer networks

14/04/2009 56/148

MultiLayer Perceptron I

Back Propagating Learning

14/04/2009 57/148

BP learning algorithm Solution to "credit assignment problem" in MLP

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes 'functional signal', feedforward propagation of input pattern signals through network

Backward pass phase: computes 'error signal', propagation of error (difference between actual and desired output values) backwards through network starting at output units

BP Learning for Simplest MLPo

Task: Data {I, d} to minimize

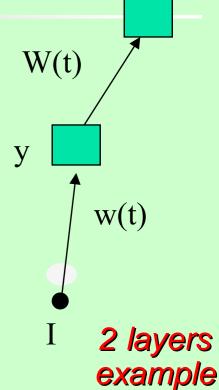
$$E = (d - o)^{2}/2$$

= $[d - f(W(t)y(t))]^{2}/2$
= $[d - f(W(t)f(w(t)I))]^{2}/2$

Error function at the output unit

Weight at time t is w(t) and W(t), intend to find the weight w and W at time t+1

Where y = f(w(t)I), output of the input unit



Forward pass phase

For given input I, we can calculate

$$y = f(w(t)I)$$

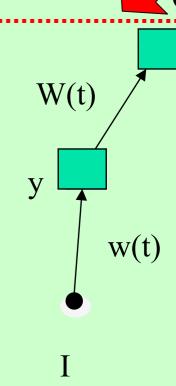
and

$$o = f(W(t) y)$$

= $f(W(t) f(w(t) I))$

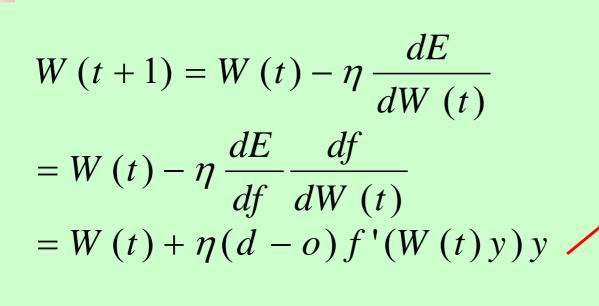
Error function of output unit will be

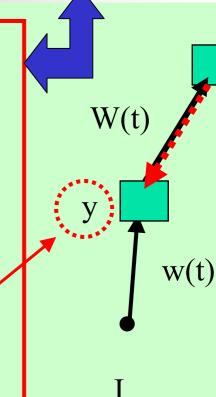
$$E = (d - o)^2/2$$



2 layers example

Backward Pass Phase

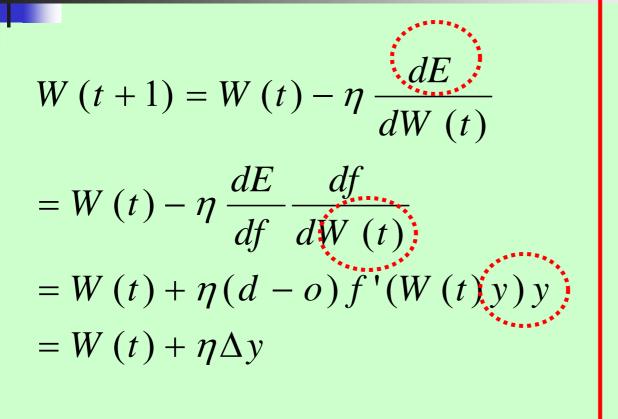


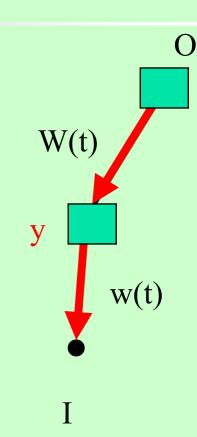


$$E = (d - o)^2 / 2$$

$$o = f(W(t) y)$$

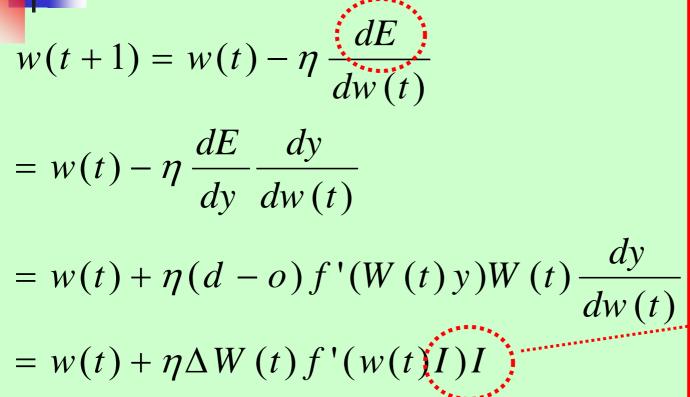
Backward pass phase





where $\Delta = (d - o) f$

Backward pass phase



W(t)w(t)

$$o = f(W(t) y)$$

$$= f(W(t) f(w(t) I))$$

14/04/2009

weight updates are local

$$w_{ji}(t+1) - w_{ji}(t) = \eta \delta_j(t) I_i(t)$$
 (input unit)

$$W_{kj}(t+1) - W_{kj}(t) = \eta \Delta_k(t) y_j(t)$$
 (output unit)

output unit

$$W_{kj}(t+1) - W_{kj}(t) = \eta \Delta_{k}(t) y_{j}(t)$$

$$= \eta (d_{k}(t) - O_{k}(t)) f'(Net_{k}(t)) y_{j}(t)$$

input unit

$$w_{ji}(t+1) - w_{ji}(t) = \eta \delta_{j}(t) I_{i}(t)$$

$$= \eta f'(net_{j}(t)) \sum_{k} \Delta_{k}(t) W_{kj} I_{i}(t)$$

Once weight changes are computed for all units, weights are updated at same time (bias included as weights here)

We now compute the derivative of the activation function f().

Activation Functions

to compute δ_j and Δ_k we need to find the derivative of activation function f

>to find derivative the activation function must be smooth

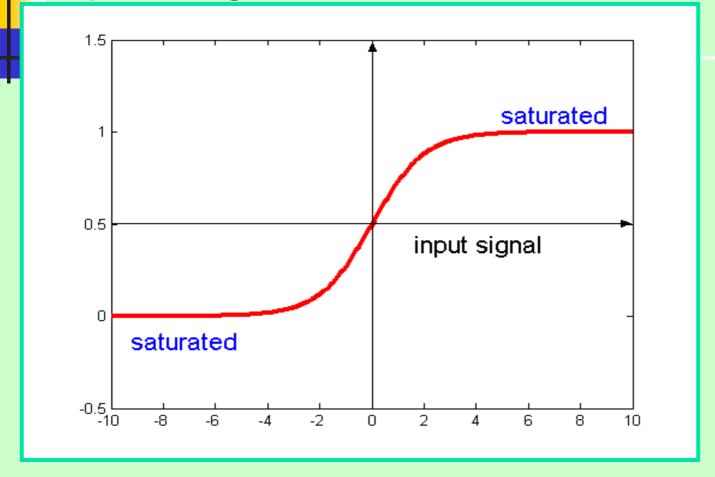
Sigmoidal (logistic) function-common in MLP

$$f(net_i(t)) = \frac{1}{1 + \exp(-knet_i(t))}$$

where k is a positive constant. The sigmoidal function gives value in range of 0 to 1

*Input-output function of a neuron (rate coding assumption)*14/04/2009 65/148

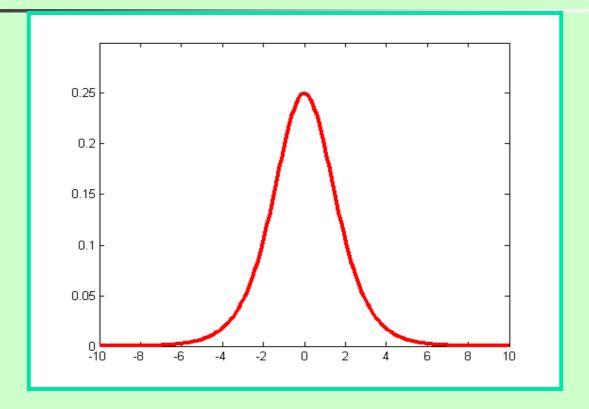
Lecture Notes on Neural Networks and Fuzzy Systems
Shape of sigmoidal function



Note: when net = 0, f = 0.5

14/04/2009 66/148

Shape of sigmoidal function derivative



Derivative of sigmoidal function has max at x=0, is symmetric about this point falling to zero as sigmoidal approaches extreme values

14/04/2009 67/148

Returning to local error gradients in BP algorithm we have for output units

$$\Delta_{i}(t) = (d_{i}(t) - O_{i}(t)) f'(Net_{i}(t))$$

$$= (d_{i}(t) - O_{i}(t)) kO_{i}(t)(1 - O_{i}(t))$$

For input units we have

$$\delta_{i}(t) = f'(net_{i}(t)) \sum_{k} \Delta_{k}(t) W_{ki}$$

$$= ky_{i}(t)(1 - y_{i}(t)) \sum_{k} \Delta_{k}(t) W_{ki}$$

Since degree of weight change is proportional to derivative of activation function, weight changes will be greatest when units receives mid-range functional signal than at extremes

Lecture Notes on Neural Networks and Fuzzy Systems Network training:

- Training set shown repeatedly until stopping criteria are met
- Each full presentation of all patterns = 'epoch'
- Randomise order of training patterns presented for each epoch in order to avoid correlation between consecutive training pairs being learnt (order effects)

Two types of network training:

Sequential mode (on-line, stochastic, or per-pattern)
Weights updated after each pattern is presented

Batch mode (off-line or per -epoch)

14/04/2009 69/148

Advantages and disadvantages of different modes

Sequential mode:

- Less storage for each weighted connection
- Random order of presentation and updating per pattern means search of weight space is stochastic-reducing risk of local minima able to take advantage of any redundancy in training set (*i.e.* same pattern occurs more than once in training set, esp. for large training sets)
- Simpler to implement

Batch mode:

Faster learning than sequential mode

14/04/2009 70/148

MultiLayer Perceptron II

Dynamics of MultiLayer Perceptron

Lecture No Summary of Network Training Simani

Forward phase: $\underline{I}(t)$, $\underline{w}(t)$, $\underline{net}(t)$, $\underline{y}(t)$, $\underline{W}(t)$, $\underline{Net}(t)$, $\underline{O}(t)$

Backward phase:

Output unit

$$W_{kj}(t+1) - W_{kj}(t) = \eta \Delta_{k}(t) y_{j}(t)$$

$$= \eta (d_{k}(t) - O_{k}(t)) f'(Net_{k}(t)) y_{j}(t)$$

Input unit

$$w_{ji}(t+1) - w_{ij}(t) = \eta \delta_{j}(t) I_{i}(t)$$

$$= \eta f'(net_{j}(t)) \sum_{k} \Delta_{k}(t) W_{kj}(t) I_{i}(t)$$

14/04/2009 72/148

Network training:

Training set shown repeatedly until stopping criteria are met.

