12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes

safeprocess





# 12<sup>th</sup> IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes

5 – 7 June 2024

# SAFEPROCESS 2024 Program

Editor: L. Travé-Massuyès



Department of Engineering, University of Ferrara Via Saragat, 1E - 44122 Ferrara (FE) ITALY

### Welcome to SAFEPROCESS 2024

The National Organizing and International Program Committees have the pleasure of inviting you to participate in the 12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, to take place in Ferrara, Italy, 4 - 7 June 2024, under the auspices of IFAC, the International Federation of Automatic Control.

Ferrara is a city in Italy's Emilia-Romagna region, Northern Italy. It is known for the buildings erected by its Renaissance rulers, the Este family. The city's cultural treasures were designated a UNESCO World Heritage site in 1995. Ferrara is also known as the city of bicycles, due to bicycle usage by city residents being considered amongst the highest in Europe.

The SAFEPROCESS Symposium is organized every three years, and for the first time since its first edition in 1991, it takes place in Italy. SAFEPROCESS 2024 is continuing the successful series of IFAC symposia held in Baden Baden (Germany, 1991), Espoo (Finland, 1994), Hull (United Kingdom, 1997), Budapest (Hungary, 2000), Washington (United States, 2003), Beijing (China, 2006), Barcelona (Spain, 2009), Mexico City (Mexico, 2012), Paris (France, 2015), Warsaw (Poland, 2018), and Pafos (Cyprus, 2022).

The SAFEPROCESS Symposium is a major international gathering of leading experts in academia and industry from all over the world. Prominent speakers will discuss the comprehensive range of topics in fault diagnosis, process supervision, and safety monitoring, covering both state-of-the-art applications and emerging research directions. The symposium aims to boost collaboration between academia and industry, fostering new connections and reinforcing established ones. It also serves as a global forum for young scientists to present their research projects and works to an international audience of experts, fellow researchers, academics, and students.

Fault diagnosis, Fault Detection and Isolation (FDI) and Fault-Tolerant Control (FTC) build a major area of research at the intersection of systems and control engineering, artificial intelligence, applied mathematics and statistics, and application fields like chemical, electrical, mechanical, aerospace engineering and transportation systems.

IFAC has recognized the significance of this area by launching a triennial symposium series dedicated to these subjects. The IFAC SAFEPROCESS 2024 edition will be focused on major topics related to energy, cybersecurity, water systems, and autonomous vehicles. Invited sessions, plenary lectures, tutorials, benchmarks, and roundtables will highlight industrial-academic projects, challenges, and applications.

During the symposium, three awards will be recognised. The Paul M. Frank Award was established in memory of Prof. Paul M. Frank, who was one of the pioneers and great contributors to the fault diagnosis area. It will be given to the best theoretical contribution by considering paper and oral presentation. The Best Student and Best Application Paper Awards will also be offered by the Symposium. An appointed Award Committee will evaluate all candidates, and the winners will be announced during the Symposium.

On behalf of the National Organizing and International Program Committees, we wish you a pleasant stay in Ferrara and a fruitful participation in SAFEPROCESS 2024.

Cristina Verde Rodarte (IPC Chair) Silvio Simani (General Chair) L. Travé-Massuyès (Editor)

### Symposium Committees

#### National Organizing Committee

General Chair NOC Co-Chair Honorary Chair Tutorial Chair Publicity Chair Organization Chair Registration Chair Registration Co-Chair Local Industry Chair Webpage Manager

S. Simani A. Casavola T. Parisini M. Bonfè E. Zattoni S. Farsoni M. Franzoni A. Giua P. Pasini E. Mainardi

#### International Program Committee

IPC Chair IPC Co-Chair IPC Co-Chair Editor Student Activity Chair Publicity Chair C. Verde Rodarte (MX) N. Eva Wu (USA) V. Reppa (NL) L. Travé-Massuyès (FR) F. Boem (UK) A. Grancharova (BG)

#### **International Program Committee Members**

Ahmad Al-Dabbagh (CA) Christophe Berenguer (FR) Gildas Besancon (FR) Gautam Biswas (USA) Mogens Blanke (DK) Jozsef Bokor (HU) Richard Braatz (USA) Joao M. F. Calado (PT) Alberto Cardoso (PT) Alessandro Casavola (IT) Paolo Castaldi (IT) Mariela Cerrada (EC) Steven X. Ding (DE) Christopher Edwards (UK) Riccardo M.G. Ferrari (NL) Erik Frisk (SE) Alessandro Giua (IT) Philippe Goupil (FR) Alexandra Grancharova (BG) Biao Huang (CA) Bin Jiang (CN) Jing Jiang (CA) Michel Kinnaert (BE) Jozef Korbicz (PL) Jan Koscielny (PL) Zdzislaw Kowalczuk (PL)

Orestes Llanes-Santiago (CU) Rami S. Mangoubi (USA) Didier Maguin (FR) John J. Martinez Molina (FR) Henrik Niemann (DK) Peter Fogh Odgaard (DK) Ron J. Patton (UK) Gustavo Pérez Zuñiga (PE) Vincent Cocquempot (FR) Vicenc Puig (ES) Ivo Puncochar (CZ) Vasso Reppa (NL) Dominique D.J. Sauter (FR) Jakob Stoustrup (DK) Audine Subias (FR) André M.H. Teixeira (SE) Didier Theilliol (FR) Louise Travé-Massuyès (FR) Michel Verhaegen (NL) Marcin Witczak (PL) Neng Eva Wu (USA) Ping Zhang (DE) Qinghua Zhang (FR) Youmin Zhang (CA) Alexey N. Zhirabok (RU) Donghua Zhou (CN)

#### **Co-sponsoring Organisations**

Department of Engineering, University of Ferrara (DE-UNIFE), Consorzio Futuro in Ricerca (CFR) University of Ferrara, Ferrara City Council, Italian Association of MAiNtenance-AIMAN, Italian Society of Researchers and Academics of Automation - SIDRA, Nationa Association of Automation APplication - ANIPLA, and MathWorks.

# Keynote Speaker Talk Titles & Abstracts

#### Prof. Ron J. Patton (r.j.patton@hull.ac.uk)

Title Offshore wind turbine rotor imbalance, a Fault Tolerant Control problem.

#### Abstract

Offshore wind turbines are subjected to asymmetrical loads caused by blade flapping and turbulent wind flow, leading to increased fatigue of blade rotor hub and tower structures and limiting power conversion. This motivates the development of unbalanced load mitigation strategies using improved pitch control, considering tolerance of pitch actuator faults. A Fault-Tolerant Control (FTC) approach (modelled using FAST) is used to address the problem of rotor actuator faults. The traditional Individual Pitch Control (IPC) system is an

FTC system in which the faults are the unbalanced rotor loads. Through this system the unbalanced loads are compensated by balancing the rotor using a special form of actuator redundancy, thereby restoring power efficiency. Actuator fault effects are compensated through fault estimation (unknown input observer) when an actuator FTC scheme is combined with the IPC system to (a) balance the rotor loading and (b) compensate the actuator faults. Robustness is evaluated over 100 Monte Carlo Region 3 operating points. Two interesting issues arise:

- (i) How can rotor load sensor faults be handled?
- (ii) Can the system be extended to work in a floating wind turbine configuration?

#### Key Takeaways

- Rotor load imbalance can be handled using an "FTC Principle."
- The handling of load balancing and component (actuator) faults leads to reduced rotor fatigue, especially in Region 3 operation, thereby enhancing wind turbine life and efficiency.

#### Dr. Christophe Combastel (christophe.combastel@u-bordeaux.fr)

**Title** Reachability and Filtering for Safe Processes: from Zonotopes to Functional Sets with Typed Symbols.

#### Abstract

Ensuring safety involves uncertainty management. How to evaluate uncertainty propagation through system dynamics? How imperfect predictions can improve multi-sensor data fusion? How to check consistency to further make sound diagnosis decisions and/or verify the satisfaction of requirements with full coverage? The answer is far from unique! In this talk, starting from set-based

zonotopic reachability and linear Kalman-like filtering/observation, several extensions will be presented: parameter-varying, jointly stochastic, distributed, nonlinear/polynomial, hybrid, logical (Boolean, signed), and shown to be unified through functional sets with typed symbols.

#### Key takeaways

- Functions can be used to implicitly define sets as the image of their definition domain.
- Functional sets with typed symbols extend zonotopes to non-convex, non-centrally symmetric, non-connected mixed/hybrid sets.
- An explicit distinction between syntax and semantics, combined with eager and lazy evaluations (of symbolic expressions and bounds) are keys to overcoming the dependency problem.
- Uniquely identified symbols preserve the traceability of global dependencies (e.g. variable multioccurrences), even through local/distributed compositional operations.
- Generic hybrid nonlinear filtering algorithms can directly result from basic operator overloading.





