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ﬁ Machine Learning

= Improve automatically with experience

= Imitating human learning
= Human learning

Fast recognition and classification of complex classes
of objects and concepts and fast adaptation

= Example: neural networks
= Some techniques assume statistical source
Select a statistical model to model the source

= Other techniques are based on reasoning or
inductive inference (e.G. Decision tree)
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iMachine Learning Definition

A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P, if its
performance at tasks in T, as measured by P,

improves with experience.
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i Examples of Learning Problems

Example 1: handwriting recognition:

= T: recognizing and classifying handwritten words
within images.

= P: percentage of words correctly classified.

= E: a database of handwritten words with given
classification.

Example 2. learn to play checkers:
= T: play checkers.
= P: percentage of games won in a tournament.
= E: opportunity to play against itself ( ).
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i Issues in Machine Learning

= What algorithms can approximate functions
well and when?

= How does the number of training examples
influence accuracy?

= How does the complexity of hypothesis
representation impact it?

= How does noisy data influence accuracy?

s How do you reduce a learning problem to a

set of function approximation ?
14/04/2009 7/148
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Summary

s Machine learning is useful for data mining, poorly
understood domain (face recognition) and
programs that must dynamically adapt.

= Draws from many diverse disciplines.

= Learning problem needs well-specified task,
performance metric and training experience.

= Involve searching space of possible hypotheses.
Different learning methods search different
hypothesis space, such as numerical functions,
neural networks, decision trees, symbolic rules.
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»

Introduction to Neural
Networks
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ﬁ Brain

= 10! neurons (processors)
= On average 1000-10000 connections

Input

i Zone
=y cell body ‘

~C
\ axon

—— | - .-- ,_..._-'—""'lq:__-___
axon endings #
Output Zone
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i Artlficial Nelron

bias
net;= ) i Wiy, + b/

W, |
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* Artificial Neuron

= Input/Output Signal may be.
= Real value.
= Unipolar {0, 1}.
= Bipolar {-1, +1}.
= Weight : w; —strength of connection.

Note that w; refers to the weight from
unit s to unit 7/ (not the other way round).
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ﬁ Artlficial Nelron

Silvio Simani

= The bias b is a constant that can be written as
wy,With y,= band wj,= 1 such that
net . = Z WY
j=0
= The function f is the unit’s activation function.

In the simplest case, 7 is the identity function,

and the unit’s output is just its net input. This
is called a /inear unit.

= Other activation functions are :

14/04/2009 13/148
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J_ ACTIVVaeltlorn Functions
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ﬁhen Should ANN Solution Be Consicderecd ?

> The solution to the problem cannot be explicitly described
by an algorithm, a set of equations, or a set of rules.

»There is some evidence that an input-output mapping exists
between a set of input and output variables.

»There should be a large amount of data available to train

the network.

14/04/2009 15/148
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P

blems That Can Leacd to Poor Parformance ?

= The network has to distinguish between very similar cases
with a very high degree of accuracy.

= The train data does not represent the ranges of cases that
the network will encounter in practice.

= The network has a several hundred inputs.

= [he main discriminating factors are not present in the
available data, e.g. trying to assess the loan application
without having knowledge of the applicant's salaries.

= The network is required to implement a very complex
function.
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a
/\

D

Manufacturing : fault diagnosis, fraud detection.

= Retailing : fraud detection, forecasting, data
mining.

= Finance : fraud detection, forecasting, data mining.

= Engineering : fault diagnosis, signal/image
processing.

= Production : fault diagnosis, forecasting.
= Sales & marketing : forecasting, data mining.
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Dziia Pre-processing

Neural networks very rarely operate on the raw
data. An initial pre-processing stage is essential.

Some examples are as follows:
= Feature extraction of images: for example, the analysis of x-rays
requires pre-processing to extract features which may be of interest
within a specified region.

= Representing input variables with numbers. For example "+1" is the
person is married, "0" if divorced, and "-1" if single. Another example
is representing the pixels of an image: 255 = bright white, 0 = black.
To ensure the generalization capability of a neural network, the data

should be encoded in form which allows for interpolation.
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| Delta Pre-processing

m CONTINUOUS VARIABLES

= A continuous variable can be directly applied to
a neural network. However, if the dynamic
range of input variables are not approximately
the same, it is better to normalize all input

variables of the neural network.
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»

Simple Neural Networks

Simple Perceptron

14/04/2009 20/148
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i Outlines

> The Perceptron

e Linearly separable problem
e Network structure

e Perceptron learning rule

e Convergence of Perceptron

14/04/2009 21/148



Lecture Notes on Neural Networks and Fuzszéstems Silvio Simani

ﬁ THE PERCEPTRON

»The perceptron was a simple model of ANN introduced
by Rosenblatt of MIT in the 1960’ with the idea of
learning.

»Perceptron is designed to accomplish a simple pattern
recognition task: after learning with real value training data

£ x(1), d(1), 1=1,2, ..., p} where d(i) =1 or -1

»For a new signal (pattern) x(i+1), the perceptron is
capable of telling you to which class the new signal
belongs

X(I1+1) sy | 5erceptron = lor-1

14/04/2009 22/148
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Perceptron
m Linear Threshold Unit (LTU)
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ﬁﬁ athematically the Perceptron is"

y = f(zm:WiXi"‘b): f(i W; X; )

We can always treat the bias 6 as another weight with
inputs equal 1

where f is the hard limiter function i.e.

( m

Lif > w,x; +b >0
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capable of solving linearly separable problem ?

m
Z Wi X,
i=1

b =20

ivvixi+b<0
=1

14/04/2009
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Learning rule

An algorithm to update the weights w so that finally
the input patterns lie on both sides of the line decided
by the perceptron

Let £be the time, at £ = 0, we have

14/04/2009 26/148
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algorithm to update the weights w so that finally
Input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at £ = 1

14/04/2009 27/148
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Learning rule

ights w so that finally
input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at £ =2

14/04/2009 28/148
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Learning rule

eights w so that finally
e input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at £ =3

w (3)

14/04/2009 29/148
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i In Math
F1if x(t)in class +

d (t) = {— 1if x (t)in class —

Perceptron learning rule

w(t+1)=w(t)+n(t)[d(t) -
sign (w (t) e x(t))] x(t)
Where n(t) is the learning rate >0,
- +1 if x>0
sign(x) = 1 hard limiter function
=1 if x<=0,
NB : d(t) is the same as d(i) and x(t) as x(i)

14/04/2009 30/148
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ﬁ In words:

o If the classification is right, do not update the
weights

o If the classification is not correct, update the
weight towards the opposite direction so that the
output move close to the right directions.

