
1/78

Matlab and SimulinkMatlab and Simulink

for Controlfor Control

Automatica I (Laboratorio)Automatica I (Laboratorio)



2/78

Matlab and SimulinkMatlab and Simulink

CACSDCACSD



3/78

Matlab and Simulink for ControlMatlab and Simulink for Control

• Matlab introduction

• Simulink introduction

• Control Issues Recall

• Matlab design Example

• Simulink design Example
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Introduction What is Matlab and Simulink?

What is Matlab

� High-Performance language for technical computing

� Integrates computation, visualisation and programming

� Matlab = MATrix LABoratory

� Features family of add-on, application-specific toolboxes
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Introduction What is Matlab and Simulink?

What are Matlab components?

� Development Environment

� The Matlab Mathematical Function Library

� The Matlab language

� Graphics

� The Matlab Application Program Interface
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Introduction What is Matlab and Simulink?

What is Simulink?

� Software Package for modelling, simulating and analysing dynamic
systems

� Supports linear & Non-linear systems

� Supports continuous or discrete time systems

� Supports multirate systems

� Allows you to model real-life situations

� Allows for a top-down and bottom-up approach
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Introduction What is Matlab and Simulink?

How Simulink Works?

1. Create a block diagram (model)

2. Simulate the system represented by a block diagram
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Introduction Matlab&Simulink – Getting Started

Matlab Environment
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Introduction Matlab&Simulink – Getting Started

The Matlab Language

Dürer’s Matrix

1 A=[16 3 2 13 ; 5 10 11 8 ; 9 6 7 12 ;4 15 14 1 ] ;
2 sum(A) %ans = 34 34 34 34
3 sum(A ’ ) %ans = 34 34 34 34
4 sum( diag (A) ) %ans = 34

Operators

1 100:−7:50 % 100 93 86 79 72 65 58 51
2 sum(A( 1 : 4 , 4 ) ) % ans = 34
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Introduction Matlab&Simulink – Getting Started

The Matlab API

� You can use C or FORTRAN

� Pipes on UNIX, COM on Windows

� You can call Matlab routines from C/FORTRAN programs and vice
versa

� You can call Java from Matlab
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Introduction Matlab&Simulink – Getting Started

Simulink Environment
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Introduction Matlab&Simulink – Getting Started

Starting Simulink

Just type in Matlab

1 s imu l i n k
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Part II

Matlab – Background
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Matlab – Background Transfer Functions and Laplace Transforms

Laplace Transform

Definition
The Laplace Transform is an integral transform perhaps second only to the
Fourier transform in its utility in solving physical problems. The Laplace
transform is defined by:

L [f (t)] (s) ≡
∫ ∞

0
f (t)e−stdt

Source: [1, Abramowitz and Stegun 1972]
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Matlab – Background Transfer Functions and Laplace Transforms

Laplace Transform

Several Laplace Transforms and properties

f L [f (t)] (s) range

1 1
s s > 0

t 1
s2 s > 0

tn n!
sn+1 n ∈ Z > 0

eat 1
s−a s > a

Lt

[
f (n)(t)

]
(s) = snLt [f (t)]−

−sn−1f (0) − sn−2f ′(0) − . . . − f (n−1)(0) (1)

This property can be used to transform differential equations into algebraic
ones. This is called Heaviside calculus
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Matlab – Background Transfer Functions and Laplace Transforms

Heaviside Calculus Example

Let us apply the Laplace transform to the following equation:

f ′′(t) + a1f
′(t) + a0f (t) = 0

which should give us:

{
s2Lt [f (t)] (s) − sf (0) − f ′(0)

}
+

+a1 {sLt [f (t)] (s) − f (0)}+
+a0Lt [f (t)] (s) = 0

which can be rearranged to:

Lt [f (t)] (s) =
sf (0) + f ′(0) + a1f (0)

s2 + a1s + a0
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Matlab – Background Transfer Functions and Laplace Transforms

Transfer Functions

� For Matlab modelling we need Transfer Functions

� To find the Transfer Function of a given system we need to take the
Laplace transform of the system modelling equations (2) & (3)

System modelling equations

F = mv̇ + bv (2)

y = v (3)

Laplace Transform:

F (s) = msV (s) + bV (s)

Y (s) = V (s)
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Matlab – Background Transfer Functions and Laplace Transforms

Transfer Functions – cntd.