#### Prof. Roger Dixon (r.dixon@bham.ac.uk)

**Title** Fault Tolerance in Railways: the evolution of a radical next generation track switch

#### Abstract

Railway track switches are crucial for the flexibility and efficiency of railway networks, as they enable trains to switch between different tracks. However, they are also a major source of vulnerability and risk, as they are prone to malfunction and failure. When this happens, trains may be forced to stop, re-route, or even derail, causing delays, disruptions, and accidents. Despite

their importance, the design and operation of track switches have not changed significantly for many decades. The plenary will introduce a groundbreaking alternative to the conventional track switch technology. REPOINT is an innovative, patented, railway track switch system that has been developed by applying a mechatronic systems design approach to create a novel fault-tolerant switch. The presentation will introduce the problem and will then outline the research and development process of the new switch system: starting with the generation of the initial concept, passing through simulation and laboratory testing and validation, and covering the path to full-scale implementation and evaluation in a real-world setting. During the presentation, some of the commercial challenges and opportunities will also be discussed. Including the team's (current) journey toward the launch of a spinout company with a product that they believe will offer safe, reliable and cost-effective track switching for railways.

#### Dr. Steinert Olof (olof.steinert@scania.com)

**Title** Harnessing Data for Predictive Maintenance and Collaboration, Boost Innovation.

#### Abstract

Explore how Scania is unlocking the future of transports through the strategic use of connected data. Discover how predictive maintenance and remote issue diagnosis are key components in preventing unexpected downtimes in connected, electrified and autonomous transport solutions. The talk underscores the significance of data sharing for fostering faster collaboration and innovation within the research community.

#### Key takeaways

- Practical strategies for leveraging connected data to implement predictive maintenance and data-driven diagnostics effectively.
- Understanding the strategic use of connected data not only enhances current transport operations but also future-proofs them against emerging challenges.
- Gain insights into why daring to share data is crucial for fostering innovation and collaboration.







7

#### SAFEPROCESS 2024

#### Prof. Biao Huang (biao.huang@ualberta.ca)

**Title** Advancing Causal Analysis for Fault Detection and Root Cause Analysis in Process Systems Engineering

#### Abstract

Causality analysis, a well-established data-driven technique for root cause identification, has garnered extensive attention across multiple disciplines. Utilizing causal analysis tools, engineers can construct causal maps crucial for fault prediction and diagnostic applications. However, relying solely on conventional data analytics for reconstructing causal maps raises challenges

associated with data quality. High-quality data are imperative to ensure the reliability of results. In causality analysis, issues stemming from data quality manifest as spurious causations and the failure to identify the existence of causations. While causal maps can be constructed based on expert knowledge and process flow diagrams, this approach may prove inadequate for complex and tightly integrated processes. The emerging field of physics-informed modelling offers a promising avenue, having been successfully applied in various domains. However, combining physics information with observed data for reconstructing causal maps remains a relatively unexplored challenge. Motivated by these considerations, we introduce a novel framework to reconstruct causal maps for linear time-invariant dynamical systems. This innovative approach integrates observed data with physics information, enhancing the reliability of identifying the sources of process faults. We will demonstrate the application of this physics-informed causal analytic tool through case studies involving two industrial process units: plantwide oscillation source identification and flooding prediction for a de-propane column. This framework represents a significant step towards bridging the gap between observed data and physics information, ensuring more robust causal analysis in complex industrial processes.

#### Prof. Ping Zhang (pzhang@eit.uni-kl.de)

Title Detection and Avoidance of Cyber Attacks on Industrial Control Systems

#### Abstract

In modern production plants, different system components like sensors, actuators and controllers are becoming more and more connected through communication networks. While the flexibility and the reconfigurability of the plants have been improved significantly, the vulnerability of industrial control systems to cyber-attacks has increased as well. How to effectively cope with cyber-attacks and significantly enhance the resilience of industrial plants to cyber-attacks has attracted much attention not only in academia but also in

the industry and the regulatory authority in recent years. As an interdisciplinary research field, addressing these questions requires insights from control, communication, and computer engineering. In this talk, we shall at first analyse the risk of cyber-attacks and clarify some of the myths. Then the focus is put on how to detect challenging cyber-attacks early and reliably with the help of the control theory and fault diagnosis. After that, preventive measures such as encrypted control and monitoring will be explored. Benchmark studies on cyber-attack detection in critical infrastructure such as water treatment plants and water distribution networks underline the important contribution that can be made by the fault diagnosis technique to improving the cyber security of industrial control systems.

#### Key takeaways

- Gain insights into cyber risks in industrial control systems.
- Advanced strategies to detect challenging cyber-attacks in control systems early and reliably.
- Efficient defence-in-depth measures for better protection of industrial plants
- Practical examples of the application of fault diagnosis to cyber-attack detection in critical infrastructure.





# Roundtable

Topic Gnosis for Maintenance: From Diagnosis to Prognosis and Health-Aware Control

#### Organisers

- Vasso Reppa. Maritime and Transport Technology Department, Delft University of Technology, Mekelweg 2, 2628CD, Delft, The Netherlands. Email: v.reppa@tudelft.nl.
- Mayank S JHA. CRAN, CNRS University of Lorraine. B.P. 70239 54506. VANDOEUVRE-LES-NANCY, FRANCE. Email: mayank-shekhar.jha@univ-lorraine.fr
- *Didier Theilliol.* CRAN, CNRS. University of Lorraine, B.P. 70239 54506. VANDOEUVRE-LES-NANCY, FRANCE. Email: didier.theilliol@univ-lorraine.fr

#### Abstract

Maintenance has always been essential for many engineering systems and processes. In several domains like transport (automotive, rail, maritime), the vision is to render maintenance automated using numerous sensors for monitoring and providing data and sophisticated algorithms to decide among others: (i) when to perform maintenance, (ii) which components need maintenance, (iii) whether we can prolong maintenance, (iv) how to optimize maintenance. To address these questions in real-time, a fault diagnosis procedure is important to detect the malfunctioning of a system, isolate the cause of malfunctioning, and if possible, identify the severity. The next step is to define the remaining useful life until the fault becomes a failure through a prognosis procedure. A great impact on the evolution of system malfunctioning can have the closed-loop operation of the system; it may delay or accelerate the evolution according to control decisions. How can we perform health management and maintenance of the system in an automatic control context, or how can we control a system in a health management and maintenance of the sign)?

#### List of Panelists

- 1. *Vicenç Puig*, Professor at Technical University of Catalunya (UPC), Spain. URL: <u>futur.upc.edu/VicencPuigCayuela</u>
- 2. Jin Jiang, Professor at the University of Western Ontario, Canada. URL: cies-westerneng.ca/jjiang/home.htm
- 3. Alfredo Núñez, Professor at Delft University of Technology, the Netherlands. URL: <u>www.tudelft.nl/staff/a.a.nunezvicencio</u>

#### Roundtable Outcomes

- State-of-the-art (academia) and state-of-practice (industry) methods for maintenance, prognosis, and health-aware control
- Health aware control and its development in industry/academia, and its relationship with fault tolerant control
- Relationship between (i) predictive maintenance and prognosis, (ii) predictive maintenance and diagnosis/monitoring, (iii) prognosis and closed loop control
- Challenges (of implementation) of predictive maintenance, prognosis, and health-aware control
- Presentation of most popular industrial use cases of health-aware control.

# IFAC Safeprocess 2024 Benchmark Competition

# LiU-ICE Industrial Fault Diagnosis Benchmark – Anomaly Detection and Fault Isolation with Incomplete Data

Organizers: Daniel Jung, Eric Frisk

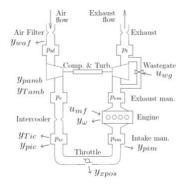
#### Benchmark Description

A common challenge in designing diagnosis systems in industrial applications is limited data availability from relevant fault scenarios and a lack of knowledge of model uncertainty. The development of fault diagnosis design techniques in this situation is the theme of the competition. The case study is the airflow of an internal combustion engine. The complexity of modelling the engine combined with noisy measurements makes it a challenging system to diagnose because of its non-linear dynamic behaviour and wide operating range.

#### **Competition Objectives**

- Design a diagnosis system that can detect faults and identify the cause of the abnormal behaviour.
- Handle that the availability of representative data from all fault scenarios and fault sizes is limited.
- The solution should handle unknown faults.