14/04/2009 31/148
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erceptron convergence theorem
(Rosenblatt, 1962)

Let the subsets of training vectors be linearly separable. Then
after finite steps of learning we have

lim w(t) = w which correctly separate the samples.

The idea of proof is that to consider ||w(t+1)-wi||-||w(t)-w]|
which is a decrease function of t

14/04/2009 32/148
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iSummary of Perceptron learning ...

Variables and parameters
X(t) = (m+1) dim. input vectors at time ¢

= (b/ X] (U/ XZ(O/ rens /Xm(U)

w(t) = (m+1) dim. weight vectors

=(-Z/ W](U/ 0 Wm(l))

b = bias
y(t) = actual response
n(Y = learning rate parameter, a +ve constant < 1

d(t) = desired response

14/04/2009 33/148



U SUMMary 6 Péregptron learning 0™
#&z (i) d@D), i=1,...,p}

v Present the data to the network once a point

v' could be cyclic :

(x(1), d(1)), (x(2), d(2)),..., (x(p), d(p)),
(X(p+1), d(p+1)),...

v or randomly

(Hence we mix time t with i here)

14/04/2009 34/148
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Summary of Perceptron learning (algorithm)

1. Initialisation Set w(0)=0. Then perform the following
computation for time step t=1,2,...
2. Activation At time step t, activate the perceptron by applying

input vector X(¢) and desired response d(t)
3. Computation of actual response Compute the actual response
of the perceptron
V) = sign ( w(t) - x(t) )

where sign is the sign function
4. Adaptation of weight vector Update the weight vector of the
perceptron

w(t+1) = w(t)+ n@® [ at) - yt) ] x(t)

5. Continuation

14/04/2009 35/148
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ﬁ Questions remain

Where or when to stop?

By minimizing the generalization error

For training data {(X(7), d(f)), i=1,...p}

How to define training error after t steps of learning?

E(t)= 2Py [d(i)-sign(w(t) . x(i)]*

14/04/2009 36/148
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»

We next turn to ADALINE learning,
from which we can understand
the learning rule, and more general the

Back-Propagation (BP) learning

14/04/2009 37/148
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i-

Simple Neural Network

ADALINE Learning

14/04/2009 38/148
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i Outlines

= ADALINE
s Gradient descending learning

= Modes of training

14/04/2009 39/148
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Lﬂhappy Over Perceptron Training

= When a perceptron gives the right answer, no

learning takes place

= Anything below the threshold is interpreted
as 'no’, even it is just below the threshold.

= It might be better to train the neuron based

on how far below the threshold it is.

14/04/2009 40/148
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A ADALINE
A

DALINE is an acronym for ADAptive LINear Element
(or ADAptive LInear NEuron) developed by Bernard
Widrow and Marcian Hoff (1960).

e There are several variations of Adaline. One has
threshold same as perceptron and another just a bare
linear function.

*The Adaline learning rule is also known as the least-
mean-squares (LMS) rule, the delta rule, or the Widrow-
Hoff rule.

e It is a training rule that minimizes the output error

using (approximate) gradient descent method.
14/04/2009 41/148
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e Replace the step function in the perceptron with a

cpntinuous (differentiable) function 7/ e.g the simplest is

e With or without the threshold, the Adaline is trained based
on the output of the function 7 rather than the final output.

Teacher

Error

-

Perceptron Learning

Ot

-4

r 3

!
A

Ot
A

Teacher ‘

F !

JR— _q

2] £(x)

Errar
/:L

Delta Rule

(Adaline)
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»

After each training pattern x(i) is presented, the correction to
apply to the weights is proportional to the error.

E(Y) =2[di)-wt  x1)]° i=1..p
N.B. If £ is a linear function fiw(t) - x(7)) = w(t) * x(7)
Summing together, our purpose is to find W which minimizes

E®) = 2; EGit)

14/04/2009 43/148
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ﬁ General Appreach gradient descent method

Jo find g
w(t+1) = w(O)+g( Ew()) )

so that w automatically tends to the
global minimum of E(w).

w(t+1) = w(t)- E(wW(D)n(®
(see figure in the following...)

14/04/2009 44/148
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radient dlrectlon is the direction of uphill
Figure, at position 0.4, the
( Fis E, consider one dim case )

radient is uphill
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0.3
0.7 F
¥ Gradient direction
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e In gradient descent algorithm, we have
w(t+1) = w(t) — FIm(t)) n(z)
therefore the ball goes downhill since — F'(w(t))

IS downhill direction
F(w)

0.9

0.8

0.7

0.6 | Gradient direction

0.5

0.4 /
0.3k v
0.z k

1 /
I:I 1 1 1 1 1 1 1

1 1
-1 0.5 -0.B -0.4 -0.2 o 0.2 0.4 0.6 0.5 1

\WY%
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e In gradient descent algorithm, we have

w(t+1) = w(t) — FIm(©)) n(v)
therefore the ball goes downhill since — F'(w(t))
is downhill direction

F(w) '
0.9
0.8
.7
ey Gradient direction
o5 _
o.4
0.3 o
0.1 F
-1 -0.3 -0.5 -0.4 -0.2 O o.z2 0.4 0.5 0.3 1
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F(w) '
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e|Gradually the ball will stop at a local minima where
lent | ro
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* In words

adient method could be thought of as a ball rolling down
from a hill: the ball will roll down and finally stop at the valley

Thus, the weights are adjusted by

w(t+1) = w(t) +n®) 5 [d) - Aw(t) - x(1) ] 5 F

This corresponds to gradient descent on the quadratic error
surface E

When f’ =1, we have the perceptron learning rule (we have in
general f”>0 in neural networks). The ball moves in the right
direction.

