NONLINEAR VIRTUAL REFERENCE FEEDBACK TUNING
Application of Neural Networks to Direct Controller Design

Keywords:

Abstract:

Virtual Reference Feedback Tuning, neural networks, experimental controller tuning, adaptive control.

Virtual Reference Feedback Tuning (VRFT) is a direct controller design methodology which can be applied

both in the linear and nonlinear case. In this work, neural network controllers have been designed following
nonlinear VRFT principles, conforming what could be considered a particular scheme of direct neural Model
Reference Control. The approach has been applied to a simulated crane example, proposing alternative block
diagrams with extra inputs. In this example, the neural VRFT is compared to the linear one.

1 INTRODUCTION

Most of the available controller design methodolo-
gies are based on the availability of a model of the
system to be controlled. This can be a handicap, as
several reasons make this step very difficult in many
cases: unstability of the plant, presence of nonlineari-
ties or time-varying parameters, high order dynamics,
etc. In this scenario direct controller design method-
ologies seam to be appealing, as they do not need a
plant model to deal with the controller design prob-
lem. Within these approaches is the so called Virtual
Reference Feedback Tuning (VRFT).

Virtual Reference Feedback Tuning (VRFT) is a
model-free direct controller tuning methodology, in-
troduced by (Campi et al., 2002) for the linear case
and extended to nonlinear systems in (Campi and
Savaresi, 2006). Enhancements and remarks to the
basic setting were proposed in (Sala and Esparza,
2005; Sala, 2007). VRFT has proved to be a good
option to design a controller for an unknown plant.
It does not need a plant model and, in addition, this
methodology is simple to apply, because it only needs
a single open loop experiment or, possibly, a second
one if the data are collected in closed loop and cor-
rupted by significant noise (Campi et al., 2002).

The model-free nature of VRFT makes it appeal-
ing for practical cases, even if it is, from a theoretical
point of view, approximate: a plant model is needed to

propagate gradients in order to achieve unbiased con-
vergence (Campi and Savaresi, 20006) if the controller
parameterisation is not powerful enough. In fact, cor-
rect application of the methodology would require si-
multaneous plant and controller identification (Sala,
2007).

The objective of this contribution is to adapt the
recent VRFT results to controllers incorporating neu-
ral networks. Prior experiments with nonlinear VRFT
and neural networks are reported in (Previdi et al.,
2004). However, the correct computation of the gra-
dients requires backpropagation through time (Wer-
bos, 1990), which was not carried out in the cited
reference, which also used a very simple linear-in-
parameter neural network with least-squares fit.

This paper discusses the computation of gradients
and, additionally, shows the achieved improvements
over the standard 1-degree of freedom control loop
when auxiliary sensors are used. The methodology is
tested by simulation of a crane model. An approx-
imate linear model of the plant will be used to im-
prove gradient computations, identified from the same
available input-output data which will later be used to
identify the controller.

The organisation of the paper is as follows: Sec-
tion 2 presents a brief exposition of control structures
using neural networks, with the objective of compar-
ing them to VRFT approach. Then, VRFT princi-
ples, both in the linear and nonlinear case are ex-

posed in section 3. Section 4 is the main contribu-
tion, as it presents a nonlinear VRFT approach us-
ing neural networks, offering a simulated application
example of two particular neural network controller
structures. This contribution ends with the conclusion
drawn from this work.

2 NEURAL NETWORKS FOR
CONTROL

Neural networks have been used not only for identi-
fying nonlinear plants but also for controlling them.
As a neural network is a function approximator, it can
also be trained to map the loop error into the needed
control action.

In the literature (see for example (Hagan et al.,
2002; Kasparian and Batur, 1998; Narendra and
Parthasarathy, 1990)), several are the structures used
to control a nonlinear system by means of neural net-
works. Two of the most popular ones are the Direct
Inverse Control (Fig. 1) and the Model Reference
Control (Fig. 2) using neural networks. Both struc-
tures, as will be useful for the subsequent exposition,
will be briefly reviewed next.