#### **Problem Statement**


- Data is collected from both nominal and faulty behaviour during the transient operation of the process. The set of available actuator and sensor signals corresponds to the standard signals that are available in a commercial vehicle.
- Considered faults include leakage and sensor faults. Each dataset in training data represents one fault scenario with almost 30 minutes of operational data sampled in 20Hz.
- A system description in the form of a state-of-the-art analytical model where model parameters are unknown.

#### **Evaluation Criteria**

- False alarm rate/Missed detection rate/Mean detection delay
- Fault isolation accuracy
- Computation time

#### Benchmark Competition Award

Further information for competition participants is found on the benchmark homepage: https://vehsys.gitlab- pages.liu.se/diagnostic\_competition/. The main outcomes of the competition and the best solutions provided by the participants will be summarised in the Invited Session FrD1 - LiU-ICE Benchmark Competition and awarded on Friday 7<sup>th</sup> June during the closing ceremony of the SAFEPROCESS 2024 symposium.





# **Useful Information**

#### **Registration Desk**

The desk located on the ground floor of the Civic Theatre (Teatro Comunale di Ferrara, <u>www.teatrocomunaleferrara.it/en/</u>) will be open from 5<sup>th</sup> to 7<sup>th</sup> June 2024 during the working hours of the symposium. All attendees must be registered and will receive a badge together with the registration package.

#### Internet Access

All participants have access to the free wireless Internet connection of the Civic Theatre, by using the access codes provided at the registration desk.

#### **Refreshments and lunches**

Two refreshments and coffee breaks and one lunch per day will take place in the Small Theatre Hall on the first floor of the Civic Theatre (symposium venue) in Ferrara.

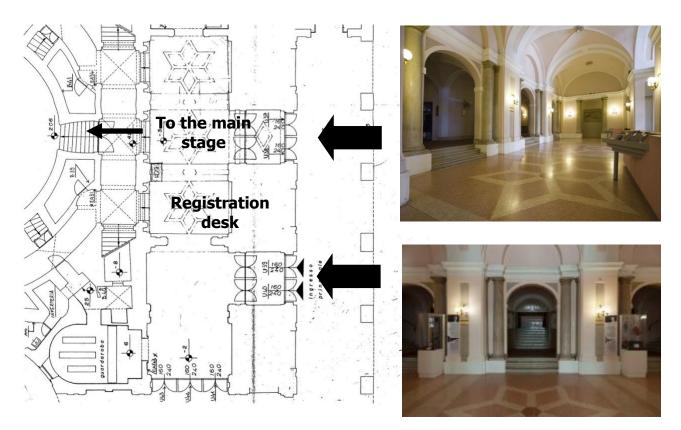
#### Gala Dinner

The dinner, together with the planned social activities, will be held at one of the former Civic Theatres ('ex Teatro Verdi', https://laboratorioapertoferrara.it/), which will be easily reached by walking from the Civic Theatre (symposium venue) after the end of the technical sessions at 6:30 pm on June 6<sup>th</sup>, 2024. The 'ex Teatro Verdi' is located in the oldest city centre of Ferrara at the address: Via Castelnuovo, 10, 44121 Ferrara FE.

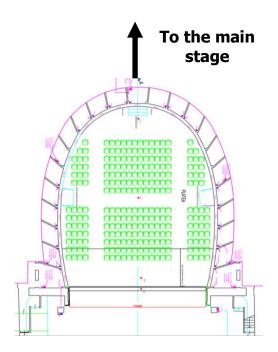
#### Symposium Awards

- *Paul M. Frank Award*: The University of Duisburg-Essen has established an award in memory of Professor Paul M. Frank who was one of the pioneers and great contributors to the fault diagnosis area. It will be given to the best theoretical contribution by considering paper and oral presentation.
- *Best Student/Application Paper Awards*: The Symposium also offers two awards for the best student and application /case study papers. A selected committee will evaluate all candidates, and the winners will be announced during the Symposium.

The three recognitions are funded by the Consorzio Futuro in Ricerca (CFR) and the Department of Engineering of the University of Ferrara.


#### Members of the Award Committee

Cristina Verde Rodarte (MX, Chair), Christopher Berenguer (FR), Vicent Cocquempot (FR), Vicent Compostel (FR), Steven X. Ding (DE), Erik Frisk (SE), Phillippe Goupil (FR), Josef Korbicz (PL).

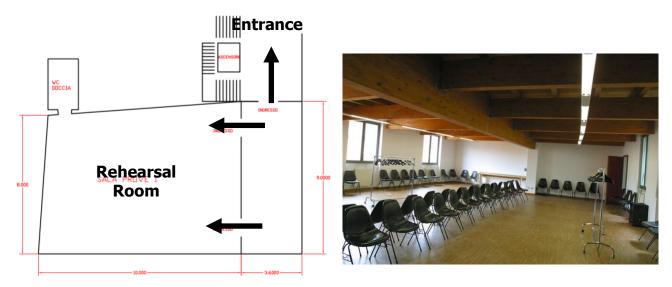

#### Symposium Venue

The symposium will be held from 5<sup>th</sup> to 7<sup>th</sup> June at the Civic Theatre of Ferrara, Teatro Comunale di Ferrara (address: Corso Martiri della Libertà, 5, 44121 Ferrara FE, Italy). It has a capacity of about 700 people. Three rooms host the technical sessions, keynote speeches and the roundtable: the main stage (capacity 250 persons), the small theatre (capacity 150 persons), and the rehearsal room (capacity 50 persons). The maps and plans of the symposium venue are depicted below.





Theatre main entrance from Corso Martiri della Libertà






From the Theatre entrance to the Main Stage inner view.



First floor: Small Sheatre and a detail of its inner view.



First floor: Rehearsal Room and a detail of its inner view.

# Symposium Program at a Glance, 5 - 7 June 2024

### Wednesday 5th June 2024

| lerant Control                                 |
|------------------------------------------------|
| lerant Control                                 |
|                                                |
|                                                |
|                                                |
|                                                |
| 1 - 10.1 -                                     |
| 15-12:15                                       |
| arsal Room                                     |
| Session WeB3                                   |
| lia Quatama:                                   |
| <i>ilic Systems:</i><br><i>I Detection and</i> |
|                                                |
| ecurity                                        |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
| esses: From                                    |
|                                                |
| 30-16:10                                       |
| arsal Room                                     |
| Session WeD3                                   |
| ic Methods and                                 |
| e Maintenance                                  |
|                                                |
|                                                |
|                                                |
| 25-18:25                                       |
| arsal Room                                     |
| Session WeE3                                   |
| Ionitoring and                                 |
| intenance                                      |
| 11/011/01/00                                   |
|                                                |
|                                                |

### Thursday 6<sup>th</sup> June 2024

| -                          | 00:00 00:00                   |                            |
|----------------------------|-------------------------------|----------------------------|
|                            | 08:30-09:30                   |                            |
|                            | Main Stage                    |                            |
|                            | Plenary Session Th1P          |                            |
| Roger Dixon: Fault Tol     | erance in Railways: The Evo   | lution of a Radical Next   |
|                            | Generation Track Switch       |                            |
|                            | 09:30-09:45                   |                            |
|                            | Small Theatre                 |                            |
|                            | Coffee Break                  |                            |
| 09:45-11:45                | 09:45-11:45                   | 09:45-11:45                |
| Main Stage                 | Small Theatre                 | Rehearsal Room             |
| Invited Session ThB1       | <b>Regular Session ThB2</b>   | Regular Session ThB3       |
|                            |                               |                            |
| Advance of Fault-Tolerant  | Estimation and Filtering      | Structural Methods for     |
| Estimation and Control     | Methods for Fault             | Fault Diagnosis            |
|                            | Diagnosis                     |                            |
|                            | 11:45-13:00                   |                            |
|                            | Small Theatre                 |                            |
|                            | Lunch                         |                            |
|                            | 13:00-14:00                   |                            |
|                            | Main Stage                    |                            |
|                            | Plenary Session Th2P          |                            |
|                            |                               |                            |
| Olof Steinert: Harnessing  | Data for Predictive Mainten   | ance and Collaboration. to |
|                            | Boost Innovation              | <i>,</i>                   |
| 14:00-16:00                | 14:00-16:00                   | 14:00-16:00                |
| Main Stage                 | Small Theatre                 | Rehearsal Room             |
| Regular Session ThD1       | Regular Session ThD2          | Regular Session ThD3       |
|                            | negatar session mp2           |                            |
| Artificial Neural Networks | Health Monitoring and         | Fault Diagnosis for        |
| for Fault Diagnosis        | Fault Diagnosis               | Nonlinear Systems          |
| for Fault Diagnosic        | Applications                  |                            |
|                            | 16:00-16:15                   |                            |
|                            | Small Theatre                 |                            |
|                            | Coffee Break                  |                            |
| 16:15-18:15                | 16:15-18:15                   | 16:15-18:15                |
| Main Stage                 | Small Theatre                 | Rehearsal Room             |
| Regular Session ThE1       | Regular Session ThE2          | Round Table Discussion     |
| 100gulai Dessioli 111111   | negulai Dessiuli 11112        | ThE3                       |
| Estimation and Filtering   | Cybersecurity & Cyber         |                            |
| Methods for FDI            | Attack Solutions              | Round Table: Gnosis for    |
|                            | AWACK SOLULIOUS               | Maintenance: From          |
| Applications               |                               |                            |
|                            |                               | Diagnosis to Prognosis     |
|                            | 10.00 00.00                   | and Health Aware Control   |
|                            | 18:30-23:00                   |                            |
|                            | Gala Dinner                   |                            |
|                            | Ex Teatro Verdi               |                            |
| Via Cast                   | elnuovo, 10, 44121 Ferrara (] | r E), Italy                |