� Assuming that our output is velocity we can substitute it from
equation (5)

Transfer Function
Laplace Transform:

F (s) = msV (s) + bV (s) (4)

Y (s) = V (s) (5)

Transfer Function:

Y (s)

F (s)
=

1

ms + b
(6)
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Matlab – Background Matlab Functions

Matlab Functions – Transfer Function I

What is tf?
Specifies a SISO transfer function for model h(s) = n(s)/d(s)

1 h = t f (num , den )

What are num & den?
row vectors listing the coefficients of the polynomials n(s) and d(s)
ordered in descending powers of s

Source: Matlab Help
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Matlab – Background Matlab Functions

Matlab Functions – Transfer Function II

tf Example

T (s) = 2s−3
s+1 ≡ h=tf([2 -3], [1 1])

T (s) = 2s+1
4s2+s+1

≡ h=tf([2 1], [4 1 1])
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Matlab – Background Matlab Functions

Matlab Functions – Feedback I

Matlab code

1 s y s = feedback ( forward , backward ) ;

Source: [2, Angermann et al. 2004]
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Matlab – Background Matlab Functions

Matlab Functions – Feedback II

� obtains a closed-loop transfer function directly from the open-loop
transfer function

� no need to compute by hand

Example

Forward =
1

sTi
(7)

Backward = V (8)

T (s) =
C (s)

R(s)
=

1
sTi

1 + V 1
sTi

≡

≡ feedback(tf(1,[Ti 0]), tf(V, 1)) (9)
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Matlab – Background Matlab Functions

Matlab Functions – Step Response

system=t f ( [ 2 1 ] , [ 4 1 1 ] ) ;
t =0 : 0 . 1 : 5 0 ;
s t e p (100∗ system )
a x i s ( [ 0 30 60 180 ] )
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Matlab – Background Steady-State Error

Steady-State Error – Definition

Figure 1: Unity Feedback System

Steady-State Error

The difference between the input and output of a system in the limit as
time goes to infinity
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Matlab – Background Steady-State Error

Steady-State Error

Steady-State Error

e(∞) = lim
s→0

sR(s)

1 + G (s)
(10)

e(∞) = lim
s→0

sR(s) |1 − T (s)| (11)
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Matlab – Background Proportional, Integral and Derivative Controllers

Feedback controller – How does it work I?

Figure 2: System controller

� e – represents the tracking error

� e – difference between desired input (R) an actual output (Y)
� e – is sent to controller which computes:

� derivative of e
� integral of e

� u – controller output is equal to...
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Matlab – Background Proportional, Integral and Derivative Controllers

Feedback controller – How does it work II?

� u – controller output is equal to:
� Kp (proportional gain) times the magnitude of the error +
� Ki (integral gain) times the integral of the error +
� Kd (derivative gain) times the derivative of the error

Controller’s Output

u = Kpe + Ki

∫
edt + Kd

de

dt

Controller’s Transfer Function

Kp +
Ki

s
+ Kds =

Kds2 + Kps + Ki

s
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Matlab – Background Proportional, Integral and Derivative Controllers

Characteristics of PID Controllers

� Proportional Controller Kp

� reduces the rise time
� reduces but never eliminates steady-state error

� Integral Controller Ki

� eliminates steady-state error
� worsens transient response

� Derivative Controller Kd

� increases the stability of the system
� reduces overshoot
� improves transient response
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Matlab – Background Proportional, Integral and Derivative Controllers

Example Problem

Figure 3: Mass spring and damper problem

Modelling Equation

mẍ + bẋ + kx = F (12)
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Matlab – Background Proportional, Integral and Derivative Controllers