NN¢ ¢

M Yd
b
r + o~ u A y
NN¢ G >
J

1

Figure 2: Model Reference Control using neural networks

2.1 Neural Direct Inverse Control

Figure 1 shows the structure of the so called Direct
Inverse Control using neural networks. The neural
network NN is trained to model the inverse plant dy-
namics, as seen in Fig. 3, using the error signal ey,
which stands for the ‘inverse model error’. Once this
is done, NN is placed in series with the plant, being
its input the desired behavior y; (see Fig. 1). The
trained network can also operate in an adaptive way

to account for possible disturbances. In this case, the
error signal ec is used to adapt online the controller.

..............

Figure 3: Training the neural network NN¢

This scheme has several disadvantages. Of course,
the first one is that it can not be used with open-loop
unstable plants or with non-invertible ones. Further-
more, if the nonadaptive scheme is the one to be used,
as the control is carried out in open loop, perturbances
or undermodelling will degrade the system’s perfor-
mance.

2.2 Neural Model Reference Adaptive
Control

Neural Model Reference Adaptive Control is a par-
ticular case of Model Reference Adaptive Control
(MRAC). Its structure corresponds to that depicted in
Fig. 2, where the signal ec is used to train or adapt
online the weights of the controller NN¢. Two are the
approaches used to design a MRAC control for an un-
known plant: Direct and Indirect Control.

Direct Control: This procedure aims at designing
a controller without having a plant model. As the
knowledge of the plant is needed in order to train the
neural network which corresponds to the controller
(i.e. NN¢), until present, no method has been pro-
posed to deal with this problem.

Indirect Control: This approach uses two neural net-
works: one for modelling the plant dynamics (NNy),
and another one trained to control the real plant so
as its behavior is as close as possible to the reference
model (NN¢). This scheme is represented in Fig. 4.
As a first step, the neural network NNy, is trained to
approximate the plant input/output relation using the
signal eys. This is usually done offline, using a batch
of data gathered from the plant in open loop. Once the
model NN,y is trained, it is used to train the network
NN¢ which will act as the controller. The model NNy,
is used instead of the real plant’s output because the
real plant is unknown, so backpropagation algorithms
can not be used. In this way, the control error ec is
calculated as the difference between the desired refer-
ence model output y; and y, which is the closed loop
predicted output. Then, as NNy, is fixed, its deriva-
tives with respect to any parameter are known and
easy to compute.

f

.

;
,
&

Figure 4: Indirect MRAC

3 VIRTUAL REFERENCE
FEEDBACK TUNING

Let us denote by P the unknown plant to be con-
trolled. The objective is to design a controller which
attains a closed-loop behaviour as close as possible
to a reference model M, chosen by the designer. A
first open-loop experiment carried out on it gives a set
of input/output data {u,y, yex}. Now let us consider
a virtual closed-loop (Fig. 5) with an unknown con-
troller C whose output is precisely u., (and therefore,
the plant’s output will be y,,). Then, the signals r,, and
e, in Fig. 5, called virtual reference and virtual error,
respectively, are calculated as follows:

ry = Milyex (1)
e = M=)y,)

Iy -t/\ Sy IT‘UCX ITL yCX .

Figure 5: Virtual closed loop

Within this environment, the controller design re-
duces to an identification problem between the sig-
nals e, and u,y, considering a parameterised controller
u=C(0,e), where 0 € R stands for the vector of pa-
rameters, being p its length. On the sequel, the pa-
rameterised controller will be denoted by Cg(e). The
ideal controller C* fulfills u,, = C*(e,), but it will be,
possibly, nonlinear and high-order.