### Friday 7<sup>th</sup> June 2024

|                         | 08:45-09:45                             |                             |
|-------------------------|-----------------------------------------|-----------------------------|
|                         | Main Stage                              |                             |
|                         | Plenary Session Fr1P                    |                             |
| Biao Huang: Advancing   | g Causal Analysis for Fault D           | etection and Root Cause     |
| Analy                   | vsis in Process Systems Engin           | eering                      |
|                         | 09:45-10:00                             |                             |
|                         | Small Theatre                           |                             |
|                         | Coffee Break                            | I                           |
| 10:00-12:00             | 10:00-12:00                             | 10:00-12:00                 |
| Main Stage              | Small Theatre                           | Rehearsal Room              |
| Regular Session FrB1    | Regular Session FrB2                    | Regular Session FrB3        |
| Model Predictive and    | Process Safety                          | Wind and Wave Energy        |
| Reconfigurable Control  |                                         | System                      |
|                         | 12:00-13:15                             |                             |
|                         | Small Theatre                           |                             |
|                         | Lunch                                   |                             |
|                         | 13:15-14:15                             |                             |
|                         | Main Stage                              |                             |
|                         | Plenary Session Fr2P                    |                             |
| Ping Zhang: Detection a | and Avoidance of Cyber Attac<br>Systems | ks on Industrial Control    |
| 14:15-16:15             | 14:15-16:15                             | 14:15-16:15                 |
| Main Stage              | Small Theatre                           | Rehearsal Room              |
| FrD1                    | Regular Session FrD2                    | <b>Regular Session FrD3</b> |
| LiU-ICE Benchmark       | FDI for Discrete Event                  | Fault Detection and         |
| Competition             | and Hybrid Systems                      | Isolation for Linear        |
|                         |                                         | Systems                     |
|                         | 16:15-16:30                             |                             |
|                         | Small Theatre                           |                             |
|                         | Coffee Break                            |                             |
| 16:30-18:10             | 16:30-18:10                             | 16:30-18:10                 |
| Main Stage              | Small Theatre                           | Rehearsal Room              |
| FrE1                    | Regular Session FrE2                    | <b>Regular Session FrE3</b> |
| No Session              | Fault-Tolerant and                      | Fault Diagnosis in          |
|                         | Reconfigurable Control                  | Electromechanical           |
|                         |                                         | Systems                     |
|                         | 10.10 10.00                             | ×.                          |
|                         | 18:10 - 18:30                           |                             |
|                         | 18:10 – 18:30<br><b>Main Stage</b>      |                             |

# Symposium Technical Program

### Wednesday $5^{\text{th}}$ June 2024

| 9:00 – 10:00 We1P   | Plenary Session, Main Stage                                                                                                                                                                            |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Chair: Simani, Silvio<br>Co-Chair: Dallabona, Alessio                                                                                                                                                  |
|                     | Ron J. Patton                                                                                                                                                                                          |
|                     | Offshore Wind Turbine Rotor Imbalance, a Fault Tolerant Control                                                                                                                                        |
|                     | Problem                                                                                                                                                                                                |
| 10:15 – 12:15 WeB1  | Invited Session, Main Stage                                                                                                                                                                            |
|                     | AI Enhanced Fault Detection, Supervision and Safety of                                                                                                                                                 |
|                     | Technical Processes I<br>Chairi Birman, Courtain                                                                                                                                                       |
|                     | Chair: Biswas, Gautam<br>Co-Chair: Blesa, Joaquim                                                                                                                                                      |
|                     | Organizers: Chanthery Elodie, Travé-Massuyès Louise                                                                                                                                                    |
| 10:15-10:35, WeB1.1 | Tree Based Diagnosis Enhanced with Meta Knowledge Applied to                                                                                                                                           |
|                     | <i>Dynamic Systems</i> * by Goupil, Louis, Travé-Massuyès Louise,<br>Chanthery Elodie, Kohler Thibault, Delautier Sébastien                                                                            |
| 10:35-10:55, WeB1.2 | Making Systems Fail-Aware: A Semi-Supervised Machine<br>Learning Approach for Identifying Failures by Learning the<br>Correct Behavior of a System <sup>*</sup> by Mühlburger Herbert, Wotawa          |
|                     | Franz                                                                                                                                                                                                  |
| 10:55-11:15, WeB1.3 | Diagnosis Driven Anomaly Detection for Cyber-Physical Systems                                                                                                                                          |
| 10.55 11.15, WeD1.5 | by Steude Henrik Sebastian, Moddemann Lukas, Diedrich<br>Alexander, Ehrhardt Jonas, Niggemann Oliver                                                                                                   |
| 11:15-11:35, WeB1.4 | <i>Data Preprocessing for Utilizing Simulation Models for ML-Based Diagnosis</i> * by Kaufmann David, Wotawa Franz                                                                                     |
| 11:35-11:55, WeB1.5 | Leakage Detection and Estimation Using a Genetic Algorithm-<br>High Order Sliding Modes Observer Hybrid Approach <sup>*</sup> by<br>Pumaricra David, Pérez Zuñiga Gustavo, Sotomayor Moriano<br>Javier |
| 11:55-12:15, WeB1.6 | <i>Fault Diagnosis Using Interval Data-Driven LPV Observers and Structural Analysis</i> * by Fang Xin, Blesa Joaquim, Puig Vicenç                                                                      |
| 10:15 – 12:15 WeB2  | Invited Session, Small Theatre<br>Fault Diagnosis and Fault Tolerant Control for Safety of Marine<br>Systems                                                                                           |
|                     | Chair: Berenguer, Christophe<br>Co-Chair: Shahnazi, Reza<br>Organizers: Reppa Vasso, Blanke Mogens, Monteriù Andrea                                                                                    |
|                     | Organizers. Reppa Vasso, Dianke Mogens, Monteriu Anurea                                                                                                                                                |
| 10:15-10:35, WeB2.1 | A Multiple Sensor Fault Diagnosis Scheme for Autonomous<br>Surface Vessels <sup>*</sup> by Dhyani Abhishek, Negenborn Rudy, Reppa<br>Vasso                                                             |
| 10:35-10:55, WeB2.2 | <i>ESO-Based Fault-Tolerant Funnel Heading Control of Surface Vessels</i> * by Shahnazi Reza, Kurowski Martin, Eisenblätter Nick, Jeinsch Torsten                                                      |