Example Problem

Laplace & Transfer Functions

mẍ + bẋ + kx = F

ms2X (s) + bsX (s) + kX (s) = F (s) (13)

X (s)

F (s)
=

1

ms2 + bs + k
(14)
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Matlab – Background Proportional, Integral and Derivative Controllers

Matlab System Response

Assumptions

Let: m = 1[kg ], b = 10[Ns/m], k = 20[N/m]

Matlab code

1 %{Set up v a r i a b l e s%}
2 m=1; b=10; k=20;
3 %{ Ca l c u l a t e r e s pon s e%}
4 num=1;
5 den=[m, b , k ] ;
6 p l a n t=t f (num , den ) ;
7 s t ep ( p l a n t )
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Matlab – Background Proportional, Integral and Derivative Controllers

Matlab System Response

Figure 4: Amplitude ⇔ Displacement
33 / 78



Matlab – Background Proportional, Integral and Derivative Controllers

Problems

� The steady-state error is equal to 0.95 – equation (11)

� The rise time is about 1 second

� The settling time is about 1.5 seconds

� The PID controller should influence (reduce) all those parameters
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Matlab – Background Proportional, Integral and Derivative Controllers

Controllers’ Characteristics

Type Rise time Overshoot Settling time S-S Error

Kp decrease increase small change decrease

Ki decrease increase increase eliminate

Kd small change decrease decrease small change

These correlations may not be exactly accurate, because Kp, Ki , and Kd

are dependent on each other. In fact, changing one of these variables can
change the effect of the other two.

35 / 78



Matlab – Background Proportional, Integral and Derivative Controllers

Proportional Controller

P Transfer Function

X (s)

F (s)
=

Kp

s2 + bs + (k + Kp)

Matlab code

1 %{Set up p r o p o r t i o n a l ga i n%}
2 Kp=300;
3 %{ Ca l c u l a t e c o n t r o l l e r%}
4 s y s c t l=feedback (Kp∗ p lan t , 1 ) ;
5 %{P lo t r e s u l t s%}
6 t =0 : 0 . 0 1 : 2 ;
7 s t ep ( s y s c t l , t )
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Matlab – Background Proportional, Integral and Derivative Controllers

Proportional Controller – Plot

Figure 5: Improved rise time & steady-state error
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Matlab – Background Proportional, Integral and Derivative Controllers

Proportional Derivative Controller

PD Transfer Function

X (s)

F (s)
=

Kds + Kp

s2 + (b + Kd)s + (k + Kp)

Matlab code

1 %{Set up p r o p o r t i o n a l and d e r i v a t i v e ga i n%}
2 Kp=300; Kd=10;
3 %{ Ca l c u l a t e c o n t r o l l e r%}
4 con t r=t f ( [ Kd , Kp ] , 1 ) ;
5 s y s c t l=feedback ( con t r ∗ p lan t , 1 ) ;
6 %{P lo t r e s u l t s%}
7 t =0 : 0 . 0 1 : 2 ;
8 s t ep ( s y s c t l , t )
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Matlab – Background Proportional, Integral and Derivative Controllers

Proportional Derivative Controller – Plot

Figure 6: Reduced over-shoot and settling time
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Matlab – Background Proportional, Integral and Derivative Controllers

Proportional Integral Controller

PI Transfer Function

X (s)

F (s)
=

Kps + Ki

s3 + bs2 + (k + Kp)s + Ki

Matlab code

1 %{Set up p r o p o r t i o n a l and i n t e g r a l ga i n%}
2 Kp=30; Ki=70;
3 %{ Ca l c u l a t e c o n t r o l l e r%}
4 con t r=t f ( [ Kp , Ki ] , [ 1 , 0 ] ) ;
5 s y s c t l=feedback ( con t r ∗ p lan t , 1 ) ;
6 %{P lo t r e s u l t s%}
7 t =0 : 0 . 0 1 : 2 ;
8 s t ep ( s y s c t l , t )
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Matlab – Background Proportional, Integral and Derivative Controllers

Proportional Integral Controller – Plot

Figure 7: Eliminated steady-state error, decreased over-shoot
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Matlab – Background Proportional, Integral and Derivative Controllers