Possible convergence criteria are

- \triangleright Euclidean norm of the gradient vector reaches a sufficiently small denoted as θ .
- \triangleright When the absolute rate of change in the average squared error per epoch is sufficiently small denoted as θ .
- ➤ Validation for generalization performance : stop when generalization reaching the peak (illustrate in this lecture)

14/04/2009 73/148

Goals of Neural Network Training

To give the correct output for input training vector (Learning)

To give good responses to new unseen input patterns (Generalization)

14/04/2009 74/148

Training and Testing Problems

- Stuck neurons: Degree of weight change is proportional to derivative of activation function, weight changes will be greatest when units receives mid-range functional signal than at extremes neuron. To avoid stuck neurons weights initialization should give outputs of all neurons approximate 0.5
- Insufficient number of training patterns: In this case, the training patterns will be learnt instead of the underlying relationship between inputs and output, i.e. network just memorizing the patterns.
- Too few hidden neurons: network will not produce a good model of the problem.
- Over-fitting: the training patterns will be learnt instead of the underlying function between inputs and output because of too many of hidden neurons. This means that the network will have a poor generalization capability.

14/04/2009 75/148

Dynamics of BP learning Airn is to minimise an error function over all training patterns by adapting weights in MLP

Recalling the typical error function is the mean squared error as follows

$$\mathsf{E(t)} = \frac{1}{2} \sum_{k=1}^{p} \left(d_k(t) - O_k(t) \right)^2$$

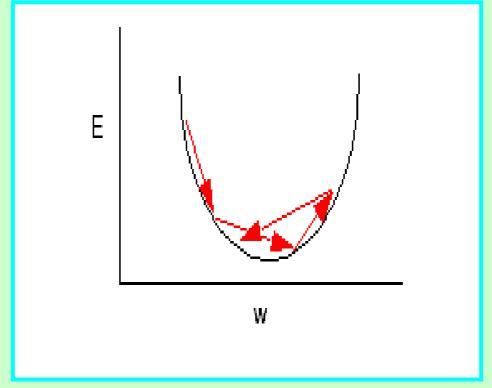
The idea is to reduce E(t) to global minimum point.

14/04/2009 76/148

Dynamics of BP learning

In single layer perceptron with linear activation functions, the error function is simple, described by a smooth parabolic surface with a single

minimum

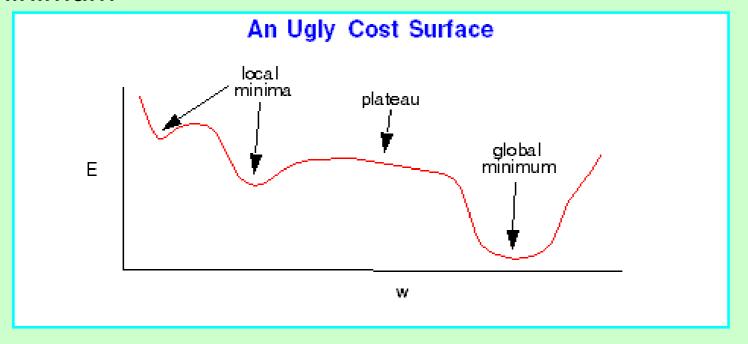


14/04/2009

Silvio Simani

Dynamics of BP learning

MLP with non-linear activation functions have complex error surfaces (e.g. plateaus, long valleys etc.) with no single minimum



For complex error surfaces the problem is learning rate must keep small to prevent divergence. Adding momentum term is a simple approach dealing with this problem.

14/04/2009 78/148

Momentum

- Reducing problems of instability while increasing the rate of convergence
- Adding term to weight update equation can effectively holds as exponentially weight history of previous weights changed

Modified weight update equation is

$$w_{ij}(n + 1) - w_{ij}(n) = \eta \delta_{j}(n) y_{i}(n) + \alpha [w_{ij}(n) - w_{ij}(n - 1)]$$

14/04/2009 79/148

Effect of momentum term

- ➤ If weight changes tend to have same sign, momentum term increases and gradient decrease speed up convergence on shallow gradient
- ➤ If weight changes tend have opposing signs, momentum term decreases and gradient descent slows to reduce oscillations (stabilizes)
- Can help escape being trapped in local minima

14/04/2009 80/148

Selecting Initial Weight Values

- Choice of initial weight values is important as this decides starting position in weight space. That is, how far away from global minimum
- Aim is to select weight values which produce midrange function signals
- Select weight values randomly from uniform probability distribution
- Normalise weight values so number of weighted connections per unit produces midrange function signal

14/04/2009 81/148

Avoid local minumum with fast convergence:

- Add momentum
- Stochastic gradient descent
- Train multiple nets with different initial weights

Nature of convergence

- Initialize weights 'near zero' or initial networks near-linear
- Increasingly non-linear functions possible as training progresses

14/04/2009 82/148

Silvio Simani

Use of Available Data Set for Training

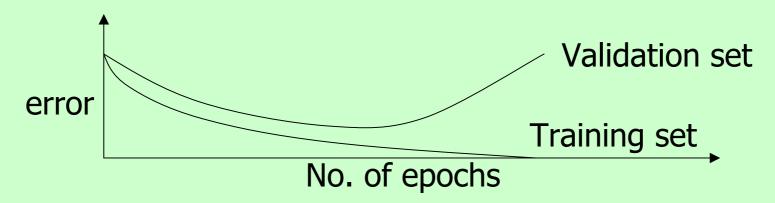
The available data set is normally split into three sets as follows:

- Training set use to update the weights. Patterns in this set are repeatedly in random order. The weight update equation are applied after a certain number of patterns.
- Validation set use to decide when to stop training only by monitoring the error.
- Test set Use to test the performance of the neural network. It should not be used as part of the neural network development cycle.

14/04/2009 83/148

Earlier Stopping - Good Generalization

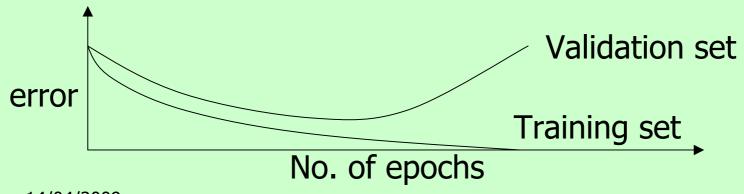
- Running too many epochs may overtrain the network and result in overfitting and perform poorly in generalization.
- Keep a hold-out validation set and test accuracy after every epoch. Maintain weights for best performing network on the validation set and stop training when error increases increases beyond this.



14/04/2009

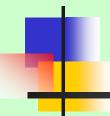
Model Selection by Cross-validation

- learning adequately fitting the data and learning the concept (more than two layer networks).
- Too many hidden units leads to overfitting.
- Similar cross-validation methods can be used to determine an appropriate number of hidden units by using the optimal test error to select the model with optimal number of hidden layers and nodes.



14/04/2009 85/148

Alternative Training Algorithm



Genetic Algorithms

Natural and Artificial Systems" published in 1975.

Idea of evolutionary computing was introduced in the 1960s by I.
Rechenberg in his work "Evolution strategies" (Evolutionsstrategie in original). His idea was then developed by other researchers. Genetic
Algorithms (GAs) were invented by John Holland and developed by him

and his students and colleagues. This lead to Holland's book "Adaption in

In 1992 John Koza has used genetic algorithm to evolve programs to perform certain tasks. He called his method "Genetic Programming" (GP). LISP programs were used, because programs in this language can expressed in the form of a "parse tree", which is the object the GA works

on. 14/04/2009

Biological Background Chromosome.

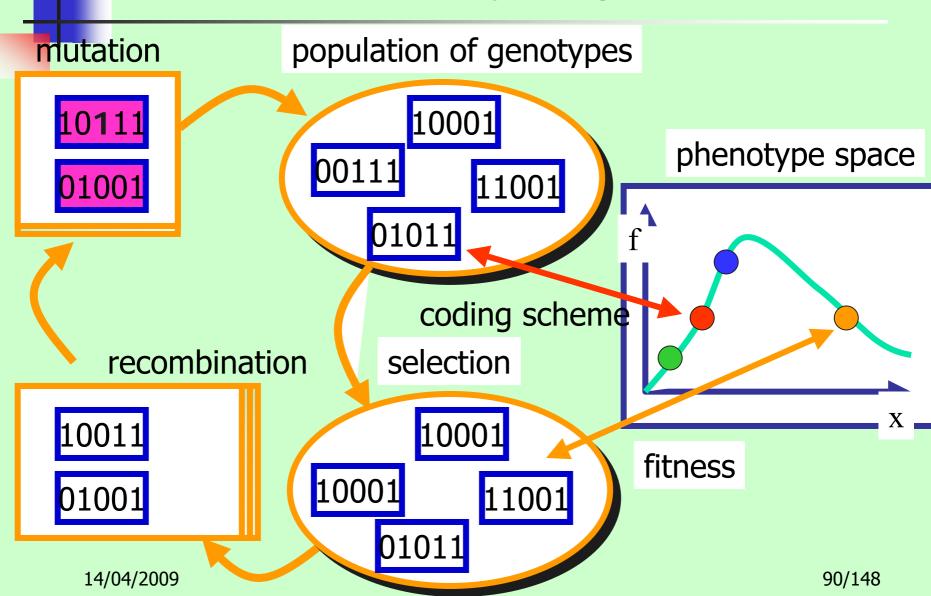
- All living organisms consist of cells. In each cell there is the same set of **chromosomes**. Chromosomes are strings of **DNA** and serves as a model for the whole organism. A chromosome consist of genes, blocks of DNA. Each gene encodes a particular protein. Basically can be said, that each gene encodes a **trait**, for example color of eyes. Possible settings for a trait (e.g. blue, brown) are called alleles. Each gene has its own position in the chromosome. This position is called **locus**.
- Complete set of genetic material (all chromosomes) is called **genome**. Particular set of genes in genome is called **genotype**. The genotype is with later development after birth base for the organism's phenotype, its physical and mental characteristics, such as eye color, intelligence etc. 14/04/2009

Biological Background Silvio Simani Reproduction.