| 10:55-11:15, WeB2.3 | Active Thruster Fault Diagnosis for an Overactuated<br>Autonomous Surface Vessel* by Tsolakis Anastasios, Ferranti<br>Laura, Reppa Vasso                                                                                           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:15-11:35, WeB2.4 | Sensor Set Decomposition for Enhanced Distributed Sensor Fault<br>Isolability of Marine Propulsion Systems <sup>*</sup> by Kougiatsos Nikos,<br>Reppa Vasso                                                                        |
| 11:35-11:55, WeB2.5 | <i>A Survey on Data-Driven Fault Diagnostic Techniques for Marine Diesel Engines</i> by Youssef Ayah, Noura Hassan, El Amrani Abderrahim, El Adel El Mostafa, Ouladsine Mustapha                                                   |
| 11:55-12:15, WeB2.6 | Actuator Fault Tolerant Control for a Remotely Operated Vehicle<br>Based on Adaptive Extended Kalman Filter* by Baldini<br>Alessandro, Felicetti Riccardo, Freddi Alessandro, Monteriù<br>Andrea                                   |
| 10:15 – 12:15 WeB3  | Invited Session, Rehearsal Room<br>Hydraulic Systems: Advanced Detection and Security<br>Chair: Kallesøe, Carsten Skovmose<br>Co-Chair: Verde, Cristina<br>Organizers: Torres Lizeth, Duviella Eric, Blesa Joaquim                 |
| 10:15-10:35, WeB3.1 | Nodal Hydraulic Head Estimation through Unscented Kalman<br>Filter for Data-Driven Leak Localization in Water Networks* by<br>Romero Ben Luis, Irofti Paul, Stoican Florin, Puig Vicenç                                            |
| 10:35-10:55, WeB3.2 | <i>Identification Algorithm for Simultaneous Leaks in a Pipeline</i> * by Peralta Jesús, Verde Cristina                                                                                                                            |
| 10:55-11:15, WeB3.3 | Leak Localization in an Urban Water Distribution Network Using<br>a LSTM Deep Neural Network <sup>*</sup> by Gómez Coronel Leonardo, De<br>Los Santos Ruiz Ildeberto, Blesa Joaquim, Puig Vicenç, López<br>Estrada Francisco Ronay |
| 11:15-11:35, WeB3.4 | <i>EKF-Based Algorithm for Two-Simultaneous-Leak Diagnosis in</i><br><i>Pipelines</i> <sup>*</sup> by Delgado Aguiñaga Jorge Alejandro, Besancon<br>Gildas, Begovich Ofelia                                                        |
| 11:35-11:55, WeB3.5 | <i>Topological Data Analysis-Based Replay Attack Detection for</i><br><i>Water Networks</i> * by Kuskonmaz Bulut, Wisniewski Rafal,<br>Kallesøe Carsten Skovmose                                                                   |
| 11:55-12:15, WeB3.6 | <i>Cyber-Attack and Fault Detection Using a Digital Twin of the Controller Software</i> * by Kallesøe Carsten Skovmose, Wisniewski Rafal                                                                                           |
| 13:30 – 14:30 We2P  | <b>Plenary Session, Main Stage</b><br>Chair: Travé-Massuyès Louise<br>Co-Chair: Bauer Peter                                                                                                                                        |
|                     | Christophe Combastel<br>Reachability and Filtering for Safe Processes: From Zonotopes to<br>Functional Sets with Typed Symbols                                                                                                     |

| 14:30 – 16:10 WeD1                               | <b>Regular Session, Main Stage</b><br><i>Fault Diagnosis for Aerospace Systems</i><br>Chair: Goupil, Philippe<br>Co-Chair: Verhaegen, Michel                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14:30-14:50, WeD1.1                              | <i>Optical Flow-Based Vertical Angular Rate Fault Detection on UAVs</i> by Jevuczo Gabor, Bauer Peter                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14:50-15:10, WeD1.2                              | Simultaneously Identifying the System Dynamics and Fault<br>Isolation for Air Data Sensor Failures: A Convex Approach by<br>Noom Jacques, de Visser Cornelis. C., Ramesh Nirupama Sai,<br>Verhaegen Michel                                                                                                                                                                                                                                                                                                                                                               |
| 15:10-15:30, WeD1.3                              | An Integrated Method for Early and Robust Detection of<br>Oscillatory Failure Cases in Flight Control Systems by Yu Jingfei,<br>Chang Jing, Chen Weisheng, Cieslak Jérôme, Ossmann Daniel                                                                                                                                                                                                                                                                                                                                                                                |
| 15:30-15:50, WeD1.4                              | Aeroengine Actuator Fault Detection and Estimation Via<br>Combined Model Observers by Alseiari Sara Khalifa, Cen<br>Zhaohui, Youssef Heba, Tsoutsanis Elias                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15:50-16:10, WeD1.5                              | <i>Mono Camera-Based GPS Spoofing Detection for Aerial Vehicles</i> by Petró Péter, Bauer Peter                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14:30 – 16:10 WeD2                               | <b>Regular Session, Small Theatre</b><br><i>FDI for Vehicles and Traction Systems</i><br>Chair: Fényes, Dániel<br>Co-Chair: Blanke, Mogens                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>14:30 – 16:10 WeD2</b><br>14:30-14:50, WeD2.1 | <i>FDI for Vehicles and Traction Systems</i><br>Chair: Fényes, Dániel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | FDI for Vehicles and Traction SystemsChair: Fényes, DánielCo-Chair: Blanke, MogensSet-Based Estimation of Battery End of Discharge for Electric                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14:30-14:50, WeD2.1                              | <ul> <li>FDI for Vehicles and Traction Systems</li> <li>Chair: Fényes, Dániel</li> <li>Co-Chair: Blanke, Mogens</li> <li>Set-Based Estimation of Battery End of Discharge for Electric</li> <li>Vehicles by Zhang Shuang, Puig Vicenç, Ifqir Sara</li> <li>Fault Estimation Observers for the Vehicle Suspension with a</li> <li>Varying Chassis Mass by Tran Gia Quoc Bao, Pham Thanh-</li> </ul>                                                                                                                                                                       |
| 14:30-14:50, WeD2.1<br>14:50-15:10, WeD2.2       | <ul> <li>FDI for Vehicles and Traction Systems</li> <li>Chair: Fényes, Dániel</li> <li>Co-Chair: Blanke, Mogens</li> <li>Set-Based Estimation of Battery End of Discharge for Electric</li> <li>Vehicles by Zhang Shuang, Puig Vicenç, Ifqir Sara</li> <li>Fault Estimation Observers for the Vehicle Suspension with a</li> <li>Varying Chassis Mass by Tran Gia Quoc Bao, Pham Thanh-</li> <li>Phong, Sename Olivier</li> <li>On the Problem of On-Board Risk Assessment for Railway</li> <li>Hunting: An Exploratory Study by Kritikakos Kyriakos, Fassois</li> </ul> |

| 14:30 – 16:10 WeD3  | Regular Session, Rehearsal Room<br>Prognostic Methods and Predictive Maintenance<br>Chair: Quinones-Grueiro, Marcos<br>Co-Chair: Verde, Cristina                                                                                      |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14:30-14:50, WeD3.1 | Physics-Defined HMM Model for Reusable LPRE Bearing<br>Remaining Useful Life Estimation by Galli Federica, Sircoulomb<br>Vincent, Weber Philippe, Hoblos Ghale, Fiore Giuseppe                                                        |
| 14:50-15:10, WeD3.2 | An Integrated Monitoring System Based on Deep Learning Tools<br>for Industrial Process by Rodríguez-Ramos Adrián, Verde<br>Cristina, Llanes-Santiago Orestes                                                                          |
| 15:10-15:30, WeD3.3 | Sustainability in Semiconductor Production Via Interpretable<br>and Reliable Predictions by Fathi Kiavash, Stramaglia Maria<br>Elena, Ristin Marko, Sadurski Marcin, Kleinert Tobias,<br>Schönfelder Robert, van de Venn Hans Wernher |
| 15:30-15:50, WeD3.4 | <i>Comparison of Transfer Learning Techniques for Building Energy</i><br><i>Forecasting</i> by Das Sharma Shansita, Coursey Austin, Quinones-<br>Grueiro Marcos, Biswas Gautam                                                        |
| 15:50-16:10, WeD3.5 | System Identification for Battery State Prediction and Lifespan<br>Estimation by Li Chenyi, Zhang Long                                                                                                                                |
| 16:25 – 18:25 WeE1  | Invited Session, Main Stage<br><i>AI Enhanced Fault Detection, Supervision and Safety of</i><br><i>Technical Processes II</i><br>Chair: Liu, Qiang<br>Co-Chair: Frisk, Erik<br>Organizers: Chanthery Elodie, Travé-Massuyès Louise    |
| 16:25-16:45, WeE1.1 | Anticipation, Earliness, Alarm Cardinality: A New Metric for<br>Industrial Time-Series Anomaly Detection* by Dion Raphaël,<br>Alamir Mazen, Le Magueresse Thibaut                                                                     |
| 16:45-17:05, WeE1.2 | Dynamic Reconstruction Feature-Based Graph Attention<br>Networks for Semi-Supervised Process Fault Diagnosis by Yan<br>Peng, Liu, Qiang                                                                                               |
| 17:05-17:25, WeE1.3 | Self-Supervised Graph Structure Learning for Cyber-Physical<br>Systems by Augustin Jan Lukas, Niggemann Oliver                                                                                                                        |
| 17:25-17:45, WeE1.4 | <i>Fault Diagnosability Analysis of Multi-Mode Systems</i> by<br>Hashemniya Fatemeh, Caillaud Benoît, Frisk Erik, Krysander<br>Mattias, Malandain Mathias                                                                             |
| 17:45-18:05, WeE1.5 | End of Life Detection of Li-Ion Primary Cell Battery Based on<br>Closed-Loop Voltage and Ambient Temperature <sup>*</sup> by Aboulfadl<br>Rania, Roman Christophe, Graton Guillaume, Ouladsine<br>Mustapha                            |
| 18:05-18:25, WeE1.6 | A Flexible Data-Driven Prognostics Model Using System<br>Performance Metrics <sup>*</sup> by Diaz-Gonzalez Abel, Coursey Austin,<br>Quinones-Grueiro, Marcos, Biswas Gautam                                                           |