Proportional Integral Derivative Controller

PID Transfer Function

X (s)

F (s)
=

Kds2 + Kps + Ki

s3 + (b + Kd)s2 + (k + Kp)s + Ki

Matlab code

1 %{Set up p r o p o r t i o n a l and i n t e g r a l ga i n%}
2 Kp=350; Ki=300; Kd=50;
3 %{ Ca l c u l a t e c o n t r o l l e r%}
4 con t r=t f ( [ Kd , Kp , Ki ] , [ 1 , 0 ] ) ;
5 s y s c t l=feedback ( con t r ∗ p lan t , 1 ) ;
6 %{P lo t r e s u l t s%}
7 t =0 : 0 . 0 1 : 2 ;
8 s t ep ( s y s c t l , t )

42 / 78



Matlab – Background Proportional, Integral and Derivative Controllers

Proportional Integral Derivative Controller – Plot

Figure 8: Eliminated steady-state error, decreased over-shoot
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Part III

Matlab – Cruise Control System
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Matlab – Cruise Control System Design Criteria

How does Cruise Control for Poor work?

Figure 9: Forces taking part in car’s movement

Based on Carnegie Mellon University Library Control Tutorials for Matlab and Simulink
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Matlab – Cruise Control System Design Criteria

Building the Model

Using Newton’s law we derive

F = mv̇ + bv (15)

y = v (16)

Where: m = 1200[kg ], b = 50[Ns
m ], F = 500[N]
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Matlab – Cruise Control System Design Criteria

Design Criteria

� For the given data Vmax = 10[m/s] = 36[km/h]

� The car should accelerate to Vmax within 6[s]

� 10% tolerance on the initial velocity

� 2% of a steady-state error
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Matlab – Cruise Control System Matlab Representation

Transfer Function

System Equations:

F = mv̇ + bv

y = v

Laplace Transform:

F (s) = msV (s) + bV (s) (17)

Y (s) = V (s) (18)

Transfer Function:

Y (s)

F (s)
=

1

ms + b
(19)
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Matlab – Cruise Control System Matlab Representation

Matlab Representation

� Now in Matlab we need to type

Matlab code

1 m=1200;
2 b=50;
3 num=[1 ] ;
4 den=[m, b ] ;
5 c r u i s e=t f (num , den ) ;
6 s t ep = (500∗ c r u i s e ) ;
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Matlab – Cruise Control System Matlab Representation

Results

Figure 10: Car velocity diagram – mind the design criteria
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Matlab – Cruise Control System Matlab Representation

Design criteria revisited

� Our model needs over 100[s] to reach the steady-state

� The design criteria mentioned 5 seconds
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Matlab – Cruise Control System PID Controller

Feedback controller

� To adjust the car speed within the limits of specification

� We need the feedback controller

Figure 11: System controller
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Matlab – Cruise Control System PID Controller

Decreasing the rise time

Proportional Controller

Y (s)

R(s)
=

Kp

ms + (b + Kp)
(20)

Matlab code

1 Kp=100; m=1200; b=50;
2 num=[1 ] ; den=[m, b ] ;
3 c r u i s e=t f (num , den ) ;
4 s y s c t l=feedback (Kp∗ c r u i s e , 1 ) ;
5 t =0 : 0 . 1 : 2 0 ;
6 s t ep (10∗ s y s c l , t )
7 ax i s ( [ 0 20 0 10 ] )

53 / 78



Matlab – Cruise Control System PID Controller

Under- and Overcontrol

Figure 12: Kp = 100 Figure 13: Kp = 10000
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Matlab – Cruise Control System PID Controller

Making Rise Time Reasonable

Proportional Integral Controller

Y (s)

R(s)
=

Kps + Ki

ms2 + (b + Kp)s + Ki
(21)

Matlab code

1 Kp=800; Ki=40; m=1200; b=50;
2 num=[1 ] ; den=[m, b ] ;
3 c r u i s e=t f (num , den ) ;
4 con t r=t f ( [ Kp Ki ] , [ 1 0 ] )
5 s y s c t l=feedback ( con t r ∗ c r u i s e , 1 ) ;
6 t =0 : 0 . 1 : 2 0 ;
7 s t ep (10∗ s y s c l , t )
8 ax i s ( [ 0 20 0 10 ] )
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Matlab – Cruise Control System PID Controller

Results

Figure 14: Car velocity diagram meeting the design criteria
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Part IV

Simulink – Cruise Control System
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Simulink – Cruise Control System Building the Model

How does Cruise Control for Poor work?