- During reproduction, first occurs recombination (or crossover). Genes from parents form in some way the whole new chromosome. The new created offspring can then be mutated. Mutation means, that the elements of DNA are a bit changed. This changes are mainly caused by errors in copying genes from parents.
- The fitness of an organism is measured by success of the organism in its life.

14/04/2009 89/148

Evolutionary Algorithms



stop

yes

Pseudo Code of an Evolutionary Algorithm

no

Create initial random population

Evaluate fitness of each individual

Termination criteria satisfied?

Select parents according to fitness

Recombine parents to generate offspring

Mutate offspring

Replace population by new offspring

14/04/2009

91/148

A Simple Genetic Algorithm

- Poptimization task: find the maximum of f(x) for example $f(x)=x\bullet\sin(x)$ $x\in[0,\pi]$
- genotype: binary string $s \in [0,1]^5$ e.g. 11010, 01011, 10001
- mapping : genotype \Rightarrow phenotype $_{n=5}$ binary integer encoding: $x = \pi \bullet \sum_{i=1}^{n} s_i \bullet 2^{n-i-1} / (2^n-1)$

Initial population

genotype	<u>integ.</u>	<u>phenotype</u>	fitness	<u>prop. fitness</u>
11010	26	2.6349	1.2787	30%
01011	11	1.1148	1.0008	24%
10001	17	1.7228	1.7029	40%
00101	5	0.5067	0.2459	6%

14/04/2009 92/148

Radial Basis Functions

Radial Basis Functions Overview

Radial-basis function (RBF) networks

- RBF = radial-basis function
- a function which depends only on the radial distance from a point

14/04/2009 94/148

Radial-basis function (RBF) networks and Fuzzy Systems
Radial-basis function (RBF) networks
SolRBFs are functions taking the form

$$\phi$$
 (|| $\underline{x} - \underline{x}_i$ ||)

where ϕ is a non-linear activation function, \underline{x} is the input and \underline{x}_i is the *i'th* position, prototype, *basis* or *centre* vector.

The idea is that points near the centres will have similar outputs (i.e. if $\underline{x} \sim \underline{x}i$ then $f(\underline{x}) \sim f(\underline{x}i)$) since they should have similar properties.

The simplest is the linear RBF : $\phi(x) = ||\underline{x} - \underline{x}_i||$

14/04/2009 95/148

-Multi-quadrics

$$\phi(r) = (r^2 + c^2)^{1/2}$$

for some c>0

(b) Inverse multi-quadrics

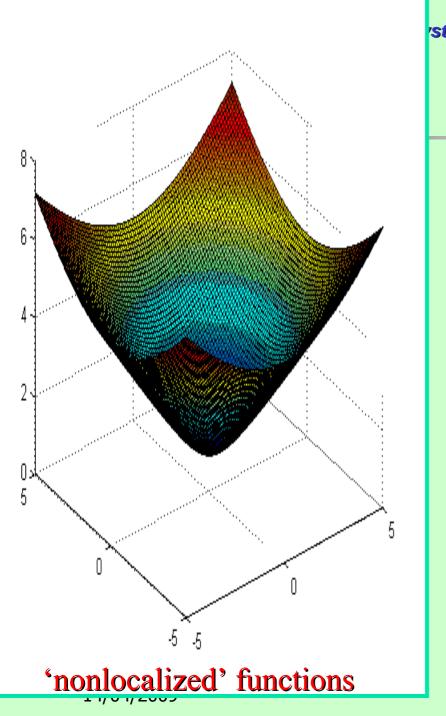
$$\phi(r) = (r^2 + c^2)^{-1/2}$$

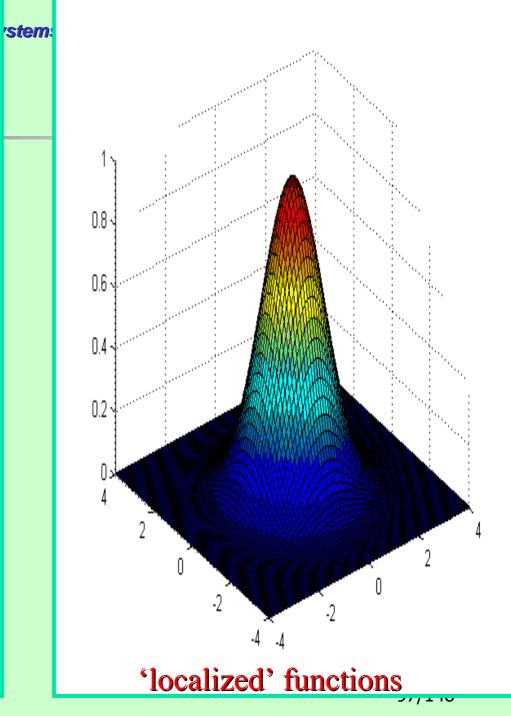
for some c>0

(c) Gaussian

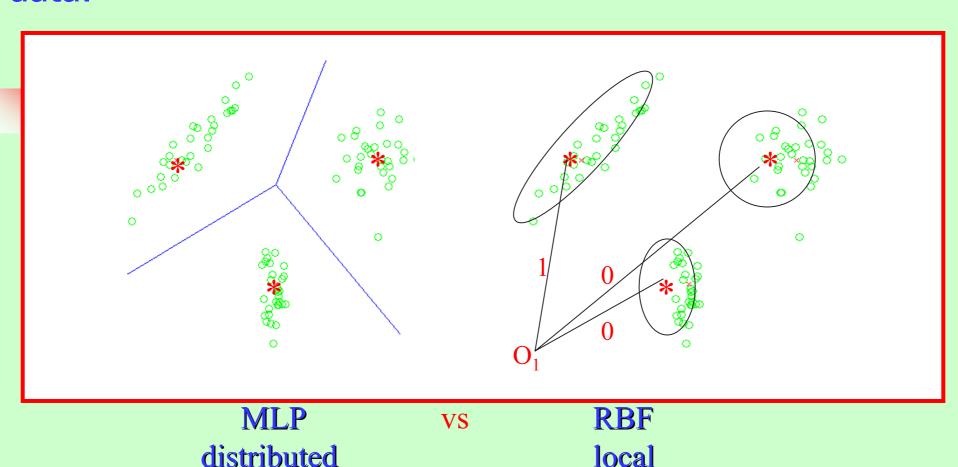
$$\phi(r) = \exp(-\frac{r^2}{2\sigma^2})$$

for some $\sigma > 0$



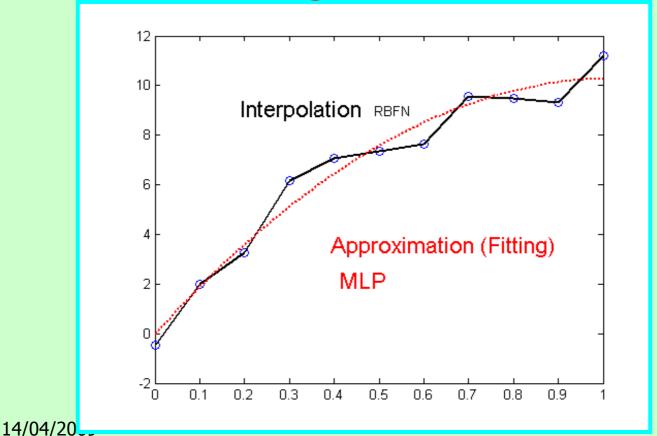


- ➤ Idea is to use a weighted sum of the outputs from the basis functions to represent the data.
- ➤ Thus centers can be thought of as prototypes of input data.



Starting point: exact interpolation

Each input pattern x must be mapped onto a target value d



That is, given a set of N vectors \underline{X}_i and a corresponding set of N real numbers, d_i (the targets), find a function F that satisfies the interpolation condition:

$$F(\underline{x}_i) = d_i$$
 for $i = 1,...,N$

or more exactly find:

$$F(\underline{x}) = \sum_{j=1}^{N} w_j \phi(||\underline{x} - \underline{x}_j||)$$

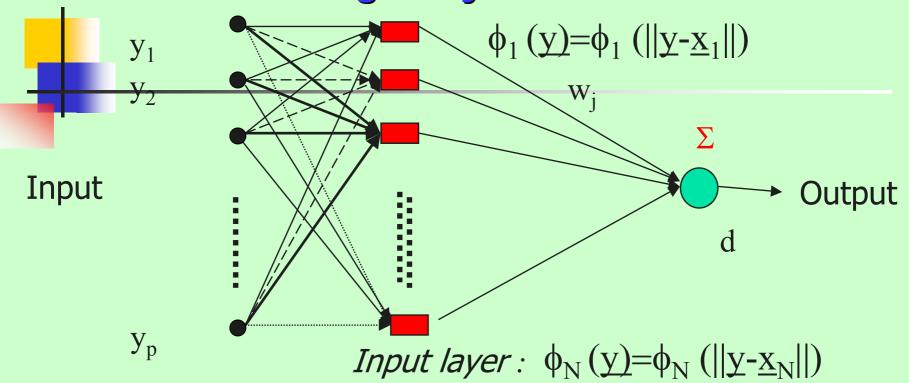
satisfying:

$$F(\underline{x}_i) = \sum_{j=1}^N w_j \phi(||\underline{x}_i - \underline{x}_j||) = d_i$$

14/04/2009

Lecture Notes on Neural NetworkSinglesiayer networks

Silvio Simani



- output = $\sum W_i \phi_i (\underline{Y} \underline{X}_i)$
- adjustable parameters are weights w_i
- number of input units ≤ number of data points
- Form of the basis functions decided in advance

14/04/2009

To summarize:

For a given data set containing N points (\underline{x}_i, d_i) , i=1,...,N

- Choose a RBF function ϕ
- \diamond Calculate $\phi(\underline{x}_i \underline{x}_i)$
- Solve the <u>linear</u> equation $\Phi W = D$
- Get the unique solution
- Done
- ➤ Like MLP's, RBFNs can be shown to be able to approximate any function to arbitrary accuracy (using an arbitrarily large numbers of basis functions).
- ➤ Unlike MLP's, however, they have the property of 'best approximation' i.e. there exists an RBFN with minimum approximation error.