The cost index to minimise will be the Euclidean
norm (denoted by || - ||) of the (possibly filtered) differ-
ence between the output of the loop when a particular
0 is used, yg, and the ideal one Mr, = y,;:

1 1
J= Sl =3 IFGe—y) P 3

In expression above F' is a frequency weighting
filter chosen by the user. In a closed-loop setting, yg
is defined as:

yo = P(Co(e)) ©)
In this expression P is the (unknown) plant, e =

ry — yg is the (non-virtual) tracking error. Then, the
cost index (3) can be expressed as:

I=SIFECE))P)

In the remainder, filter F will be considered the
identity, without loss of generality.

As the plant P is not known, it is not possible to
minimise (5). So, the VRFT methodology proposes
the following data-based cost index:

1
JvrrT = §||L(C9(ev) _”ex)Hz (6)

where L is a filter designed so as to make the solu-
tion to the minimization of (6) as close as possible to
that of (5). Note that (6) only uses available data u,,
and e,. In the linear case, (Campi et al., 2002) show
that the difference between J and Jygp7 is minimised,
under some assumptions, by choosing the filter L as:

L=MI-MT," (7

where T, is a filter such that |7,|> = &, (®, is the
power spectral density of u,,(¢)). Linearity of plants
and controllers, when applicable, will refer to the in-
put signals and not to the parameterisations 0.

Let us now consider the nonlinear VRFT approach
(Campi and Savaresi, 2006). In order to minimise a
cost index, under differentiability assumptions, most
optimization algorithms use its gradient with respect
to its parameters. In particular, the gradients of J and
Jyvrrr (considering F = I and the availability of {uy,
Yex }) are given by:

aJ d
% = < Yg— Ve, % > ®)
. aC
ZgFT = <L(Co(ey)— uex)’LT; = O

where < -,- > denotes the scalar product and aa% is
the derivative of the controller with respect to its pa-
rameters considering the remaining inputs constant.
On the sequel, operations over the gradient (8) will
be carried out so as to express an approximation of
it as a function of the available signals {u.y,e,, ey }-
That is, the value of the filter L will be found out so
as to make the index Jygrr as close as possible to J.
Neither of both sides of the scalar product of ex-
pression (8) are computable, as the plant model P is
not known. So it is necessary to express this gradient

as a function of both the actually recorded signals and
the virtual ones. The derivative of yg with respect to
the controller parameters can be expressed as:

dyy sdug
Do _ pfto 10
do do (10

AT

where P = ¢ ’u is a (possibly time-variant) plant lin-

earisation and ug is the output of the controller to be
designed, where its dependence on the vector of pa-
rameters 6 has been emphasised.

If plants and controllers are recurrent, gradient
propagation in time (Werbos, 1990) must be used. For
instance, given, say

Ug k = C(G,Ek,ek,I yoo ey Ch—myUk—1y- - 7uk7n)

we would obtain, applying the chain rule:

dugy Z dCe d)’ek dyek—j
do aek j
i 8Ce d”ekfj
+ j=1 auek,j de ()

which is a recurrent equation (and time-variant if C
is nonlinear in u or e¢). In previous expression, it
has been considered that the error signal is defined
as e; = r; — yg; and thus its derivative with respect to

. de; d
the vector of parameters is % =— y e’ . The result-

ing sequence of k in (11) must be the input in (10)
to the recurrence equatlons defining P in order to cor-
rectly compute the gradient of the closed-loop output
with respect to the parameters. Hence, (10) and (11)
are the sensitivity equations defining a recurrent lin-
ear time-variant system, to be denoted by L, whose

input is aa%, ie.

dyg 9Cy
de L 20 (12)

Figure 6 represents such sensitivity equations
computed at the instant k. In such figure, both the
block diagram input aa% and the output %" are vec-
tors the size of which is the number of parameters 6.
The filter L is also depicted. As it can be seen, this
filter is time-variant, so it must be updated at each k
(k € [1,N], being N the data length).