Figure 15: Forces taking part in car’s movement

Based on Carnegie Mellon University Library Control Tutorials for Matlab and Simulink
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Simulink – Cruise Control System Building the Model

Physical Description

� Summing up all the forces acting on the mass

Forces acting on the mass

F = m
dv

dt
+ bv (22)

Where: m=1200[kg], b=50[Nsec
m ], F=500[N]
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Simulink – Cruise Control System Building the Model

Physical Description – cntd.

� Integrating the acceleration to obtain the velocity

Integral of acceleration

a =
dv

dt
≡

∫
dv

dt
= v (23)
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Simulink – Cruise Control System Building the Model

Building the Model in Simulink

Figure 16: Integrator block from Continuous block library
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Simulink – Cruise Control System Building the Model

Building the Model in Simulink

� Obtaining acceleration

Acceleration

a =
dv

dt
=

F − bv

m
(24)
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Simulink – Cruise Control System Building the Model

Building the Model in Simulink

Figure 17: Gain block from Math operators block library
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Simulink – Cruise Control System Building the Model

Elements used in Simulink Model

� Friction (Gain block)

� Subtract (from Math Operators)

� Input (Step block from Sources)

� Output (Scope from Sinks)
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Simulink – Cruise Control System Building the Model

Complete Model

65 / 78



Simulink – Cruise Control System Building the Model

Mapping Physical Equation to Simulink Model
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Simulink – Cruise Control System Simulating the Model

Setting up the Variables

� Now it is time to use our input values in Simulink...
� F=500[N]
� In Step block set: Step time = 0 and Final value = 500

� ...and adjust simulation parameters...
� Simulation → Configuration Parameters...
� Stop time = 120

...and set up variables in Matlab

1 m=1200;
2 b=50;
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Simulink – Cruise Control System Simulating the Model

Running Simulation

� Choose Simulation→Start

� Double-click on the Scope block...

68 / 78



Simulink – Cruise Control System Simulating the Model

Extracting Model into Matlab

� Replace the Step and Scope Blocks with In and Out Connection
Blocks
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Simulink – Cruise Control System Simulating the Model

Verifying Extracted Model

� We can convert extracted model
� into set of linear equations
� into transfer function

Matlab code

1 [A , B, C , D]= l inmod ( ’ cc2mt lb ’ ) ;
2 [ num , den ]= s s 2 t f (A, B, C , D) ;
3 s t ep (500∗ t f (num , den ) ) ;
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Simulink – Cruise Control System Simulating the Model

Matlab vs Simulink

Figure 18: Matlab Figure 19: Simulink
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Simulink – Cruise Control System Implementing the PI Control

The open-loop system

� In Matlab section we have designed a PI Controller

� Kp = 800
� Ki = 40

� We will do the same in Simulik

� First we need to contain our previous system in a Sybsystem block

� Choose a Subsystem block from the Ports&Subsystems Library

� Copy in the model we used with Matlab
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Simulink – Cruise Control System Implementing the PI Control

Subsystem

Figure 20: Subsystem Block and its Contents
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Simulink – Cruise Control System Implementing the PI Control

PI Controller I

Figure 21: Step: final value=10, time=0
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Simulink – Cruise Control System Implementing the PI Control

PI Controller II

Figure 22: We use Transfer Fcn block from Continuous-Time Linear Systems
Library
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Simulink – Cruise Control System Implementing the PI Control

Results
� Runnig simulation with time set to 15[s]
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