14/04/2009 49/148
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ﬁ Two types of network training:

Seqguential mode (on-line, stochastic, or
per-pattern) :

Weights upaated after each pattern is
presented (Perceptron is in this class)

Batch mode (off-line or per-epoch) :
Weights upaated after all patterns are

presented

14/04/2009 50/148
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omparison Perceptron and
i Gradient Descent Rules

Jd Perceptron learning rule guaranteed to succeed if
=« Training examples are linearly separable

= Sufficiently small learning rate n

dLinear unit training rule uses gradient descent
guaranteed to converge to hypothesis with
minimum squared error given sufficiently small
learning rate n
= Even when training data contains noise
= Even when training data not separable by hyperplanes

14/04/2009 51/148
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ﬁ Summary

Perceptron
W(t+1)= W(t)+n(t) [ d(t) - sign (w(t) . x)] x

Adaline (Gradient descent method)
W(t+1)= W(t)+n(t) [ d(t) - f(w(t) . x)] xf

14/04/2009 52/148



Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

ﬁ Multi-Layer Perceptron (MLP)

/dea:. “Credit assignment problem”

» Problem of assigning ‘credit’ or ‘blame’ to
individual elements involving in forming overall
response of a learning system (hidden units)

e In neural networks, problem relates to dividing

which weights should be altered, by how much
and in which direction.

14/04/2009 53/148
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Example: Three-layer networks

ot Output

Sigf;a/ routing
Input layer  Hidden layer Output layer
14/04/2009 54/148
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| Properties of architecture

* No connections within a layer

e No direct connections between input and output layers

e Fully connected between layers

e Often more than 2 layers

o Number of output units need not equal number of input units

e Number of hidden units per layer can be more or less than
input or output units

]
- = Each unit "=’ is a perceptron
]
y, = f (Z? W, X, + b,)
[ ]

14/04/2009 55/148
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HBP (Back Propagation)
N

gradient descent method
_|_

multilayer networks

14/04/2009 56/148
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i-

MultiLayer Perceptron |

Back Propagating
Learning

14/04/2009 57/148
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i BP learning algorithm

Solution to “credit assignment problem” in MLP

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes ‘functional signal’,
feedforward propagation of input pattern signals through
network

Backward pass phase: computes ‘error signal’,
propagation of error (difference between actual and desired
output values) backwards through network starting at output
units

14/04/2009 58/148
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BP Learning for Simplest MLP,
. I,-d} to minimize

F=(d-0p/2 v/
= [d - (W) F /2 y
= [d - AWORWL) F /2 jw)

Error function at the output unit

I 2layers
Weight at time t is w(t) and W(t), example

intend to find the weight w and W at time t+1

Where y = f(w(t)I), output of the input unit

14/04/2009 59/148
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i Forward pass phase
S

uppose that we have w(t), W(t) of time t ...

For given input I, we can calculate

Silvio Simani

O

. W) /‘
y = f(w(I) 5
and 7
o= f(WH)y) ] w(t)
= fiwét%f(W(t)I))
Error function of output unit will be I
E= (d - 0)2/2 2 layers
example
14/04/2009

60/148



Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

i Backward Pass Phase

d =
dE

W ({t+1)=W (1) - W(t)
(t+1) (t) =7 W (0
=W (1) -7 L

df dw (1) y
=vv<t>+n<d—o>f'<W<t>y>y/ "

E= (d-o0f/2 o= f(W({H)y)
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| Backward pass phase

|
dW (t)

Wi+1)=W({t)-n

=W (1) + 7 (d —O)f w (t)y)y
=W (1) + Ay

where A=(d-0)f’

14/04/2009

Silvio Simani

W(t)

w(t)
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— . dE dy
=w(t)-7 &

W(t)

w(t)

= W(t) + 7AW (1) f' (W(t\“)l .............................
o= f(W({)y)
= f(W() f(w(t)I))

14/04/2009
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welight updates are local | |
it+D)—w; (t)y=mno,;(H)I;(t) (inputunit)

W, (t+1) =W, (1) =nA, (1)y;(t) (output unit)
output unit

Wy (t+1) =W (t) =74, (1)y; (1)

= n(d, (1) - O, (1)) f '(Net k(t))y (t)
mputunlt

W (L 1) = w (1) = 775 (D)1, (1)
= nf (et [ (t) Y Ak<t>wk,- i (1)

Once weight changes are computed for all units, weights are
updated at same time (bias included as weights here)

We now compute the derivative of the activation function 7£().
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Activation Functions

o compute O; and A we need to find the derivative of

activation function 7
>to find derivative the activation function must be smooth

Sigmoidal (logistic) function-common in MLP

]
1+ exp(—knet. (1))

f (net,(t)) =

where Kk is a positive constant. The sigmoidal function gives
value in range of O to 1

Input-output function of a neuron (rate coding assumption)
14/04/2009 65/148
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Shape of sigmoidal function

15 T T T T ‘
1 saturated
0.5 L
input signal
|:| -
saturated
_DE 1 1 1 1 | 1 1 1
-10 -8 -B -4 -2 Q 2 4 A B 10

Note: when net =0, f=0.5
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Shape of sigmoidal function derivative

0.26

02

.18+

01

0.0&

Derivative of sigmoidal function has max at x= 0, is symmetric
about this point falling to zero as sigmoidal approaches extreme
values
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Retlirning to local error gradients in BP algorithm we have for
0 units

For input units we have

S, (t)y = f "(net ;(t)) > A, (HW

k

= ky ; (t)(1 - Yi(t))z A (D)W

K

Since degree of weight change is proportional to derivative of
activation function, weight changes will be greatest when units
receives mid-range functional signal than at extremes

14/04/2009 68/148
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ork training:
oﬁ‘o raining set shown repeatedly until stopping criteria are met
ach full presentation of all patterns = ‘epoch’

% Randomise order of training patterns presented for each
epoch in order to avoid correlation between consecutive
training pairs being learnt (order effects)

Two types of network training:

» Sequential mode (on-line, stochastic, or per-pattern)
Weights updated after each pattern is presented

» Batch mode (off-line or per -epoch)

14/04/2009 69/148



Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

Advantages and disadvantages of different
modes

Batch mode:
e Faster learning than sequential mode
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!'- MultiLayer Perceptron II

Dynamics of MultiLayer
Perceptron



e eGrirrrTrRryof Metwork Trainirgge s

(1), w(t), net(t), (1), W(t), Net(t), O2)

Backward phase:
Output unit

Input unit

wi(t+1)—-w; (t)=no (1)1, (1)
=nf "(net ,(t)) > A, (HOW (D)1, (t)
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Network training:

Training set shown repeatedly until stopping criteria are met.