Problems With exact interpolation
can produce poor generalisation performance as only data
points constrain mapping

Overfitting problem

Bishop(1995) example

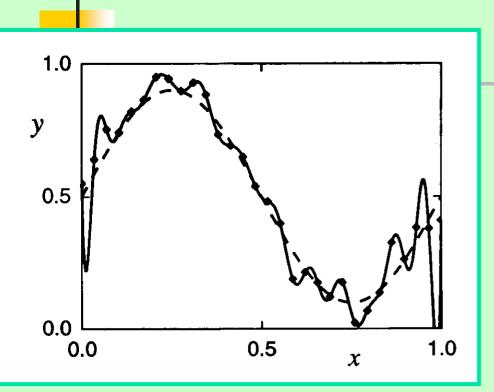
Underlying function f(x)=0.5+0.4sine $(2\pi x)$ sampled randomly for 30 points

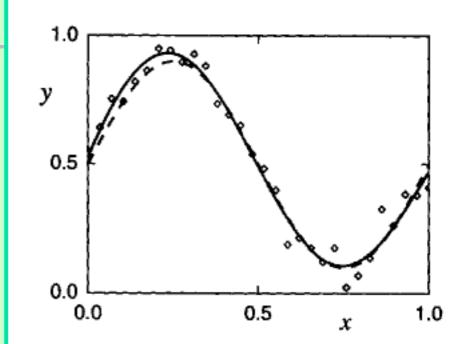
added Gaussian noise to each data point

30 data points 30 hidden RBF units

fits all data points but creates oscillations due added noise and unconstrained between data points

14/04/2009 103/148





All Data Points

5 Basis functions

14/04/2009 104/148

To fit an RBF to every data point is very inefficient due to the computational cost of matrix inversion and is very bad for generalization so:

- ✓ Use less RBF's than data points, i.e. M<N</p>
- ✓ Therefore don't necessarily have RBFs centred at data points
- ✓ Can include bias terms
- ✓ Can have Gaussian with general covariance matrices but there is a trade-off between complexity and the number of parameters to be found eg for *d* rbfs we have:

14/04/2009 105/148

Fuzzy Clustering with Application to Data-Driven Modelling

Introduction

- The ability to cluster data (concepts, perceptions, etc.)
 - essential feature of human intelligence.
- ➤ A cluster is a set of objects that are more similar to each other than to objects from other clusters.
- Applications of clustering techniques in pattern recognition and image processing.
- Some machine-learning techniques are based on the notion of similarity (decision trees, case-based reasoning)
- Non-linear regression and black-box modelling can be based on the partitioning data into clusters.

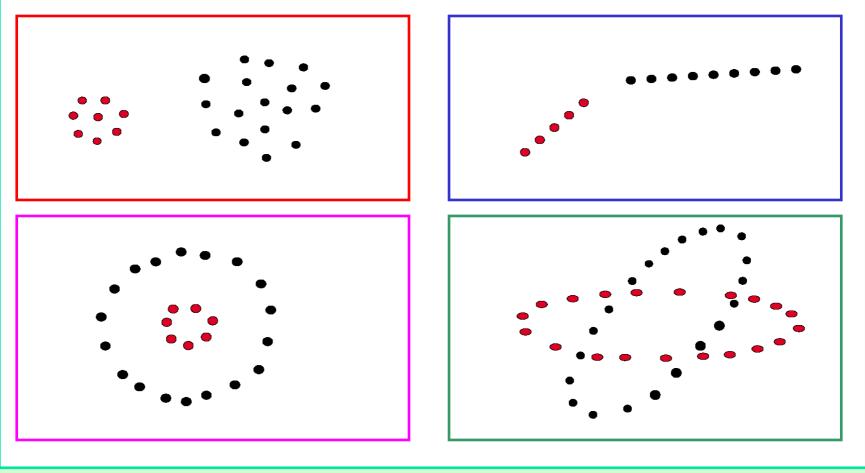
14/04/2009 107/148

Section Outline

- Basic concepts in clustering
 - data set
 - partition matrix
 - distance measures
- > Clustering algorithms
 - fuzzy c-means
 - Gustafson–Kessel
- > Application examples
 - system identification and modelling
 - diagnosis

14/04/2009 108/148

Examples of Clusters



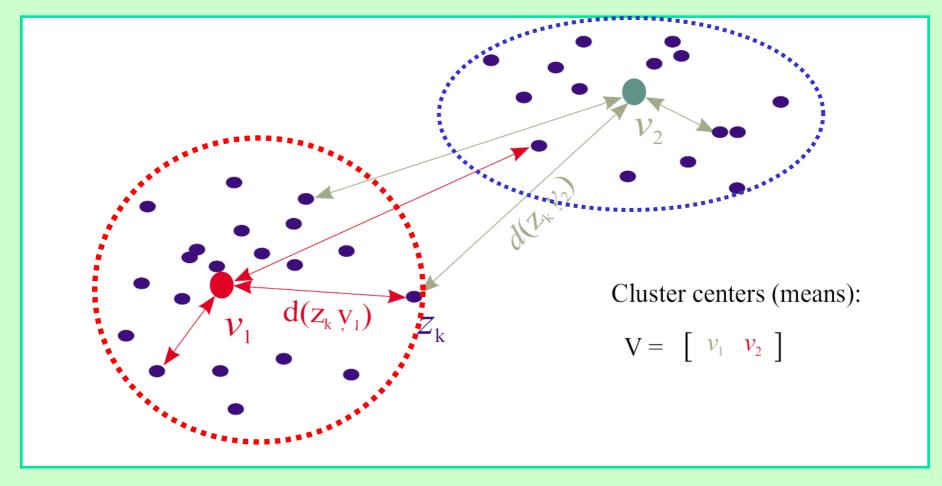
14/04/2009 109/148

Problem Formulation

- Given is a set of data in R^n and the (estimated) number of clusters to look for (a difficult problem, more on this later).
- ➤ Find the partitioning of the data into subsets (clusters), such that samples within a subset are more similar to each other than to samples from other subsets.
- > Similarity is mathematically formulated by using a distance measure (i.e., a dissimilarity function).
- ➤ Usually, each cluster will have a prototype and the distance is measured from this prototype.

14/04/2009 110/148

Distance Measure



14/04/2009 111/148

Distance Measures

> Euclidean norm:

$$d^{2}(\mathbf{z}_{j}, \mathbf{v}_{i}) = (\mathbf{z}_{j} - \mathbf{v}_{i})^{T} (\mathbf{z}_{j} - \mathbf{v}_{i})$$

>Inner-product norm:

$$d^{2}\mathbf{A}_{i}(\mathbf{z}_{j}, \mathbf{v}_{i}) = (\mathbf{z}_{j} - \mathbf{v}_{i})^{T}\mathbf{A}_{i}(\mathbf{z}_{j} - \mathbf{v}_{i})$$

➤ Many other possibilities . . .

Commission Approach

Objective function (least-squares criterion):

$$J(\mathbf{Z}; \mathbf{V}, \mathbf{U}, \mathbf{A}) = \sum_{i=1}^{c} \sum_{j=1}^{N} \mu_{i,j}^{m} d_{\mathbf{A}_{i}}^{2}(\mathbf{z}_{j}, \mathbf{v}_{i})$$

> subject to constraints:

$$0 \leq \mu_{i,j} \leq 1, \qquad i=1,\dots,c, \ j=1,\dots,N \qquad \text{membership degree}$$

$$0 < \sum_{j=1}^N \mu_{i,j} < 1, \quad i=1,\dots,c \qquad \qquad \text{no cluster empty}$$

$$\sum_{i=1}^c \mu_{i,j} = 1, \qquad j=1,\dots,N \qquad \qquad \text{total membership}$$

1 2002

OLT ICT

Fuzzy Algorithm

Repeat:

 Compute cluster prototypes (means):

$$v_i = \frac{\sum_{k=1}^{N} \mu_{i,k}^m \mathbf{z}_k}{\sum_{k=1}^{N} \mu_{i,k}^m}$$