| 16:25 – 18:05 WeE2                               | <b>Regular Session, Small Theatre</b><br><i>Advanced Vehicle Fault Diagnosis</i><br>Chair: Fassois, Spilios D.<br>Co-Chair: Karimi, Hamid Reza                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16:25-16:45, WeE2.1                              | <i>Safe Vehicle Motion Design with Learning for Moving in Environment with Uncertainties</i> by Tompos Denes, Nemeth Balazs, Hegedűs Tamás, Vu Van Tan, Gaspar Peter                                                                                                                                                                                                                                                                                                                                                                            |
| 16:45-17:05, WeE2.2                              | <i>Fault Tolerant Control of a Bio-Inspired UAV Using Sliding Mode</i> by Ma Tianle, Alwi Halim, Edwards Christopher                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17:05-17:25, WeE2.3                              | Modeling of Autonomous Vehicle Based on Multiscale Reduced<br>Kernel Principal Component Analysis by Jamii Jannet, Nasri<br>Romdhane, Mansouri Majdi, Mimouni Mohamed Fouzi, Nounou<br>Hazem, Puig Vicenç                                                                                                                                                                                                                                                                                                                                       |
| 17:25-17:45, WeE2.4                              | Scalable Data-Based Diagnostic Concept - Introduction and<br>Application in Automotive Field by Schmitz Andreas, Decker<br>Marco, Guehmann Clemens, Serway Roland                                                                                                                                                                                                                                                                                                                                                                               |
| 17:45-18:05, WeE2.5                              | <i>Fault Diagnosis and Identification in AGVs System</i> by Bertoli<br>Annalisa, Battilani Nicola, Fantuzzi Cesare                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16:25 – 18:25 WeE3                               | <b>Regular Session, Rehearsal Room</b><br>System Monitoring and Maintenance<br>Chair: Lan, Jianglin<br>Co-Chair: Casavola, Alessandro                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>16:25 – 18:25 WeE3</b><br>16:25-16:45, WeE3.1 | System Monitoring and Maintenance<br>Chair: Lan, Jianglin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                  | System Monitoring and MaintenanceChair: Lan, JianglinCo-Chair: Casavola, AlessandroAn Approach to Secret Sharing Based Secure Remote Monitoring                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16:25-16:45, WeE3.1                              | System Monitoring and MaintenanceChair: Lan, JianglinCo-Chair: Casavola, AlessandroAn Approach to Secret Sharing Based Secure Remote Monitoringby Sun Jie, Zhang Ping, Shen BoRuntime Monitoring and Fault Detection for Neural Network-<br>Controlled Systems by Lan Jianglin, Zhan Siyuan, Patton Ron J.,                                                                                                                                                                                                                                     |
| 16:25-16:45, WeE3.1<br>16:45-17:05, WeE3.2       | <ul> <li>System Monitoring and Maintenance</li> <li>Chair: Lan, Jianglin</li> <li>Co-Chair: Casavola, Alessandro</li> <li>An Approach to Secret Sharing Based Secure Remote Monitoring</li> <li>by Sun Jie, Zhang Ping, Shen Bo</li> <li>Runtime Monitoring and Fault Detection for Neural Network-<br/>Controlled Systems by Lan Jianglin, Zhan Siyuan, Patton Ron J.,</li> <li>Zhao Xianxian</li> <li>A Shape-Based Monitoring Method for Variable Trajectories of<br/>Finishing Mill Processes by Wang Yilin, Zhang Tongshuai, Ye</li> </ul> |

### Thursday 6<sup>th</sup> June 2024

| 8:30 – 9:30 Th1P             | Plenary Session, Main StageChair: Puig, VicençCo-Chair: Reppa, VassoRoger DixonFault Tolerance in Railways: The Evolution of a Radical NextGeneration Track Switch                                                         |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9:45 – 11:45 ThB1            | Invited Session, Main Stage<br>Advance of Fault-Tolerant Estimation and Control<br>Chair: Combastel, Christophe<br>Co-Chair: Chadli, Mohammed<br>Organizers: Jiang Bin, Polycarpou Marios M., Meng Qingkai                 |
| 09:45-10:05, ThB1            | A Virtual Actuator and Sensor Approach for Event-Triggered Fault-<br>Tolerant Control of Multi-Agent Systems* by Wang Zeyuan, Chadli<br>Mohammed                                                                           |
| 10:05-10:25, ThB1            | A Stackelberg Differential Game-Based Optimal Fault-Tolerant<br>Control Method for Over-Actuated Systems* by Ni Yuan, Yang Hao,<br>Xu Yuhang, Jiang Bin, Lu Ningyun                                                        |
| 10:25-10:45, ThB1.3          | Fault-Tolerant Safe Control for Water Networks: An Interconnected<br>Switched System Approach* by Meng Qingkai, Vrachimis Stelios,<br>Polycarpou Marios M.                                                                 |
| 10:45 <b>-</b> 11:05, ThB1.4 | Inverse PageRank-Based Fault Propagation Analysis of Production<br>Lines under Multiple Uncertain Performance Indicators by Huang<br>Shoujin, Huang Binda, Jiang Bin, Lu Ningyun, Ma Yajie, Li<br>Ronghua, Du Wei, Cao Jie |
| 11:05-11:25, ThB1.5          | <i>Data-Driven Adaptive FaultTolerant Control for Floating Offshore</i><br><i>Wind Turbines</i> * by Simani Silvio, Ping Lam Yat                                                                                           |
| 11:25-11:45, ThB1.6          | Synergetic Decomposition of Input-Output Dependency for Control<br>System Intelligent Monitoring: A Perspective from Information<br>Theory <sup>*</sup> by Chen Xu, Ren Jiayi, Zhao Chunhui                                |
| 9:45 – 11:45 ThB2            | Regular Session, Small Theatre<br>Estimation and Filtering Methods for Fault Diagnosis<br>Chair: Lopez-Estrada, Francisco-Ronay<br>Co-Chair: Hajiyev, Chingiz                                                              |
| 09:45 <b>-</b> 10:05, ThB2.1 | <i>A Kernel-Based Approach to Data-Driven Actuator Fault Estimation</i><br>by Sheikhi Mohammad Amin, Mohajerin Esfahani Peyman,<br>Keviczky Tamas                                                                          |
| 10:05-10:25, ThB2.2          | A Distributionally Robust Approach to Active Fault Detection for<br>Linear Stochastic Dynamic Systems by Xue Ting, Zhao Dong, Li<br>Linlin, Li Yueyang, Zhong Maiying                                                      |
| 10:25-10:45, ThB.2.3         | <i>Constrained Multi-Output Gaussian Process Regression for Data Reconciliation</i> by Horak Wessel, Louw Tobi, Bradshaw Steven                                                                                            |