Possible convergence criteria are
» Euclidean norm of the gradient vector reaches a

sufficiently small denoted as 0.
»When the absolute rate of change in the average squared
error per epoch is sufficiently small denoted as 0.

»Validation for generalization performance : stop when
generalization reaching the peak (illustrate in this lecture)
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#oals of Neural Network Training

To give the correct output for input
training vector (Learning)

To give good responses to new unseen
input patterns (Generalization)
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i Training and Testing Problems

e Stuck neurons: _De%ree of weight change is proportional
to derivative of activation tunction, weight changes will be
greatest when units receives mid-range functional signal than
at extremes neuron. To avoid stuck neurons weights
initialization should give outputs of all neurons approximate 0.5

e Insufficient number of training patterns: In this
case, the training patterns will be learnt instead of the
underlying relationship between inputs and output, i.e. network
just memorizing the patterns.

e Too few hidden neurons: network will not produce a
good model of the problem.

e Over-fitting: the training patterns will be learnt instead
of the underlying function between inputs and output because
of too many of hidden neurons. This means that the network
will have a poor generalization capability.
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Dynamics of BP learning
*s to minimise an error function over all training
rns by adapting weights in MLP

Recalling the typical error function is the mean
squared error as follows

E(t)= ;—Z (d, (1) - 0, (1)

The idea is to reduce E(t) to global minimum point.
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ﬁ Dynamics of BP learning

In single layer perceptron with linear activation
functions, the error function is simple, described
by a smooth parabolic surface with a single
minimum

W
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Dynamics of BP learning
P with non-linear activation functions have complex error
aces (e.g. plateaus, long valleys etc. ) with no single
minimum

An Ugly Cost Surface

local
Frinima

plateau

b

r MR

l

For complex error surfaces the problem is learning rate must
keep small to prevent divergence. Adding momentum term is
a simple approach dealing with this problem.

W
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Momentum
° ] of instability while increasing
the rate of convergence

e Adding term to weight update equation can
effectively holds as exponentially weight history of
previous weights changed

Modified weight update equation is

Wy (N + 1) —w;(n)=7no;(n)y;(n) +
T a[Wij(n)_ Wij(n _ 1)]
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Effect of momentum term
» If weight changes tend to have same sign,
momentum term increases and gradient
decrease speed up convergence on shallow

gradient

» If weight changes tend have opposing
sighs, momentum term decreases and
gradient descent slows to reduce oscillations
(stabilizes)

» Can help escape being trapped in local
minima

14/04/2009 80/148
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ﬁ Selecting Initial Weight Values

» Choice of initial weight values is important as this
decides starting position in weight space. That is,
how far away from global minimum

> Aim is to select weight values which produce
midrange function signals

> Select weight values randomly from uniform
probability distribution

» Normalise weight values so number of weighted
connections per unit produces midrange function
signal
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Convergence of Backprop

minumum with fast convergence.
= Add momentum

= Stochastic gradient descent

= Train multiple nets with different initial weights

Nature of convergence

= Initialize weights ‘near zero’ or initial networks
near-linear

= Increasingly non-linear functions possible as
training progresses
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U|se of Avalilable Data Set for Training

available data set is normally split into three
sets as follows:

= Training set — use to update the weights.
Patterns in this set are repeatedly in random
order. The weight update equation are
applied after a certain number of patterns.

= Validation set — use to decide when to stop
training only by monitoring the error.

s [est set — Use to test the performance of the
neural network. It should not be used as part
of the neural network development cycle.
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arlier Stopping - Good Generalization

nany epochs may overtrain the
etwork and result in overfitting and perform
poorly in generalization.

~ Keep a hold-out validation set and test accuracy
after every epoch. Maintain weights for best
performing network on the validation set and stop
training when error increases increases beyond

this.

A

Validation set
error
Training set »
No. of epochs
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“Modeéelseléctior By Cross-validatiorn™

o few hidden units prevent the network from

rning adequately fitting the data and learning
the concept (rmore than two layer networks).

= Too many hidden units leads to overfitting.

~ Similar cross-validation methods can be used to
determine an appropriate number of hidden units
by using the optimal test error to select the model
with optimal number of hidden layers and nodes.

A

Validation set
error
Training set »

No. of epochs
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Alternative Training Algorithm

, S

Genetic Algorithms
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History Background

= Idea of evolutionary computing was introduced in the 1960s by I.
Rechenberg in his work "Evolution strategies" (Evolutionsstrategie in
original). His idea was then developed by other researchers. Genetic
Algorithms (GAs) were invented by John Holland and developed by him
and his students and colleagues. This lead to Holland's book "Adaption in
Natural and Artificial Systems" published in 1975.

= In 1992 John Koza has used genetic algorithm to evolve programs to
perform certain tasks. He called his method “"Genetic Programming"
(GP). LISP programs were used, because programs in this language can

expressed in the form of a "parse tree", which is the object the GA works

Or]'14/04/2009 87/148
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Biological Background
€hromosome.

= All living organisms consist of cells. In each cell there is the same set of

chromosomes. Chromosomes are strings of DNA and serves as a model for
the whole organism. A chromosome consist of genes, blocks of DNA. Each
gene encodes a particular protein. Basically can be said, that each gene
encodes a trait, for example color of eyes. Possible settings for a trait (e.g.
blue, brown) are called alleles. Each gene has its own position in the

chromosome. This position is called locus.

s Complete set of genetic material (all chromosomes) is called genome.
Particular set of genes in genome is called genotype. The genotype is with
later development after birth base for the organism's phenotype, its physical

and mental characteristics, such as eye color, intelligence etc.
14/04/2009 88/148
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ﬁ Reproduction.

= During reproduction, first occurs recombination (or

crossover). Genes from parents form in some way the
whole new chromosome. The new created offspring can
then be mutated. Mutation means, that the elements of
DNA are a bit changed. This changes are mainly caused by

errors in copying genes from parents.