Going back to the problem of computing the gra-
dient of the index J, the left part of expression (8),
(Yo — Yex), can also be approximated to an expression
computable using the available signals. Considering
the existence of 0%, which is the vector of parameters
which makes u., = C(0*,e,, u.,), for 6 close to 6, the
following approximation can be considered:

ECU.A du().k dVU.A

01 . 4 do ﬁﬁ d9
- +
e
! ou,_, '
n
ac, -
ou, [
ac,
i Oe, H
4 -
G |] m
aekm
L

Figure 6: Sensitivity block diagram

d *
Yo —Yex = dyee(e 9)—

BC(
86

In summary, the gradient of J in (8) can be es-

timated by obtaining the vectors (Cg(e,) — u.y) and
aa%, filtering them by L previously defined and then
computing the inner product in (9).

Before closing this section, the open loop con-
troller implementation will be considered. In this
case, the virtual loop is an open loop one (Fig. 7),
where r, is the virtual reference, calculated using the
same expression as in (1). This structure could be
called Virtual Reference Feedforward Tuning as there
is no feedback in the loop. In this case, the controller
must be directly identified from r, and u,y.

Ty Uex Yex
Loy

Figure 7: Virtual Reference Feedforward Tuning

0-0%) ~ L(C(6,e,)—ue) (13)

In this case, when operating to compute the gradi-

ent of J defined in (8), a different expression for dg"

than that in (11) is obtained, as the controller input r,
does not depend on the vector of parameters 6. The
correct expression for the open loop case is:

due_’k _ % " 0Cy due’k_j
d® 00 Z Ougi_; do

(14)

Figure 8 displays the sensitivity equations in open
loop case, as well as the computation of the filter L,

necessary to approximate the minimization of both in-
dexes J and Jygpr.

a(;ﬂ,k d]'l(l K dyk\]«
00 | o+ do — | do
— > P

Figure 8: Sensitivity block diagram in open loop operation

4 NEURAL VIRTUAL
REFERENCE FEEDBACK
TUNING

In this section we will consider the nonlinear VRFT,
using neural networks for the controller. The plant
could be either linear or nonlinear with smooth non-
linearities. The objective is to design a controller
which minimises the cost index J defined in (5)
through the minimisation of the data-based index
Jvrrr in (6). Then when computing the gradient of
Jvrrer, if the controller is a neural network, its deriva-
tives with respect to 0, u;_; and e;_; are easy to ob-
tain. Applying VRFT principles, two are the possible
schemes to be used attending to the control loop struc-
ture: open and closed loop operation.

Virtual Reference Feedforward Tuning. This is the
basic scheme and involves a neural controller placed
in open loop (see Fig. 7, where the controller C is
a neural network). This neural network is trained to
approximate the dynamics of the plant inverse multi-
plied by the reference model. Therefore, as it can be
observed, this approach is very similar to the Neural
Direct Inverse Control depicted in Fig. 1, suffering
from the same disagvantadges pointed out in section
2.

As explained before, the sensitivity block diagram
which defines the filter L which must be used in this
case is the one depicted in Fig. 8. This block diagram
is used both being (C(0,e,) — uex) and aa% its input.
It should be noted that L must be updated at each time
instant.

Virtual Reference Feedback Tuning. If we consider
closed loop operation, then the resulting scheme can
be properly called VRFT. Fig. 6 shows the sensi-
tivity block diagram which is used to compute the

time-varying filter L for the closed loop case (de-
rived so as to calculate the gradient of Jygrr). VRFT
scheme could be considered comparable to the class
of Direct Neural Model Reference Control, which is
schematised in Fig. 2. In subsection 2.2 the adap-
tive scheme was presented, pointing out the two dif-
ferent existing approaches: direct and indirect. The
proposed scheme can be considered a Direct Non-
adaptive Model Reference Control, as it does not
need an accurate and possibly non-linear and time-
variant plant model to design a controller which aims
at achieving a closed loop performance as close as
possible to the reference model M.