| 10:45-11:05, ThB2.4  | Spectral Conditioning within the Energy Graph-Based Visualisation<br>Fault Detection Method by Wolmarans Wikus, van Schoor George,<br>Uren Kenneth Richard |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:05-11:25, ThB2.5  | Adaptive Filtering against Sensor/Actuator Faults by Hajiyev<br>Chingiz                                                                                    |
| 11:25-11:45, ThB2.6  | <i>Fault Detection Statistics in the Presence of Additive Measurement Errors</i> by Hajiyev, Chingiz                                                       |
| 9:45 – 11:45 ThB3    | Regular Session, Rehearsal Room                                                                                                                            |
|                      | Structural Methods for Fault Diagnosis                                                                                                                     |
|                      | Chair: Cocquempot, Vincent                                                                                                                                 |
|                      | Co-Chair: Krysander, Mattias                                                                                                                               |
| 09:45-10:05, ThB3.1  | Structural Analysis of a Rocket's Multi-Engine Propulsion Cluster                                                                                          |
|                      | for Fault Detection and Isolation by Murata Renato, Gibart Jules,                                                                                          |
|                      | Marzat Julien, Piet-Lahanier Helene, Boujnah Sandra, Farago                                                                                                |
|                      | François                                                                                                                                                   |
| 10:05-10:25, ThB3.2  | Improving Residual Robustness to Noise for Fault Localization in a                                                                                         |
|                      | Y-Shaped Network by Abdel Karim, Cocquempot Vincent, Atoui M.                                                                                              |
|                      | Amine Laly Pierre, Degardin Virginie                                                                                                                       |
| 10:25-10:45, ThB3.3  | Fuel Injection Fault Diagnosis Using Structural Analysis and Data-                                                                                         |
| 10.20 10.40, 11100.0 | Driven Residuals by Allansson Niklas, Mohammadi Arman, Jung                                                                                                |
|                      | Daniel, Krysander Mattias                                                                                                                                  |
| 10:4F 11:0F ML D9 4  | Model-Based Sensor Fault Detection and Diagnosis in Closed-Loop                                                                                            |
| 10:45-11:05, ThB3.4  | Power Converters for Electric Vehicles by Ajra Youssef, Hoblos                                                                                             |
|                      | Ghaleb, Al Sheikh Hiba, Moubayed Nazih                                                                                                                     |
|                      | Data-Driven Soft Sensor Based on Sparse Relational Graph                                                                                                   |
| 11:05-11:25, ThB3.5  | Attention Network for Hot Strip Mill Process by Li Kang, Gao                                                                                               |
|                      | Xiaoyong, Xue Jianye, Ye Hao, Zhang Laibin                                                                                                                 |
|                      | A Deductive Fault Analysis Method Based on Hypergraphs by                                                                                                  |
| 11:25-11:45, ThB3.6  | Vitucci Carlo, Westerbäck Thomas, Sundmark Daniel, Forsberg                                                                                                |
|                      | Håkan, Nolte Thomas, Jägemar, Marcus                                                                                                                       |
|                      |                                                                                                                                                            |
|                      |                                                                                                                                                            |
| 13:00 – 14:00 Th2P   | Plenary Session, Main Stage                                                                                                                                |
|                      | Chair: Frisk, Erik                                                                                                                                         |
|                      | Co-Chair: Ossmann, Daniel                                                                                                                                  |
|                      | Olof Steinert                                                                                                                                              |
|                      | Harnessing Data for Predictive Maintenance and Collaboration, to                                                                                           |
|                      | Boost Innovation                                                                                                                                           |
| 14:00 – 16:00 ThD1   | Regular Session, Main Stage                                                                                                                                |
|                      | Artificial Neural Networks for Fault Diagnosis                                                                                                             |
|                      | Chair: Mazzoleni, Mirko                                                                                                                                    |
|                      | Co-Chair: Djeziri, Mohand Arab                                                                                                                             |
| 14:00-14:20, ThD1.1  | Novel Stack Autoencoder and Its Application to Industrial Fault                                                                                            |
|                      | <i>Diagnosis</i> by Lu Zi-Yang, He Yan-Lin, Zhu Qun-Xiong                                                                                                  |

| 14:20-14:40, ThD1.2                        | Stacked AutoEncoder Based Diagnosis Applied on a Solar<br>Photovoltaic System by Bougoffa Mouaad, Benmoussa Samir,<br>Djeziri Mohand Arab, Thierry Contaret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14:40-15:00, ThD1.3                        | Enhancing Fault Detection in Nonlinear Industrial Processes: A<br>Reduced Kernel Principal Component Analysis-Based Spectral<br>Clustering Approach by Attouri Khadija, Mansouri Majdi, Hajji<br>Mansour, Abdelmalek Kouadri, Bouzrara Kais, Nounou Hazem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15:00-15:20, ThD1.4                        | A Novel Kernel Based Domain Adaption Neural Network for Fault<br>Diagnosis of Aero Gas Turbine by Li Bing, Zhao Yuxiang, Wu Lan,<br>Yao Yuan, Fu Yuhui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15:20-15:40, ThD1.5                        | Genetic Algorithm-Based Hyperparmeter Optimization of Deep<br>Learning for Fault Diagnosis by Hichri Amal, Hajji Mansour,<br>Mansouri Majdi, Abdelmalek Kouadri, Bouzrara, Kais, Nounou<br>Hazem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15:40-16:00, ThD1.6                        | Kernel Principal Component Analysis Improvement Based on<br>Data-Reduction Via Class Interval by Kaib Mohammed,<br>Abdelmalek Kouadri, Harkat Mohamed-Faouzi, Bensmail<br>Abderazak, Mansouri Majdi, Nounou Mohamed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14:00 – 16:00 ThD2                         | <b>Regular Session, Small Theatre</b><br><i>Health Monitoring and Fault Diagnosis Applications</i><br>Chair: Puncochar, Ivo<br>Co-Chair: Biswas, Gautam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14:00-14:20, ThD2.1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ,                                          | A Step Towards Implementation of State Observers in Industrial<br>Aluminium Smelters by Mattioni Andrea, da Silva Moreira Lucas<br>José, Roustan Herve Yves Guy Bernard Louis, Besancon Gildas,<br>Fiacchini Mirko                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14:20-14:40, ThD2.2                        | <i>Aluminium Smelters</i> by Mattioni Andrea, da Silva Moreira Lucas<br>José, Roustan Herve Yves Guy Bernard Louis, Besancon Gildas,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                            | <ul> <li>Aluminium Smelters by Mattioni Andrea, da Silva Moreira Lucas</li> <li>José, Roustan Herve Yves Guy Bernard Louis, Besancon Gildas,</li> <li>Fiacchini Mirko</li> <li>A Two-Stage Machine Learning-Aided Approach for Quench</li> <li>Identification at the European XFEL by Boukela Lynda, Eichler</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14:20-14:40, ThD2.2                        | <ul> <li>Aluminium Smelters by Mattioni Andrea, da Silva Moreira Lucas José, Roustan Herve Yves Guy Bernard Louis, Besancon Gildas, Fiacchini Mirko</li> <li>A Two-Stage Machine Learning-Aided Approach for Quench Identification at the European XFEL by Boukela Lynda, Eichler Annika, Branlard Julien, Jomhari Nur Zulaiha</li> <li>Leak Detection for Household Pipelines Based on a Smart Valve with Single Pressure and Flow Sensors by Cesani Davide,</li> </ul>                                                                                                                                                                                                                                                                   |
| 14:20-14:40, ThD2.2<br>14:40-15:00, ThD2.3 | <ul> <li>Aluminium Smelters by Mattioni Andrea, da Silva Moreira Lucas<br/>José, Roustan Herve Yves Guy Bernard Louis, Besancon Gildas,<br/>Fiacchini Mirko</li> <li>A Two-Stage Machine Learning-Aided Approach for Quench<br/>Identification at the European XFEL by Boukela Lynda, Eichler<br/>Annika, Branlard Julien, Jomhari Nur Zulaiha</li> <li>Leak Detection for Household Pipelines Based on a Smart Valve<br/>with Single Pressure and Flow Sensors by Cesani Davide,<br/>Mazzoleni Mirko, Previdi Fabio</li> <li>Intelligent Monitoring and Optimal Control of HVAC System and<br/>Its Cloud-Edge Implementation by Deng Qiao, Chen Zhiwen, Zhu<br/>Wanting, Li Zefan, Yuan Yifeng, Li Xinhong, Jiang Zhaohui, Yin</li> </ul> |