= The fitness of an organism is measured by success of the

organism in its life.
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Evolutionary Algorithms

utation population of genotypes

o113
piood
o]

coding schem
recombination selection

phenotype space

fitness
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| Pseudo Code of an Evolutionary Algorithm
Create initial random population

Evaluate fitness of each individual

v
es
Termination criteria satisfied ? —y»@

¥ Nno
Select parents according to fitness
v

Recombine parents to generate offspring
v

Mutate ovffspring

Replace population by new offspring
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A Simple Genetic Algorithm

ptimization task : find the maximum of f(x)

for example f(x)=xesin(x) X [0,n]
« genotype: binary string se[0,1]° e.g. 11010, 01011, 10001
« mapping : genotype = phenotype ,_;s

binary integer encoding: x =7z ¢ 2 s, ¢ 201 /(20-1)
i=1

Initial population

genotype integ. phenotype fitness prop. fithess
11010 26 2.6349 1.2787 30%
01011 11 1.1148 1.0008 24%
10001 17 1.7228 1.7029 40%
00101 5 0.5067/ 0.2459 6%
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Radial Basis Functions
Overview
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ﬂ?adial-basis function (RBF) networks

e RBF = radial-basis function

e a function which depends only on the
radial distance from a point
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Radial-basis function (RBF) networks
%

BFs are functions taking the form
o (I X - X; [

where ¢ is a non-linear activation function, xis the
input and x;is the 7t/ position, prototype, basis or

centre vector.

The idea is that points near the centres will have
similar outputs (i.e. if x ~ x/ then F(x) ~ f (xi))
since they should have similar properties.

The simplest is the linear RBF : ¢(x) =||x — x|
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Multi-quadrics

g(r)=(r’+c*)"

for some c>0
(b) Inverse multi-quadrics

§(r)=(r’+c’)""

for some c>0
(c) Gaussian )

A(r) = exp(——

2
20
for some o >0

14/04/2009
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> Idea is to use a weighted sum of the outputs from the

basis functions to represent the data.
» Thus centers can be thought of as prototypes of input

data.

MLP VS
distributed
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Starting point: exact interpolation

Each input pattern x must be mapped onto a
target value d

12

J £

o
4
nd

Approximation (Fitting)
MLP

| | | | 1 | 1 | |
0 0.1 0.2 03 04 ns 0B 07 s 09 1
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hat is, given a set of N vectors X;and a corresponding set

- (the targets), find a function F that
isfies the interpolation condition:

F(x)=d fori=1..N

or more exactly find:
N
F(X) = 2 we(lIX = X))
|=
satisfying:

F (X)) = z w (1% —x;|) = d.
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‘ ¢ (Y)=9; (Ily-x,l1)

W

Input layer : Oy (Y)=0y ([[y-XnlI)

* output = X'w; ¢; (¥ - X)

e adjustable parameters are weights w;

e number of input units <number of data points
e Form of the basis functions decided in advance
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To summarize:

For a given data set containing N points (Xi,di), =1,....N

Choose a RBF function ¢

Calculate g¢; — X;)

Solve the linear equation ® W = D

Get the unique solution

Done

\/
’0

L)

e

*

\/
‘0

L)

&

L)

*

> Like MLP’s, RBFNs can be shown to be able to approximate
any function to arbitrary accuracy (using an arbitrarily large
numbers of basis functions).

» Unlike MLP’s, however, they have the property of ‘best
approximation’ i.e. there exists an RBFN with minimum
approximation error.
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Problems with exact interpolation
ﬁi: produce poor generalisation performance as only data
] ing

Overfitting problem
Bishop(1995) example

Underlying function f(x)=0.5+0.4sine(2r x)
sampled randomly for 30 points

added Gaussian noise to each data point
30 data points 30 hidden RBF units

fits all data points but creates oscillations due added noise
and unconstrained between data points
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All Data Points 5 Basis functions
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To fit an RBF to every data point is very

nefficient due to the computational cost of

matrix inversion and is very bad for
generalization so:

v Use less RBF’s than data points, /.e. M<N

v Therefore don't necessarily have RBFs centred at data points
v" Can include bias terms

v Can have Gaussian with general covariance matrices but
there is a trade-off between complexity and the number of

parameters to be found eg for ¢ rbfs we have:
14/04/2009 105/148
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Fuzzy Clustering with Application
to Data-Driven Modelling
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ﬁ Introduction

» The ability to cluster data (concepts, perceptions, etc.)
= essential feature of human intelligence.

> A cluster is a set of objects that are more similar to each
other than to objects from other clusters.

> Applications of clustering techniques in pattern recognition
and image processing.

» Some machine-learning techniques are based on the
notion of similarity (decision trees, case-based reasoning)

» Non-linear regression and black-box modelling can be
based on the partitioning data into clusters.
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ﬁ Section Outline

» Basic concepts in clustering
= data set
= partition matrix
= distance measures

» Clustering algorithms
= fuzzy c-means
= Gustafson—Kessel
» Application examples
= system identification and modelling
= diagnosis

14/04/2009
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* Examples of Clusters

Silvio Simani
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# Problem Formulation
> Gl

ven is a set of data in /7 and the (estimated)
number of clusters to look for (a difficult problem,
more on this later).

» Find the partitioning of the data into subsets
(clusters), such that samples within a subset are
more similar to each other than to samples from
other subsets.

» Similarity is mathematically formulated by using a
distance measure (i.e., a dissimilarity function).

» Usually, each cluster will have a prototype and the
distance is measured from this prototype.
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* Distance Measure

)
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Cluster centers (means):

|
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v= |
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i Distance Measures

» Euclidean norm:
= 02(z;, v;) = (z; = )T (z; — V)
» Inner-product norm:

0 dZAi(Zj’ Vi) — (ZJ T Vi)TAi(Zj o Vi)

»Many other possibilities. . . .

14/04/2009
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i Optimisation Approach

» Objective function (least-squares criterion):
c N

JZ: VU A) =Y > pldy (2, v))
i=1 j=1
» subject to constraints:
0<pi; <1, i=1,...,c, j=1,...,N membership degree
N
O<Z“”5J< I, 2=1,...,c no cluster empty
j=1
C
Z;L?;J =1, j=1,...,N total membership
1=1

1457 7zous LLo7 Lo
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ﬁ Fuzzy Algorithm

Repeat:
N m
—1 M-
1. Compute cluster prototypes v = 21 N} ik h
(means):
A o o\ R
2. Calculate distances: dij. = (2, — V)" (2}, — V;)

3. Update partition matrix: | /i = S (dyg /11.“1/(,”,1)
J=1\"k R

until |[|AU[| <e

(i=1, -, c k=1, N)
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e )@ R RRR-(Black-Box) s«
ﬁ Modelling

Prior knowledge
¢ Output data
/

y r };
WWW L™ _’O“WW\M/\%
r ‘ "

(

Input data

» Linear model (for linear systems only, limited in use)
» Neural network (black box, unreliable extrapolation)
» Rule-based model (more transparent, ‘grey-box’)
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* Fuzzy Clustering

A
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* Fuzzy Clustering

y Cluster 4

Takagi-Sugeno model

Rule-based description:

If xis A, theny =a,x+ b,
If xisA,theny=ax+Db,

etc...