2. Calculate distances:

$$d_{ik} = (\mathbf{z}_k - \mathbf{v}_i)^T (\mathbf{z}_k - \mathbf{v}_i)$$

3. Update partition matrix:

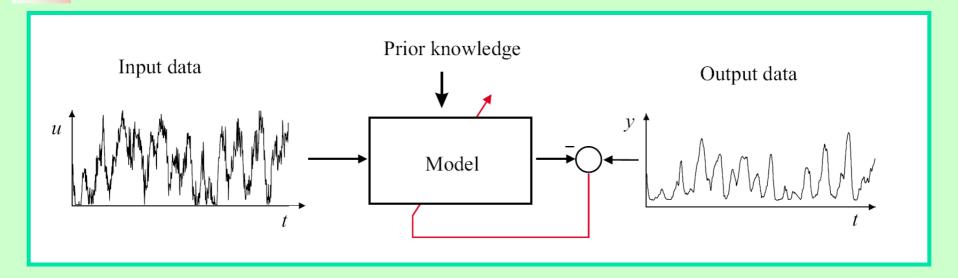
$$\mu_{ik} = \frac{1}{\sum_{j=1}^{c} (d_{ik}/d_{jk})^{1/(m-1)}}$$

until

$$\|\Delta \mathbf{U}\| < \epsilon$$

$$(i=1, \cdots, c. k=1, \cdots, N)$$

Lecture Note Data - Reprint (Black-Boxil) Simani - Modelling

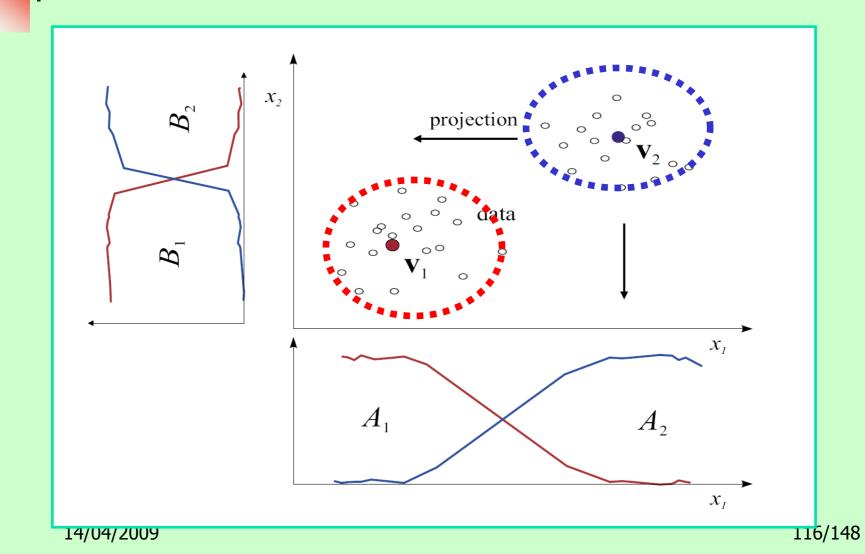


- > Linear model (for linear systems only, limited in use)
- > Neural network (black box, unreliable extrapolation)
- Rule-based model (more transparent, 'grey-box')

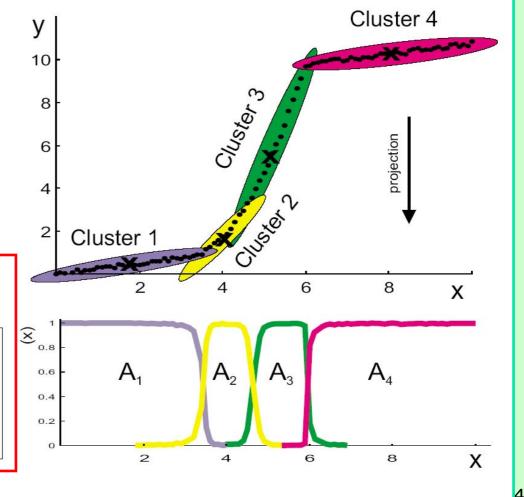
14/04/2009 115/148

Fuzzy Clustering

Silvio Simani



Fuzzy Clustering



Takagi-Sugeno model

Rule-based description:

If x is A_1 then y = $a_1x + b_1$ If x is A_2 then y = $a_2x + b_2$

etc...

Example: Non-linear Autoregressive System (NARX)

$$x(k+1) = f(x(k)) + \epsilon(k)$$

$$f(x) = \begin{cases} 2x - 2, & 0.5 < x \\ -2x, & -0.5 \le x < 0.5 \\ 2x + 2, & x \le -0.5 \end{cases}$$

14/04/2009 118/148

Lecture NoteStreue telection and Ivio Simani Data Preparation

1. Choose model order *p*

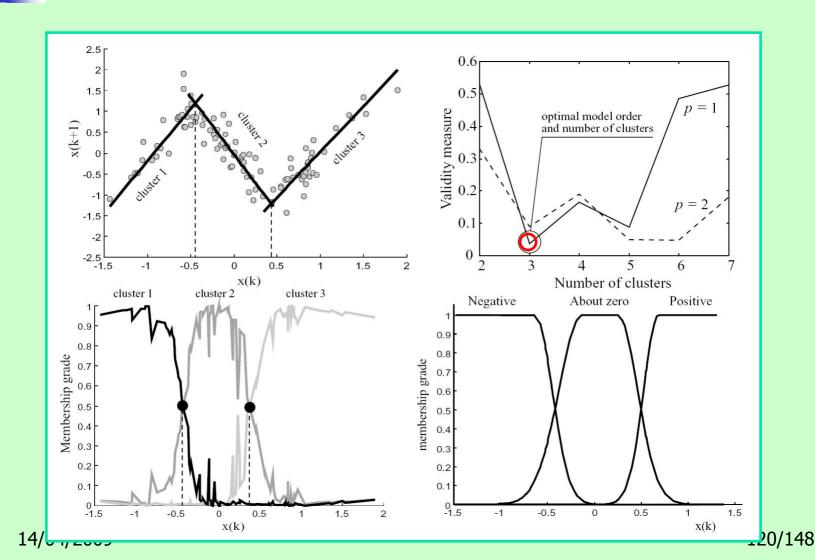
$$x(k+1) = f(\underbrace{x(k), x(k-1), \dots, x(k-p+1)}_{\mathbf{x}(k)})$$

2. Form pattern matrix Z to be clustered

$$\mathbf{Z}^T = \begin{bmatrix} x(1) & x(2) & \dots & x(p) & x(p+1) \\ x(2) & x(3) & \dots & x(p+1) & x(p+2) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x(N-p) & x(N-p+1) & \dots & x(N-1) & x(N) \end{bmatrix}$$

14/04/2009 119/148

Clustering Results

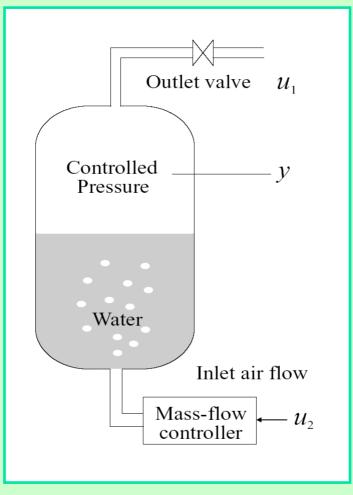


- 1) If x(k) is Positive then x(k+1) = 2.0244x(k) 2.0289
- 2) If x(k) is $About\ zero$ then x(k+1)=-1.8852x(k)+0.0005
- 3) If x(k) is Negative then x(k+1) = 1.9050x(k) + 1.9399

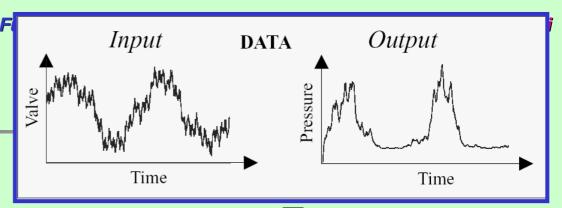
original function:
$$f(x) = \begin{cases} 2x - 2, & 0.5 < x \\ -2x, & -0.5 \le x < 0.5 \\ 2x + 2, & x \le -0.5 \end{cases}$$

14/04/2009 121/148

Lecture Note dentification of Pressure imanipulation Dynamics



14/04/2009 122/148

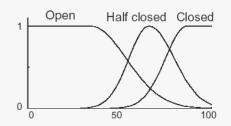


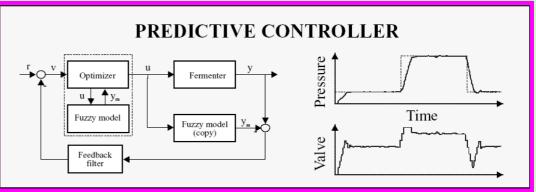
Rules

FUZZY MODEL

Membership f.

- 1) If Valve is Open and Pressure is Low then
- 2) If Valve is Closed and Pressure is High then
- 3) ...





14/04/2009

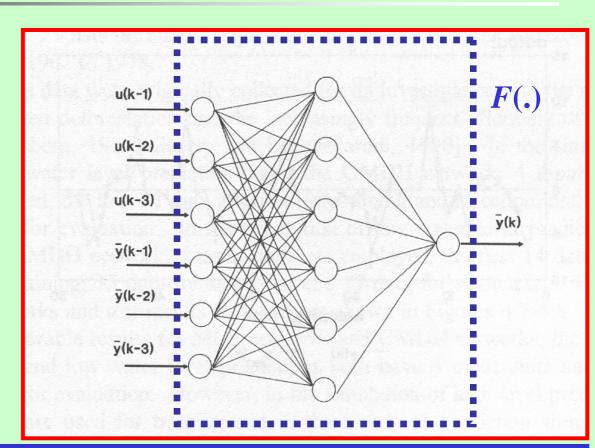
123/148

Application Examples

Neural Networks for Non-linear Identification, Prediction and Control

Nonlinear Dynamic System

- Take a staticNN
- From static to dynamic NN
- "Quasi-static"NN
- Add inputs, outputs and delayed signals

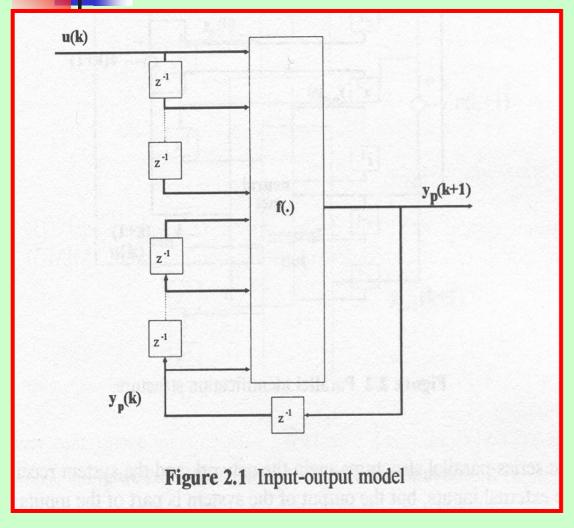


$$\widetilde{y}(k) = F(u(k-1), u(k-2), u(k-3), \widetilde{y}(k-1), \widetilde{y}(k-2), \widetilde{y}(k-3))$$