Observing Figures 6 and 8, it is clear that a lin-
earised plant model P is needed so as to build the filter
L. So, it is necessary to have some information about
the plant dynamics, but there is no need for this infor-
mation to be very accurate. Therefore, a linear plant
model obtained from either first principles modelling
or linear identification should suffice.

4.1 Neural VRFT applied to a crane
model. Theoretical concepts

The expressions derived in previous section can be ap-
plied to any controller being linear or nonlinear, and
with any (possibly recurrent) structure agreeing with
Up = C(e,ek,...,uk,l,...).

In (Campi et al., 2002; Campi and Savaresi, 2006;
Sala, 2007), some approximations are carried out, in
order to use a time-invariant transfer function L’ and
make the minimisation process easier. However, in
order to obtain more accurate results, in this work the
implemented filter has been the filter one L, as the par-
tial derivatives required in (11) or (14) are easily com-
puted for neural networks. As the objective of VRFT
is to diminish, if possible, the need of elaborated plant
models, P in (10) will, however, be considered a lin-
ear time-invariant system, identified from experimen-
tal data via standard output-error algorithms.

In this example, neural networks have been used
to control a crane model under closed loop operation.
This plant has two measured outputs: the hanging
mass horizontal position (y;) and its angle with re-
spect to the vertical axis which passes through the
center of the cart (yp) (see Fig. 9). The objec-
tive is to control y;. For the controller, two topolo-
gies have been used: C; = NN(0,e,u) and C; =
NN(0,e, f(y2),u). The first one fits the controller-
class considered in previous section, so all the derived
expressions hold. The controller C; is more powerful,
as it has as an extra input a function of the system’s
output y,. The extra input, later denoted as s = f(y2),
changes the block diagram, hence it must be explic-

itly considered when computing the derivatives %".

The extra input will provide better performance, when
compared to C1, as discussed in next section.

Figure 9: Structure of the crane system

To compute the gradient Jygpr for the controller
structure C,, and following the same reasoning as
in the previous section, equation (10) gets converted

into: J
Lo P\ d
B o
% 2
where P} = %1 and P, = %)—MZ . In the same way,
u u

equation (11) turns into:

% o E)C i 8C dyl’k,j

do _%_jzoaek_j 00

+

i aC dukfj I Z aC askfj dyZ,kfj
= Jur_; do = Osg—j dy, d®

(16)

Here the subindex 0 used to emphasise the depen-
dence of the signals on the vector of parameters has
been omitted, for the sake of clearness.

The neural networks to be used are made up of
two layers: the first one has four neurons (one lin-
ear and three with hyperbolic tangent activation func-
tion); the second layer has only one linear neuron. A
bias input to each neuron is also present. For the con-
trollers of class Cy, the network considered is the one
depicted in Fig. 10. In this figure, the inputs & and
e stand for vectors conforming a delay-line input: if
the controller order considered is n, at a time instant
k, e = [ug—1,...,ux—n] and & = ek, ..., ex—pt1]. In
the same way, the network used for the C;-class con-
trollers is the one in Fig. 11, where f(y2) = sin(y2)
has been added as a new network’s input.

4.2 Neural VRFT applied to a crane
model. Simulation results

As above mentioned, neural VRFT is applied to a
crane model, depicted in Fig. 9, where the plant’s in-
put (u) and outputs (y; and y;) are indicated. A first-
principle model for simulation was found in (Butler
et al., 1991), being the parameters values:

e Mass of the cart (M): 2 Kg.

Figure 11: Neural network used for controllers of class C;

e Hanging mass (m): 1 Kg.
Length of the joining bar (L): 0.5 m.
Linear friction coefficient (fc): 0.05 Ns/m.

Angular fiction coefficient (fp): 0.01 Ns.