48
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|Example: Non-linear
Ive System (NARX)

v(k+1)= f(x(k)) + k)

)
20 —2, 0O <uw

flx)=19 =22, —05<x <05

\2x+2? r < —0.D
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e SEFUIOEUTrE-Selection andesm
Data Preparation

1. Choose model order p

v(k+1)= flek), ok =1),...,a(k —p+1))

x(k)

2. Form pattern matrix Z to be clustered

v(1) v(2) x(p) v(p+1)
T _ r(2) t(3) v(p+1) x(p+2)
t(N—p) o(N—p+1) ... t(N—1) t(N)
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lustering Results

251
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[P ] .
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* Rules Obtained

1) If x(k) is Positive  then x(k+ 1) = 2.0244x(k) — 2.0289
2) If x(k)is About zero then x(k+ 1) = —1.8852z(k) + 0.0005

3) If w(k)is Negative then x(k+ 1) = 1.9050x(k) + 1.9399

,
20 —2, 0O <uw

original function:  f(z)=q —2z, —0.5<x<0.5

\2:1:+2, v < —0.5
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e GlRNEITICREION OF Pressure--
Dynamics

X

Outlet valve 1,

TN

Controlled V
Pressure

Water

¥ [/Inlet air flow
Mass-flow

— U,

controller
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Input DATA Output

Valve
Pressure

Rules FUZZY MODEL  Membership f.

1) If Valve i.S Open and Open Half closed Closed
Pressure 1s Low then ....

2) If Valve is Closed and
Pressure is High then ....

3) ... °% 50 100

PREDICTIVE CONTROLLER

F 3

u Y

" Optimizer Fermenter "
el o
' Fuzzy model .

1 Fuzzy model m

et

(copy)

Pressure

Feedback
filter

Valve

14/04/2009



!'_ Application Examples

Neural Networks for
Non-linear Identification, Prediction and Control
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Nonlinear Dynamic System

= Take a static o " o
NN (k-2) E \\\'//// E .

= From static to o@ﬁég'
dynamic NN L ORNE T

s NSRS coox )

s "Quasi-static” s %‘2:2{2\ 1 O
NN y(k-2) E ﬁ%%i{‘\\ >

[ Add inPUtS, y(k=-3) .“{\# /
outputs and fere :
delayed signals e e R s £

17(k) = Fu(k —1),u(k —2),u(k -3), §(k -1). (k - 2), §(k -3))|
Example of Quasi-static NN
with 3 delayed inputs and outputs,

14/04/2009
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i Nonlinear System ldentification

= f(.), unknown target
Q function
= Nonlinear dynamic
E 1 : 1) model
' = Approximated via a
\ quasi-static NN
= Nonlinear dynamic
- | system identification
® : » Recall “/inear system
: identification”
Figure 2.1 Input-output model

14/04/2009 126/148
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Nonlinear System ldentification

u(k)
Eg__ u(k)
‘; cr
# = 2l yplitD)
? f)
D Y ®
2t L
z ]_J -
e e e(k+1)
- [l | ] B
Figure 2.1 Input-output model
Z'll_
u() neural
E'Iﬂ——' net
; Ynet®&*tD
=]

Target function:  y (k+1)=1(.)
|dentified function: yy\gp(k+1)=F(.)

Estimation error:  e(kt1)
14/04/2009 127/148




“{lontinearSystem Neural Controt

d:

Y.
u.

u

*
u
C.

reference/desired response
system output/desired output
system input/controller output
desired controller input

: NN output

controller/network error

14/04/2009

The goal of training is to find an
appropriate plant control u from

the desired response d. The weights
are adjusted based on the difference
between the outputs of the networks
I & II to minimise e. If network I is
trained so that y=d, thenu=u".
Networks act as inverse dynamics

identifiers.
128/148
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i Neural Networks for Control

Yd

— M

Figure 1: Direct Inverse Control using neural networks

v

NN¢

G

M

Yd

NNc¢

=

Silvio Simani

u -
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v

[S5Y }
‘---.( i
1 -
1 7
1 ’
! - NNE
1
]
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-
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Figure 3: Training the neural network NN¢

P

Me
.

Figure 2: Model Reference Control using neural networks

L 4

Figures 1 and 3 Problems.

* Open-loop unstable models
» Disturbances
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Neural Model Reference Adaptive Control

.
M 2

—ﬁj)—‘ NN o G

Figure 2: Model Reference Control using neural networks

The signal e 1s used to train
or adapt online the weights
of the controller NN.. Two
are the approaches used to
design a MRAC control for
an unknown plant: Direct
and Indirect Control.

Direct Control: This procedure aims at designing a controller
without having a plant model. As the knowledge of the plant is
needed in order to train the neural network which corresponds to the
controller (I.e. NN), until present, no method has been proposed to

deal with this problem.

14/04/2009
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Neural Model Reference Adaptive Control

M

Indirect Control

.
—4?—— NNe

Figure 2: Model Reference Control using neural networks

M Yd +_: -y
s The signal e is used to § :

. c ) NN'I\-I —o—>( )
train or adapt online the ; : 1
weights of the neural r . y

> NN{ o—o> G —>
controller NN... g
'

Figure 4: Indirect MRAC

14/04/2009
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i Indirect Control: NN,, & NN

—_— I M

Yd

T e w  E Em o Emwr wr w

’
’
P

u

G

Figure 4: Indirect MRAC

14/04/2009

1 This approach uses

two neural
networks: one for
modelling the plant
dynamics  (NN,,),
and another one
trained to control the
real plant (G) so as
its behaviour is as
close as possible to
the reference model
(M) wvia the neural
controller (NN).
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ﬁ Indirect Control (1)

W ot g The neural network

— Ol NN, 1s tramned to

L approximate the plant

_HT + C G input/output relation

j using the signal e,,.