Example of Quasi-static NN with 3 delayed inputs and outputs

ı

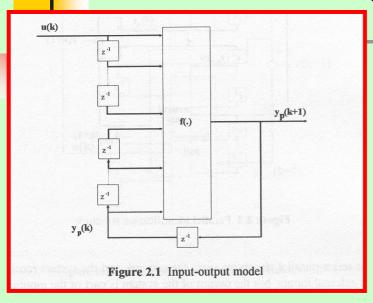
Nonlinear System Identification

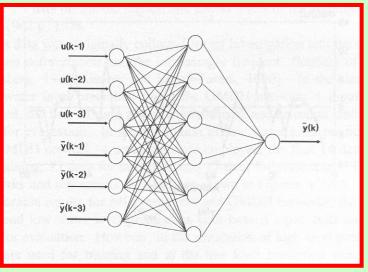


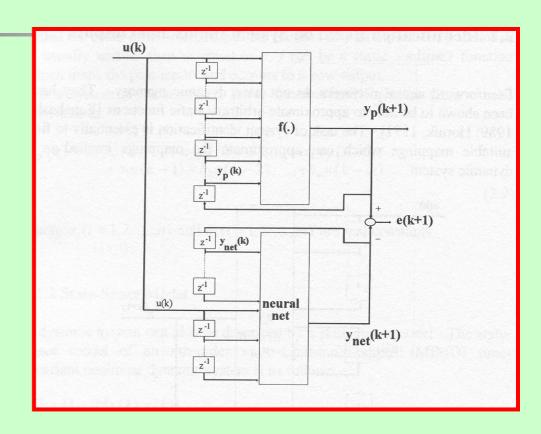
- f(.), unknown target function
- Nonlinear dynamic model
- Approximated via a quasi-static NN
- Nonlinear dynamic system identification
- Recall "linear system identification"

14/04/2009 126/148

Nonlinear System Identification



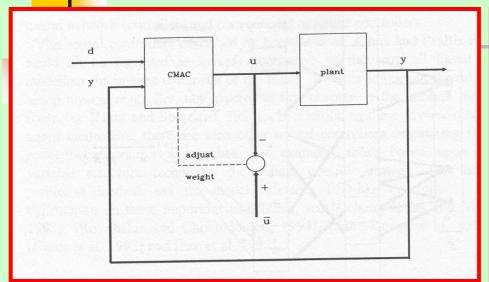


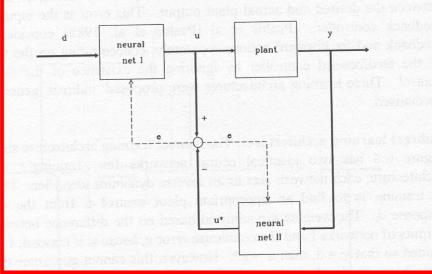


Target function: $y_p(k+1) = f(.)$ Identified function: $y_{NET}(k+1) = F(.)$

e(k+1)Estimation error:

Lect Nonlinear's System Neural Control"





d: reference/desired response

y: system output/desired output

u: system input/controller output

ū: desired controller input

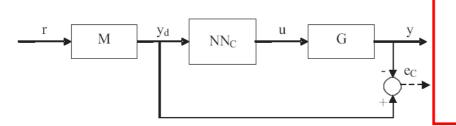
u*: NN output

e: controller/network error

The goal of training is to find an appropriate plant control u from the desired response d. The weights are adjusted based on the difference between the outputs of the networks I & II to minimise e. If network I is trained so that y = d, then $u = u^*$. Networks act as inverse dynamics identifiers.

14/04/2009 128/148

Neural Networks for Control



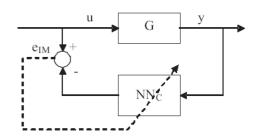


Figure 3: Training the neural network NN_C

Figure 1: Direct Inverse Control using neural networks

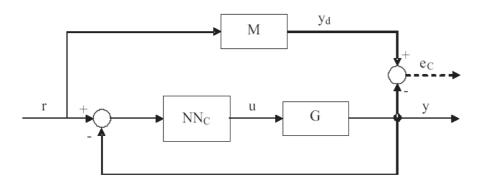
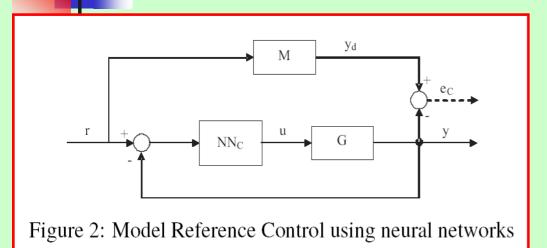


Figure 2: Model Reference Control using neural networks

- Open-loop unstable models
- Disturbances

Neural Model Reference Adaptive Control



The signal e_C is used to train or adapt online the weights of the controller NN_C . Two are the approaches used to design a MRAC control for an unknown plant: **Direct and Indirect Control**.

Direct Control: This procedure aims at designing a controller without having a plant model. As the knowledge of the plant is needed in order to train the neural network which corresponds to the controller (*i.e.* NN_C), until present, no method has been proposed to deal with this problem.

Indirect Control

Neural Model Reference Adaptive Control

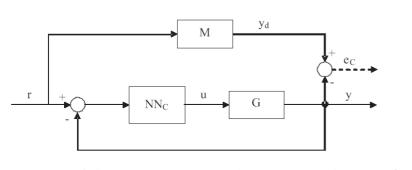
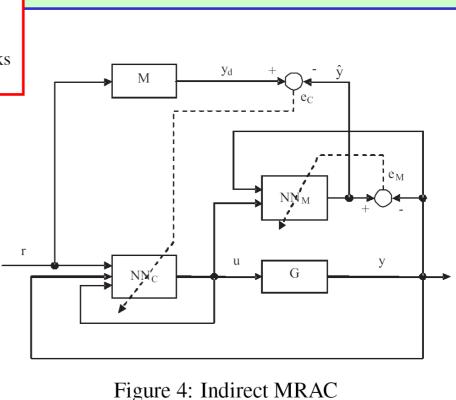


Figure 2: Model Reference Control using neural networks

The signal e_C is used to train or adapt online the weights of the neural controller NN_C .



Indirect Control: NN_M & NN_C

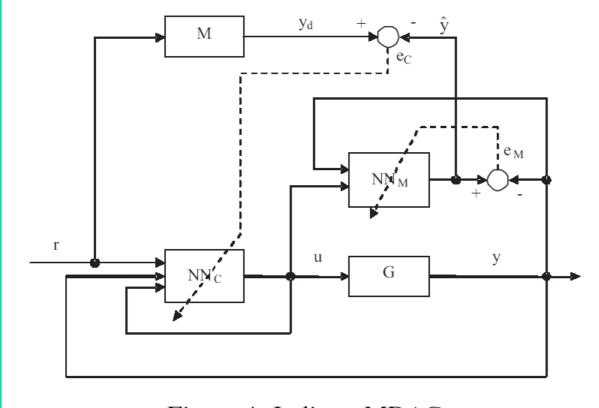
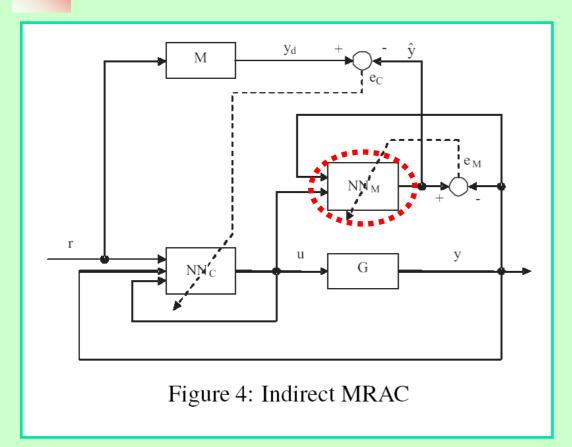


Figure 4: Indirect MRAC

This approach uses two neural networks: one for modelling the plant dynamics $(NN_{\rm M})$, and another one trained to control the real plant (G) so as its behaviour is as close as possible to the reference model (M) via the neural controller (NN_C).

14/04/2009 132/148

Indirect Control (1)



The neural network **NN_M** is trained to approximate the plant G input/output relation using the signal e_{M} . This is usually done offline, using a batch of data gathered from the plant in open loop.

14/04/2009 133/148

Indirect Control (2)

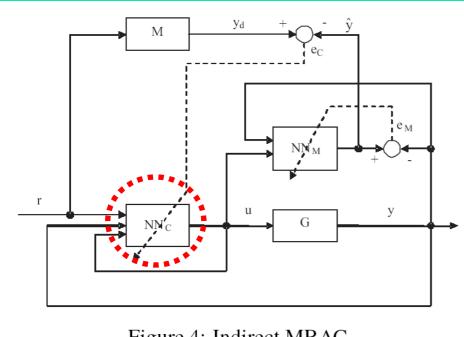


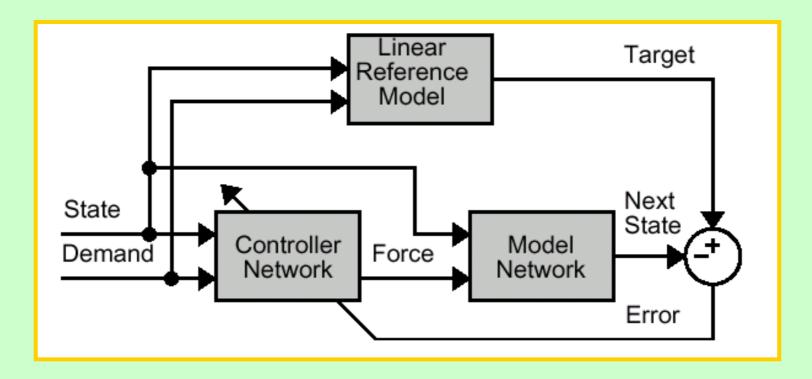
Figure 4: Indirect MRAC

Then, NN_M is fixed, its output and behaviou are known and easy to compute.