Using the neural network controller structure de-
picted either in Fig. 10 or 11, the control action at an
instant k can be computed as:

4 nxm
up =Y WOF; < Yy WI,-jxk+bI,-> +b0 (A7)
i=1 j=1

In the above expression, F; is the hyperbolic tan-
gent for i = {1,2,3} and identity for i = 4 (linear neu-
ron), n is the number of delays in the inputs (the same
value for all the inputs has been considered), m = 2
for the neural network structure of Fig. 10 and m = 3
for the one in Fig. 11. In addition, x; is the input
vector, constructed as:

xe=[w1 .. W e eknt1 |

for m = 2. For m = 3, this expression turns into:
e o= [wer o wen e Ck—n+t1
Sk Skentl)

where sy = sin(yyy), i.e., the sine of the angle y, at a
time instant k.

Finally, in expression (17) the indexes i and j
stand for the neuron number and the input position
in x;. Therefore, denoting by N the number of neu-
rons (N = 4 in this example), the vector of parameters

has (n x m+2)N + 1 elements, and is defined as:
o = [wny . Wiy W1 pscm

WOy bo]T (18)

Wiy nxm

bl .. bly WO,

4.2.1 Simulation results

The objective of the application is to design a con-
troller for the crane system in such a way that the
controlled output y; follows as closer as possible a
reference that goes from O to 1 m following a ramp
with different slopes: from 0.04 m/s to 1 m/s.

First of all, the linear version of VRFT has been
applied, as this particular system presents a smooth
nonlinearity which allows linear controllers to be used
for low angles (slow cart speed). Then, in order to
compare and to improve the closed-loop tracking per-
formance, both neural network structures (Figs. 10
and 11) have been considered as the controller’s class
to be used when applying nonlinear VRFT.

As the main nonlinearity in the system equations
comes from trigonometric expressions depending on
the angular position and speed, two situations have
been envisaged:

1. A first simulation tries to adjust VRFT controllers
(linear and neural) based on a set of open-loop
data where the angular displacements are small.

2. A second simulation scenario uses open-loop data
where angular displacements are significantly
higher, due to a larger input amplitude.

Intuitively, it is expected that linear and nonlinear
VRFT controllers behave similarly in the first case,
but nonlinear ones improve in the second one. Let us
discuss each of the simulations.

Low-amplitude training data. A first open-loop
experiment is carried out with a white noise input in a
range of 0.1 N. The angle variation is very low, so
the nonlinear effect is not very present.

A linear 6" order controller, as well as a neuronal
one (type C)), also with 6" order delay-line inputs,
are trained from the same data set. For the slowest ref-
erence (slope of 0.04 m/s during the transient), both
linear and neural network controllers work well and
produce a very similar output. The linear controller
produces a better performance but a bigger oscilla-
tion of the pendulum (Fig. 12); it seems to have to-
tally canceled the weakly damped mode. As long the
reference’s slope increases, the linear controller pro-
vides a better tracking performance (the more reduced
number of parameters seems to make learning more

effective) until a slope of 1 m/s, when it makes the
loop unstable, whereas the one using a neural network
provides the response in Fig. 13.

System response with Clin and NN

3.2 T T
Clin
3.181 —NN
=)
£316 L 4
% 3.14 As
<
3.12f
31
0 10 20 30 40 50
15
E
8 v
g2
% 3 - - —reference
1] 0.5 " il
< 2 Clin
s —NN
0 = L L L I
0 10 20 30 40 50

Time (s)

Figure 12: Comparison of plant behaviour with linear and
neural network controllers (slow setpoint change speed)

System response with NN
T T

3.4

Angle (rad)
w w
N

2.8
0

15

B
8< 1r P —
c >
=] !
23 !

I

o o5f ; |

S | - - —reference

y ——NN
0 . . . n
0 5 10 15 20 25

Time (s)

Figure 13: Plant behaviour with the neural network con-
troller for a slope of 1 m/s in setpoint change

In order to increase the performance, two 4th.
order controllers are designed, using the closed-loop
error and the sine of the bar’s angle as inputs (the
number of parameters is, hence, the same). The lin-
ear controller still produces an unstable loop, while
the neural network one does not improve significantly
over the one in Fig. 13 (results not shown for brevity).