—'—" e G > L, | This 1s wusually done
2 offline, using a batch

of data gathered from

Figure 4: Indirect MRAC the plant 1mn open loop.
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Indirect Control (2)

v RN Once the model NN,, is

] e trained, it is used to train the

| network NN which will act

— ] as the controller. The model
_:”_—HO‘_" NN,, is used instead of the

]_ o e, real plant’s output because the
= w 4 ¢ "~ | real plant is unknown, so
A back-propagation algorithms

can not be used. In this way,

Figure 4: Indirect MRAC the control CITor Cc 1S

calculated as the difference

, , between the desired reference
Then, NNy, 1s fixed, its output and ) 1441 output y, and §, which

behaviou are known and easy t0  is the closed loop predicted

compute. output.
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ﬁ Model Reference Control

Matlab and Simulink solution

Linear T t
Reference arge
Model
®
State K Next
e Controller Model State +
Demand Network Force Network U

\ Error

Neural controller, reference model, neural model
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« Matlab NNtool GUI (Graphical User Interface)

<! Network/Data Manager 10| =i
RESIRRRIESS fletmiorks: Cutputs:
U neteorkl outh
fEtwark 2 aut10
TEIFQETEZ Errars:
Y =1{a)
err10
Input Delay States: Layer Delay States:

—metworks and Data

Halp I NE'LI'I.I'DEItEI...I NEWHEMDFH...'

Import... I Export.. | WiEmw | Delete |

- M etarks I:II"I|'!."
Initialize_..l Simulate_..l Trath.. | Adant . |
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Control of a Robot Arm Example

Model Reference Controller

M Clock
- —
Random Reference - > Q
Angle
—»
Xi2v)
Plant Graph
(Robaot Arm)
Meural Metwork Model Reference Control of a Robot Arm ]
{Double click on the *?" for more infa) D“huemrgf‘f;'rc“

Simulink Help

To start and stop the simulation, use the “Start/Stop”
selection in the "Simulation” pull-down menu
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Control of a Robot Arm Example

<} Model Reference Control
File Window Help

Wodel Reference Controller

! @ » Reference
Neural
Random Reference Network | Cantral

Controller |Signal [ Torqus ™

Ange

Plant
(Robot Arm)

Model Reference Control

Hetwork Architecture

Size of Hidden Layer 13 Mo, Delaped Reference Inputs 2 Neural Network Mods! Reference Control of a Robot Amn Couble ik
here for
Simulink Help
Mo. Delayed Contraller Outputs 1 T et e Smaion’ pub-doun g

[ Mo, Delaved Plant Outputs o

Training Data

M axirium Reference Walue 07 Contraller Training S amples G000
Mirirum Reference Yalue 07
. 1 +
u >

M axirurn Intereal Yalue [sec) lf Reference Model: Browse : —> % % '
Minirmurn Intereal Walue [sec) | 0 | robaotref Velocity Position
Generate Training Data | Irmpart Drata | Ewport Data |
Training Parameters Friction
Caontraller Training Epochs IT Cantraller Training Segrments IT 10°sin(u(1)) |e—
[+ Lze Current “weights [ Use Cumulative Training vy
Plant |dentification | rat Bl er | ] Cancel | ¥ 1) |

Perform plant identification before controller training.

IO 1] Z007J 138/148




Lecture Notes on Neural Networks and Fuzzy Systems

Silvio Simani

Control of a Robot Arm Example

<} Plant Identification
File ‘Window Help

Plant Identification

Metwork, Architecture

Size of Hidden Layer | 10 Mo. Delayed Plant Inputs 2
Sampling Inberval [zec) | 0.05 Mo, Delayed Plant Outputs 2

[ Marmalize Training Data

Training Data

Trairing 5armples W

Masirnum Plant Input [~ 15
Minirurn Plant Input IT

b a=imurn [nterval Yalue [zec) ﬁ

Minirmurn [ntereal Walue [sec) | 0

[ Lirnit Qutput 0ata

bl axirrn Plant Output a1
Firimurn Plant Output R

Simulink Plant Model: Browse

| robatarm

enerate Training Data | Irpart Data | Export Data |

! @ » Reference
Neural
m Reference Network

Wodel Reference Controller

Confrol
Controller |Signal [ Torqus ™

».| Plant Output

Plant
(Robot Arm)

Neural Network Model Reference Control of a Robot Arm
{Double click on the "?" for more info)
To start and stop the simulation, use the "Stari/Stop"
selection in the "Simulation” pull-down menu

Double click
here for

Simulink Help

Training Parameters

Training Epochs 300

Trairirg Function lm

v Lse Y alidation Data [+ Lze Testing Data
| | Cancel | |

[+ Lse Current Weights

Generate or import data before training the neural network plant.

14/04/2009

Plant ldentification:

Data generation from the
Reference Model for
Neural Network training
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Control of a Robot Arm Example

<} Plant Input-Outpui Data

Wodel Reference Controller

.| Reference
Plant Input - (e
15 T T T Random Reference Network | Cantral
Controller | Signal  f Torqu= ™ Angle
Jal il o | Plant Output
Plant

5 4 (Robot Arm)

0 1

sk ]

MNeural Network Model Referance Control of a Robot Arm
. {Double click on the “?" for more info} Double click
here for
Simulink Help
15 L L | 1 L L L 1 To start and stop the simulation, use the "Star/Stop"
a0 100 150 200 250 300 350 400 450 selection in the "Simulafion” pull-down menu
time (=)
Plant Output

4 T T T

3 i

2l

| | After Plant
| Identification:

| | 1 1 | | | 1
0 50 100 160 200 250 300 380 400 450

time (s)
Simulation concluded.
Acoept Data Risject Data Please Accepl or Reject Dala to continue.