Once the model NN_M is trained, it is used to train the network NN_C which will act as the controller. The model NN_M is used instead of the real plant's output because the real plant is unknown, so back-propagation algorithms can not be used. In this way, the control error e_C calculated as the difference between the desired reference model output y_d and \hat{y} , which is the closed loop predicted output.

Model Reference Control

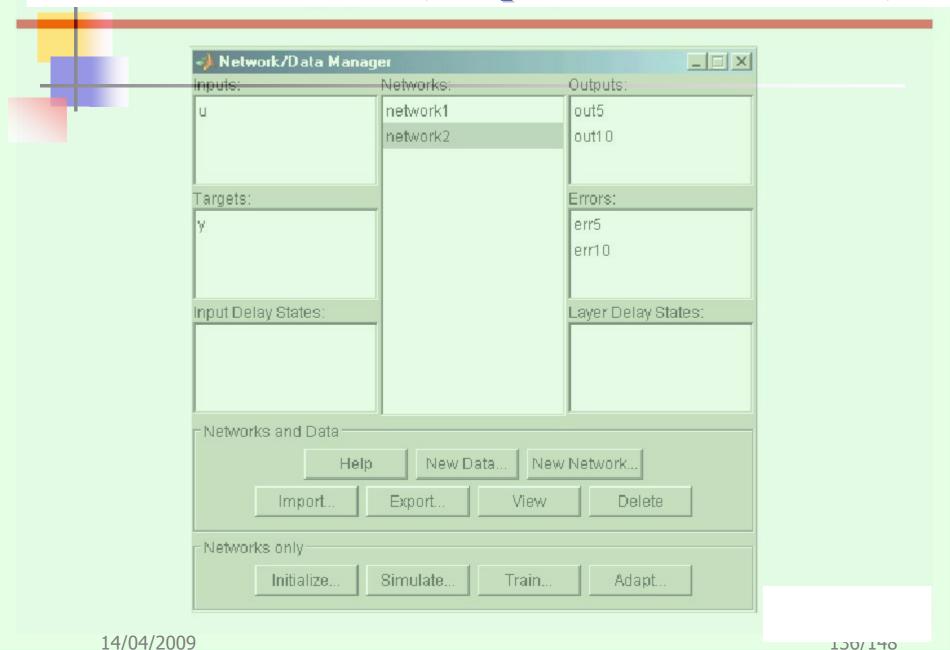
Matlab and Simulink solution

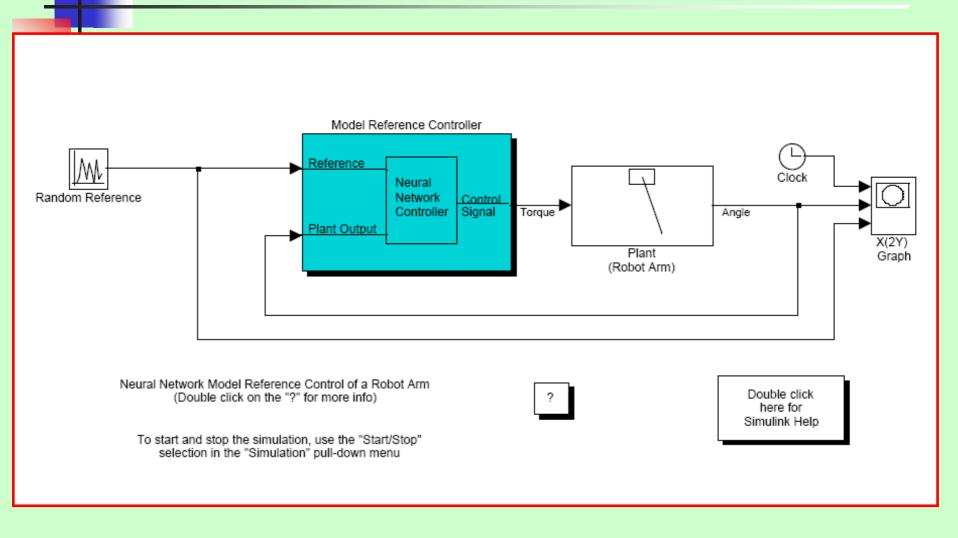


Neural controller, reference model, neural model

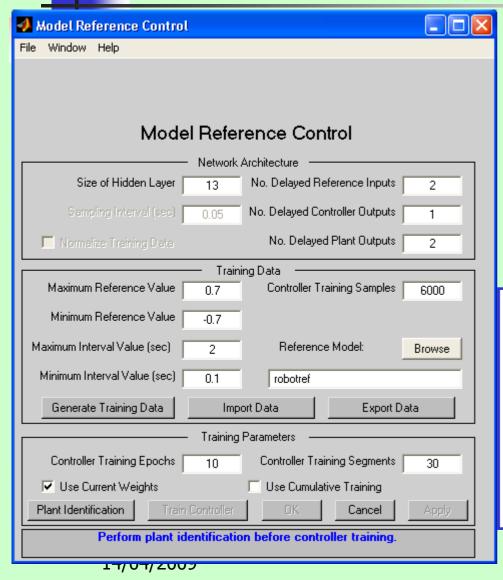
14/04/2009 135/148

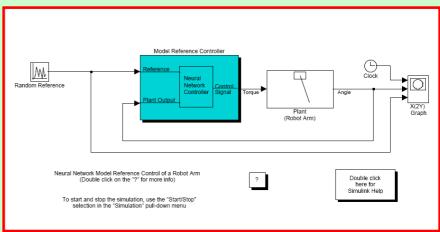
Matlab NNtool GUI (Graphical User Interface)

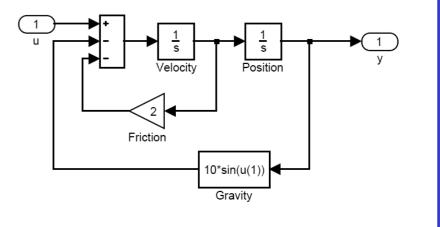


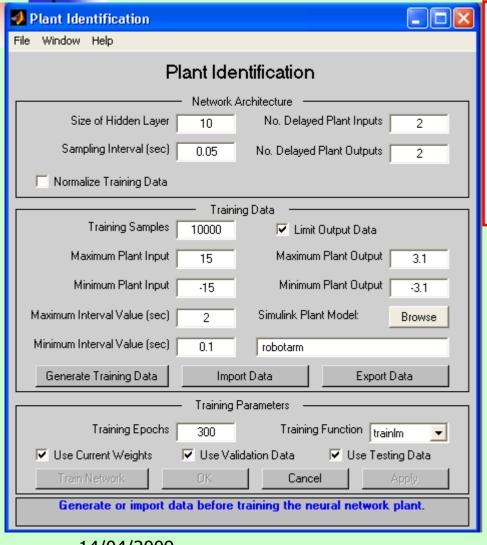


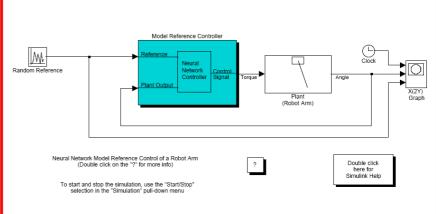
14/04/2009 137/148











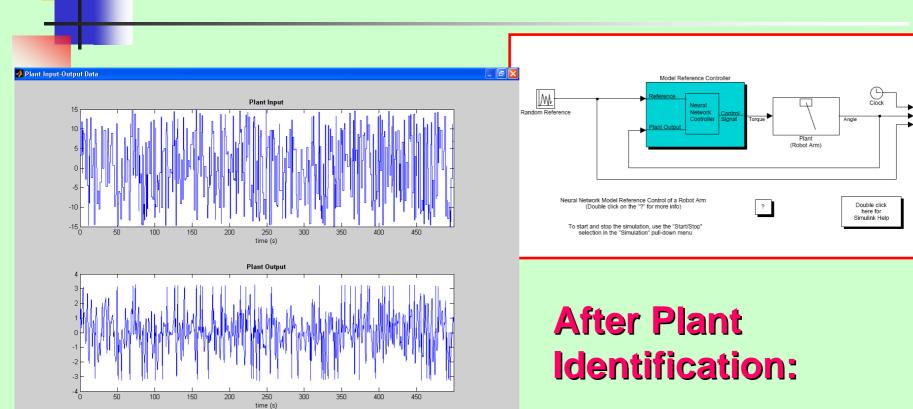
Plant Identification:

Data generation from the Reference Model for Neural Network training

14/04/2009 139/148

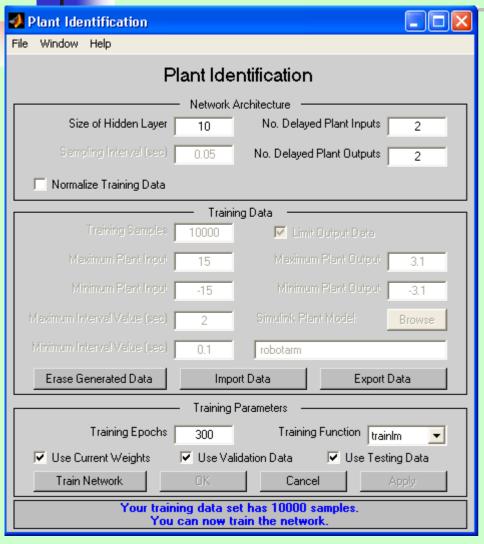
Simulation concluded.
Please Accept or Reject Data to co