Higher-amplitude training data. For compari-
son, the signals recorded at a second open-loop ex-
periment, with a white noise input in a range of £1
N, are used to design linear and neural network con-
trollers, using either only the closed-loop error or this
error together with the sine of the pendulum’s angle
as inputs. All these controllers resulted in unstable
loops, except the 4'"-order neural network one with

error and angle feedback (class C;). Figure 14 shows
the closed-loop behaviour when using this neural net-
work controller for a fast-varying reference of slope
1.

System response with NN
T T

IS

}3 35
o
2
< 37
25
0 5 10 15 20 25
15
B
8Z 1r
c 3
9 f=3
53
|9
xs 0.5¢ A
< - - -reference
0 . .
0 5 10 15 20 25
Time (s)

Figure 14: Closed-loop response with the neural network
controller designed with 2 sensors and high-amplitude data

Note: the linear controllers have been identified
using output error algorithms available in Matlab®’s
Identification Toolbox. The neural network pa-
rameters have been adjusted using the Levenberg-
Marquardt optimisation algorithm, applied to min-
imise the index J by means of the gradient expressions
derived in previous sections.

5 CONCLUSIONS

This paper compares ‘classical’ neural network con-
trol structures with nonlinear VRFT ones. In partic-
ular, and due to its undeniable advantages, the closed
loop approach is mainly tackled. Then, it is shown
that successful application of the VRFT paradigm to
neural controllers is possible, by propagating gradi-
ents through time using an approximate linear model
of the plant. Such model is instrumental, only used
in a filtering stage and its accuracy becomes less rele-
vant as the parameterisation of the controller is more
flexible allowing for a lower minimum approximation
error.

Simulations show that, under demanding specifi-
cations, linear VRFT controllers yield unstable loops
while nonlinear neural ones plus additional sensory
feedback provide a satisfactory response. The results
were achieved without the need of any nonlinear plant
modelling or identification.

ACKNOWLEDGEMENTS

REFERENCES

Butler, H., Honderd, G., and Van Amerongen, J. (1991).
Model reference adaptive control of a gantry crane
scale model. IEEE Control Systems Magazine,
11(1):57-62.

Campi, M. and Savaresi, S. (2006). Direct nonlinear con-
trol design: the Virtual Reference Feedback Tuning
(VRFT) approach. [EEE Transactions on Automatic
Control, 51(1):14-27.

Campi, M. C., Lecchini, A., and Savaresi, S. M. (2002).
Virtual Reference Feedback Tuning: a direct method
for the design of feedback controllers. Automatica,
38:1337-1346.

Hagan, M., Demuth, H., and Jests, O. D. (2002). An intro-
duction to the use of neural networks in control sys-
tems. International Journal of Robust and Nonlinear
Control, 12:959-985.

Kasparian, V. and Batur, C. (1998). Model reference based
neural network adaptive controller. ISA Transactions,
37:21-39.

Narendra, S. and Parthasarathy, K. (1990). Identifica-
tion and control of dynamical systems using neural
networks. [EEE Transactions on Neural Networks,
1(1):4-27.

Previdi, F., Schauer, T., Savaresi, S., and Hunt, K. (2004).
Data-driven control design for neuroprotheses: a Vir-
tual Reference Feedback Tuning (VRFT) approach.
1IEEE Transactions on Control Systems Technology,
12(1):176-182.

Sala, A. (2007). Integrating Virtual Reference Feedback
Tuning into a unified closed-loop identification frame-
work. Automatica, 43(1):178-183.

Sala, A. and Esparza, A. (2005). Extensions to “Virtual
Reference Feedback Tunning: A Direct Method for
the Design of Feedback Controllers”. Automatica,
41(8):1473-1476.

Werbos, P. (1990). Backpropagation through time: What it
does and how to do it. Proc. of IEEE, 78(10):1550—
1560.