Neural Network training
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Control of a Robot Arm Example

<} |Plant Identification

File Window Help

Wodel Reference Controller

.| Reference
>

Plant Identification m

Neural
. Random Reference Network | Cantral
Mebwork Architecture Contraler [Signal—f Torzue ™ 1 =

».| Plant Output

Size of Hidden Layer 10 Mo, Delayed Plant [nputs o P
Mao. Delaved Plant Outputs 2

|_ MHormalize Training Data Neural Netwark Model Reference Control of a Robot Arm

ontrol n
{Double click on the "?" for more info) Double click
here for

Simulink Help

T raiﬂiﬂg D ata To start and stop the simulation, use the "Stari/Stop”
selection in the "Simulation” pull-down menu

After Plant
| Identification:

Eraze Generated D ata | |mpart Data I Ewport Data

RRRRE
il

Training Parameters

Training E pochs 200 Training Function |4 inim =
[v Usze Current \Weights [v Use Walidation Data [v Usze Testing Data N eu ral N etwo rk trai n i ng

Train Metwork. I (o5 | Cancel I e [ |

Your raining data zet has 10000 zamples.
You can now train the network.
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| Control of a Robot Arm Example
B} -2 vatdarion dot for o Mot Reference Convol._ (B

File Edit Wiew Insert Taools Window Help

Input Plant Output Input Plant Output
20 20
1
10 2 3 1Dm 2
0 . o 0 a
-10 -10 |
2 || 2 ]
-20 ' ' : - -20 ' - : :
a 100 200 a 100 200 0 a0 100 0 50 100
w10t Error NN Qutput w10t Error NN Qutput
2 i 2
2 2
| 0
0 o 0
| -2 :
2 ] 2 ]
2 - - . . ] -4 . . . .
a 100 200 a 100 200 0 50 100 a 50 oo
time () time () | time (s) time ()

Training and Validation Data
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J_ Control of a Robot Arm Example

a <} Training with TRAINLM

S File Edit “iew Insert Tools Window Help
-0 Input Plant Output . Performance is 2.45086e-010, Goal is 0
1':' T T T T T
1a 2
=
o k]
0 0 -
[ir)
a
1a ~
- 5 c
x
20 - : : - <
0 Ll 100 0 all 100 =
o ‘
“+  Error NN Output =
5 % 10 § T —
u k)
=
2 @
fa]
=
=
0 0 £
-2 1|:|'m ] ] ] ] ] ]
2 . . . . 0 1 2 3 4 5 B 7
0 a0 100 0 50 100 Stop Training | 7 Epochs
time (=) time (=)

Testing Data and Training Results
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Control of a Robot Arm Example

<} Model Reference Control E@@

| File indow Help

Model Reference Control

Metwark, Architecture

Size of Hidden Layer 13 Mo. Delaved Reference [nputs 2

Wodel Reference Controller

Reference

h 4

Ma. Delayed Controller Qutputs 1 M
Neural

[ Mo. Delayed Plant Dutputs 2 Random Refarence pemmork

Confrol

Training Data

Signal

b aximurn Reference Yalue 07 Contraller Training S amples E000

Torque ™ 1

Ange

Plant
(Robot Arm)

s

Mikirmurn Beference Y alue a7 |DeFines howe marry daka points will be general

b aximum [nterval Walue [sec) 2 Feference Model: Browse

Mirirumn [nkereal Walue [sec) | 01 | robotref

Neural Network Model Reference Control of a Robot Arm
{Double click on the "?" for more info)

To start and stop the simulation, use the "Stari/Stop"
selection in the "Simulation” pull-down menu

Double click
here for
Simulink Help

Generate Training Data | Irmport Diata | Export Data |

Training Parameters

Contraller Trairing Epochs 10 Contraller Training Segments an

[v Uze Curnent ‘weights [ Use Curnulative Training
F'Iantldentificatiu:nnl [jrat [Eartral| e | ] Cancel I 1] I

Generate or import data before training the neural network controller.

Plant identification with a NN

Data Generation for NN Controller Identification
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<} Input-Output Data for NN Model Reference Control |:|@@
~ Reference Model Input
1
0.5
I:I B ferenc
I:I 5 a@lmn:a z;.-hhu;kh g‘r“ﬁm > i
».| Plant Output .
_1 1 1 1 1 1 Hoﬁéa:ﬂ;\mwj
] | 100 1560 200 250
tirne (s}
REfErE“[:E MudEI OUtput MNeural Network Model Reference Control of a Robot Arm
1 T T T {Double click on the "?” for more info) ;’EEEJEEZTD
0.5 '
ot
05+
_-1 1 1 1 1 1
0 a0 100 150 200 280
time (=)
Simulation concluded.
Accept Data | Refuze Data |

Pleaze Accept or Reject Data to continue.

Accept the Data Generated for
NN Controller Identification

14/04/2009 145/148




Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

Control of a Robot Arm Example

<) Model Reference Control
File Window Help

Model Reference Control

Wodel Reference Controller

Metwark Architecture
Size of Hidden Layer | 13 Mo, Delayed Reference Inputs 2 . e e i
».| Plant Output e hrae
| Mo, Delaved Contraller Dutputs i o

| Mo, Delayed Plant Outputs 2

- . ral Network Model Reference Control of a Robot Arm
T ra|n|rlg D ata {Double click on the "?" for more info) Double click

here for

Simulink Help
o start and stop the simulation, use the "Stari/Stop"
selection in the "Simulation” pull-down menu

—

| o
| |

Eraze Generated Data | Import [ ata | E=port Data |

Training Parameters N N CO ntro l l er
Cantraller Training Epochs IT Cantraller Training Segments IT Tr ai n i n g

Iv Use Current ‘weights [ Use Cumulative Training

Plant |dentification | Train Contraller | Cancel | |

Your training data set has 6000 samples.
You can now train the network.
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Control of a Robot Arm Example

<} Training with TRAINBFGC bm : E E @
File Edit Wiew Insert Tools Window Help F
. Pedormance is 312467 e-005, Goal is 0
10 : : : : : : : Reference Model Input
[ 1
0.5
|:| L
0.5
3 -1 1 1 1 1 1
o a a0 100 150 200 240
= . timeﬁaj
= Reference Model Output {blue), Heural Network Output {green)
'I: 1 T T T T T
05 T ‘ -
J | Iy
05+ ' I
10° : : : ; : : : : : g 20 0 180 200 240
a 1 2 3 4 ) 5 7 g g 10 T (.
Stop Training | 10 Epochs

NN Controller Training and Results
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\ Control of a Robot Arm Example

XY Plot

Tracked Output

o f * Signals

04}

( | Reference and

06

08

X Axig
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Simulation Final
Results

iere for
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