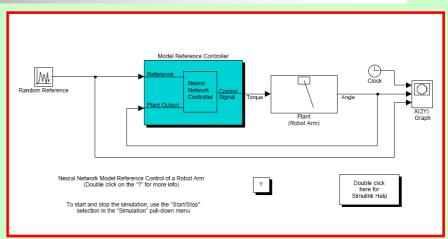
Control of a Robot Arm Example



Neural Network training

14/04/2009 140/148

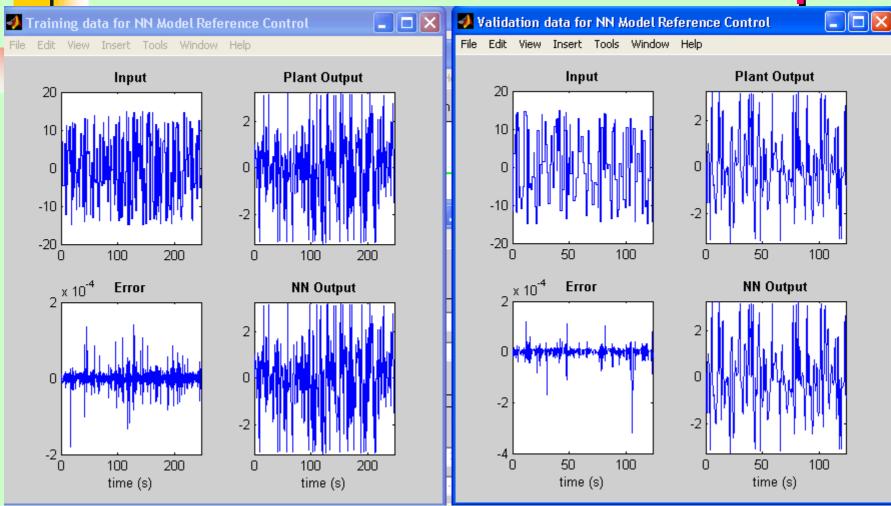




After Plant Identification:

Neural Network training

14/04/2009 141/148

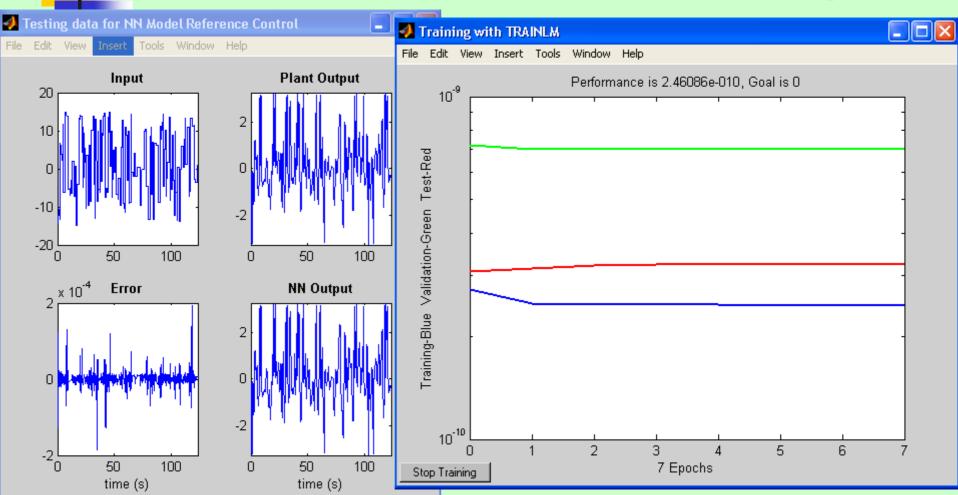


Training and Validation Data

14/04/2009 142/148

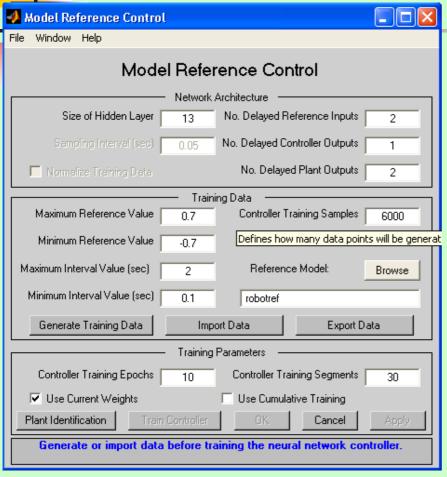
1

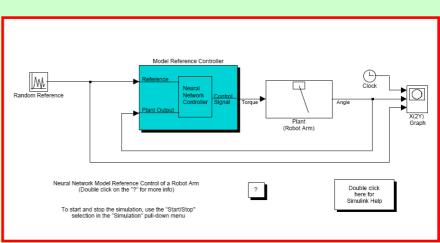
Control of a Robot Arm Example



Testing Data and Training Results

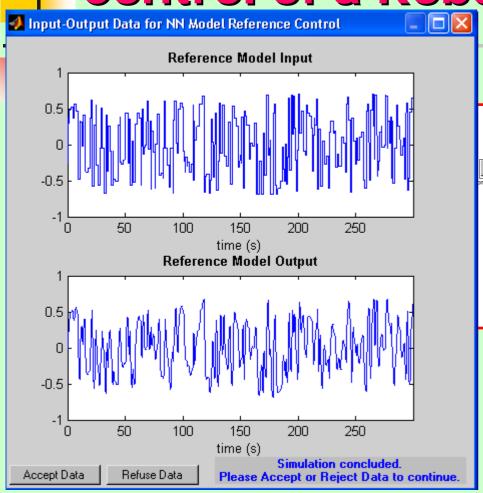
14/04/2009 143/148

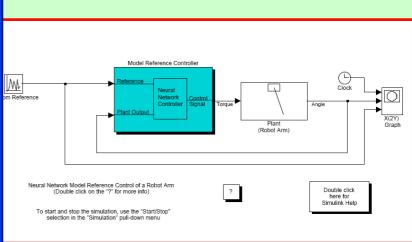




Plant identification with a NN Data Generation for NN Controller Identification

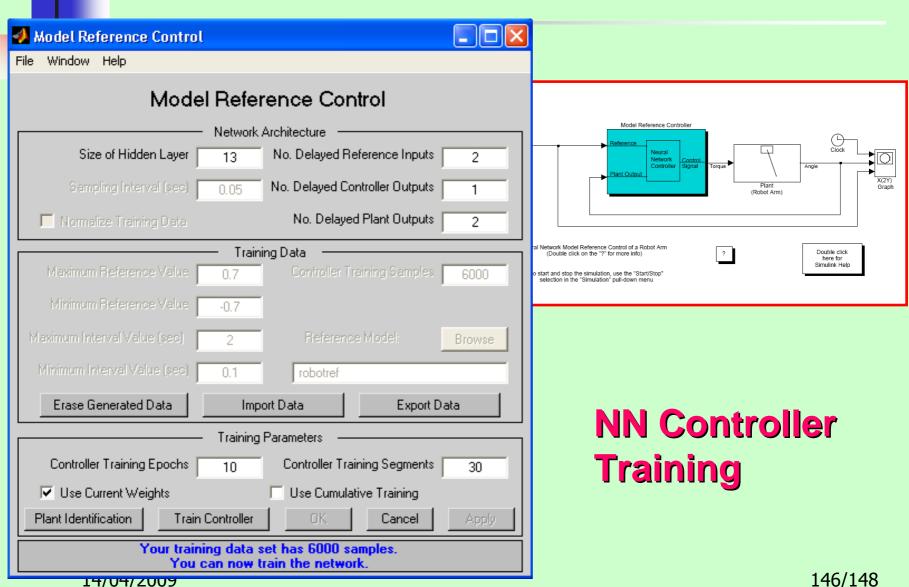
14/04/2009 144/148





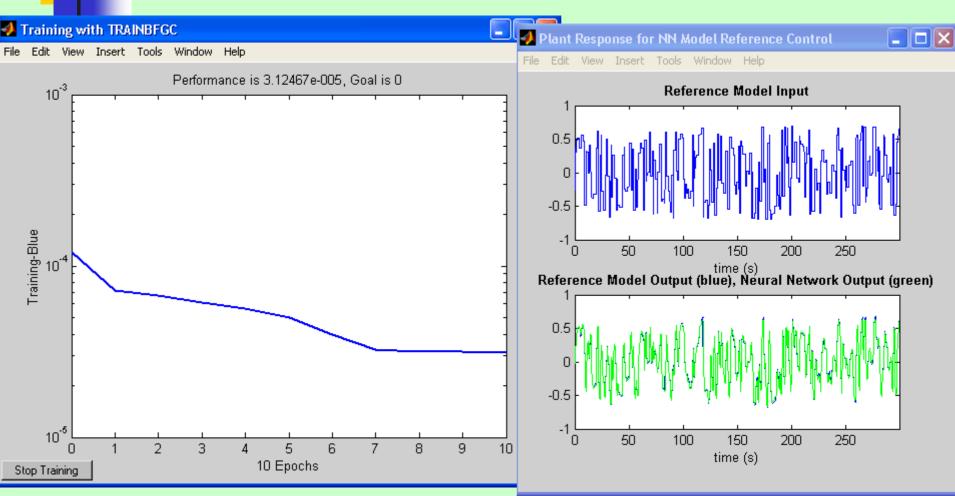
Accept the Data Generated for NN Controller Identification

14/04/2009 145/148

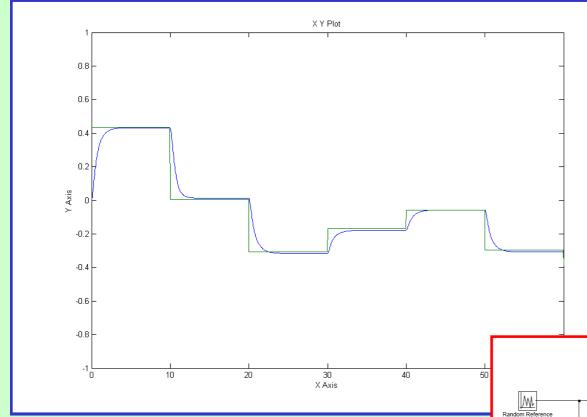


1

Control of a Robot Arm Example



NN Controller Training and Results 14/04/2009



Reference and Tracked Output Signals

Simulink Help

Simulation Final Results

14/04/2009 148/148

Random Reference

| Neural Network Model Reference Control of a Robot Arm (Double click on the "?" for more info) | Plant (Dou

To start and stop the simulation, use the "Start/Stop" selection in the "Simulation" pull-down menu