| 14:00 – 16:00 ThD3                                                | <b>Regular Session, Rehearsal Room</b><br><i>Fault Diagnosis for Nonlinear Systems</i><br>Chair: Puig, Vicenç<br>Co-Chair: Previdi, Fabio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14:00-14:20, ThD3.1                                               | Discrete-Time Sliding Mode Control Based on Improved Decoupled<br>Disturbance Compensator by Bai Jianjun, Guan Yacun, Jiang Bin,<br>Lin Yihao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14:20-14:40, ThD3.2                                               | <i>Estimation of Cornering Stiffness Using Ultra-Local Model and LPV-Based Observer</i> by Fényes Dániel, Hegedűs Tamás, Gaspar Peter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14:40-15:00, ThD3.3                                               | <i>A Zonotopic FDI Approach with LPV-Based EKF in Autonomous Vehicles</i> by Conejo Carlos, Puig Vicenç, Morcego Bernardo, Navas Francisco, Milanés Vicente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15:00-15:20, ThD3.4                                               | Enhancing Fault Diagnosis of Uncertain Grid-Connected<br>Photovoltaic Systems Using Deep GRU-Based Bayesian<br>Optimization by Yahyaoui Zahra, Hajji Mansour, Mansouri Majdi,<br>Abdelmalek Kouadri, Bouzrara Kais, Nounou Hazem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15:20-15:40, ThD3.5                                               | Adaptive Fault-Tolerant Tracking Control for MIMO Nonlinear<br>Systems with Time-Varying Full State Constraints by Chao<br>Daikun, Qi Ruiyun, Soh Yeng Chai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15:40-16:00, ThD3.6                                               | <i>The Scenario Approach for Data-Driven Prognostics</i> by Cesani Davide, Mazzoleni Mirko, Previdi Fabio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16:15 – 18:15 ThE1                                                | Regular Session, Main Stage<br>Estimation and Filtering Methods for FDI Applications<br>Chair: Zhang, Ping<br>Co-Chair: Shang, Chao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>16:15 – 18:15 ThE1</b><br>16:15-16:35, ThE1.1                  | <i>Estimation and Filtering Methods for FDI Applications</i><br>Chair: Zhang, Ping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                   | Estimation and Filtering Methods for FDI Applications<br>Chair: Zhang, Ping<br>Co-Chair: Shang, Chao<br>Identification of Relevant Symptoms of Performance Degradation<br>in Industrial Machines by Boni Pietro, Sala Roberto, Mazzoleni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16:15-16:35, ThE1.1                                               | Estimation and Filtering Methods for FDI Applications<br>Chair: Zhang, Ping<br>Co-Chair: Shang, Chao<br>Identification of Relevant Symptoms of Performance Degradation<br>in Industrial Machines by Boni Pietro, Sala Roberto, Mazzoleni<br>Mirko, Pirola Fabiana, Previdi Fabio<br>Fault Diagnosis of PEM Fuel Cells: An Assessment of Two Bayes'                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16:15-16:35, ThE1.1<br>16:35-16:55, ThE1.2                        | <ul> <li>Estimation and Filtering Methods for FDI Applications</li> <li>Chair: Zhang, Ping</li> <li>Co-Chair: Shang, Chao</li> <li>Identification of Relevant Symptoms of Performance Degradation<br/>in Industrial Machines by Boni Pietro, Sala Roberto, Mazzoleni</li> <li>Mirko, Pirola Fabiana, Previdi Fabio</li> <li>Fault Diagnosis of PEM Fuel Cells: An Assessment of Two Bayes'<br/>Filters by Allam Abdulrahman, Mangold, Michael, Zhang Ping</li> <li>Hydrogen Rate Prediction in Natural-Gas Pipes Supplying<br/>Industrial Machines in the Frame of Power-To-Gas Technology by<br/>Djeziri Mohand Arab, Benmoussa Samir, Occelli Clément, Fiorido</li> </ul>                                                                                                                         |
| 16:15-16:35, ThE1.1<br>16:35-16:55, ThE1.2<br>16:55-17:15, ThE1.3 | <ul> <li>Estimation and Filtering Methods for FDI Applications</li> <li>Chair: Zhang, Ping</li> <li>Co-Chair: Shang, Chao</li> <li>Identification of Relevant Symptoms of Performance Degradation<br/>in Industrial Machines by Boni Pietro, Sala Roberto, Mazzoleni</li> <li>Mirko, Pirola Fabiana, Previdi Fabio</li> <li>Fault Diagnosis of PEM Fuel Cells: An Assessment of Two Bayes'<br/>Filters by Allam Abdulrahman, Mangold, Michael, Zhang Ping</li> <li>Hydrogen Rate Prediction in Natural-Gas Pipes Supplying<br/>Industrial Machines in the Frame of Power-To-Gas Technology by</li> <li>Djeziri Mohand Arab, Benmoussa Samir, Occelli Clément, Fiorido<br/>Tomas, Bendahan Marc, Seguin Jean-Luc</li> <li>Research on Wireless Physical Layer Covert Channel Detection in</li> </ul> |

| 16:15 – 18:15 ThE2  | Regular Session, Small Theatre<br>Cybersecurity & Cyber Attack Solutions<br>Chair: Bonfe, Marcello<br>Co-Chair: Bartyś, Michał                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16:15-16:35, ThE2.1 | <i>Attack Isolation in a Water Treatment Plant</i> by Jia Mengsen,<br>Zhang Ping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16:35-16:55, ThE2.2 | <i>Modbus Vulnerability: Hard-To-Detect Sabotage Scenario</i> by<br>Bartyś Michał, Włodarczyk Olgierd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16:55-17:15, ThE2.3 | <i>Kullback–Leibler Divergence-Based Tuning of Kalman Filter for Bias Injection Attacks in an Artificial Pancreas System</i> by Tosun Fatih Emre, Teixeira André M.H., Ahlen Anders, Dey Subhrakanti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 17:15-17:35, ThE2.4 | Adaptive Resilient Control for a Class of Strict-Feedback Nonlinear<br>Systems under Replay Attacks by He Wenjing, Shi Yukun, Wang<br>Youqing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17:35-17:55, ThE2.5 | An Observer-Based Approach to Mitigation of Integrity<br>Cyberattacks by Zhou Liutao, Salah Abd A., Ding Steven X., Liu<br>Tianyu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17:55-18:15, ThE2.6 | <i>Attack Detection in Cyber-Physical Systems Via Nullspace-Based Filter Designs</i> by Ossmann Daniel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16:15 – 18:15 ThE3  | Round Table Discussion, Rehearsal Room<br>Gnosis for Maintenance: From Diagnosis to Prognosis and Health<br>Aware Control<br>Chair: Reppa, Vasso<br>Co-Chair: Kougiatsos, Nikos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| List of Panellists  | <ul> <li>Vicenç Puig, Technical University of Catalunya (UPC), Spain</li> <li>Jin Jiang, University of Western Ontario, Canada</li> <li>Alfredo Núñez, Delft University of Technology, the<br/>Netherlands</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Main Topics         | <ul> <li>State-of-the-art (academia) and state-of-practice (industry) methods for maintenance, prognosis, and health-aware control</li> <li>Results (expectations) of a maintenance method</li> <li>Health-aware control and its development in industry/academia, and its relationship with fault-tolerant control</li> <li>Relationship among (i) predictive maintenance and prognosis, (ii) predictive maintenance and diagnosis/monitoring, (iii) prognosis and closed loop control</li> <li>Predictive maintenance and prognostics tasks as part of a controlled system considering nonlinear dynamics, uncertainties, and different time scales</li> <li>Challenges (of implementation) of predictive maintenance, prognosis, and health-aware control</li> <li>Presentation of most popular industrial use cases of health-aware control</li> </ul> |


### Friday 7<sup>th</sup> June 2024

| 8:45 – 9:45 Fr1P    | <b>Plenary Session, Main Stage</b><br>Chair: Verde, Cristina<br>Co-Chair: Quinones-Grueiro, Marcos                                                                                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Biao Huang<br>Advancing Causal Analysis for Fault Detection and Root Cause<br>Analysis in Process Systems Engineering                                                                                             |
| 10:00 – 12:00 FrB1  | <b>Regular Session, Main Stage</b><br><i>Model Predictive and Reconfigurable Control</i><br>Chair: Verde, Cristina<br>Co-Chair: Boem, Francesca                                                                   |
| 10:00-10:20, FrB1.1 | <i>Hierarchical Fault-Tolerant Coverage Control for an Autonomous</i><br><i>Aerial Agent</i> by Papaioannou Savvas, Vitale Christian, Kolios<br>Panayiotis, Panayiotou Christos, Polycarpou Marios M.             |
| 10:20-10:40, FrB1.2 | Enhancing Fault Diagnosis in Process Industries with Internal<br>Variables of Model Predictive Control by Diallo Abdoul Rahime,<br>Homri Lazhar, Dantan Jean-yves, Bonnet Frédéric, Boeuf Thomas                  |
| 10:40-11:00, FrB1.3 | <i>Resilience Countermeasures for Networked Control Systems under Denial-Of-Service Scenarios</i> by Franze Giuseppe, Lucia Walter, Tedesco Francesco                                                             |
| 11:00-11:20, FrB1.4 | Privacy Preserving Approximated Optimal Control of<br>Pasteurization Unit Using Homomorphic Encryption by Dzurková<br>Diana, Mészáros Olivér, Kaluz Martin                                                        |
| 11:20-11:40, FrB1.5 | Model Predictive Control for Tumor Growth: Detection of<br>Deviations and Therapeutic Implications by Hernández-Rivera<br>Andrés, Velarde Rueda Pablo, Zafra-Cabeza Ascension, Maestre<br>Torreblanca, José María |
| 11:40-12:00, FrB1.6 | Learning-Based MPC with Uncertainty Estimation for Resilient<br>Microgrid Energy Management by Casagrande Vittorio, Ferianc<br>Martin, Rodrigues Miguel, Boem Francesca                                           |
| 10:00 – 12:00 FrB2  | Regular Session, Small Theatre<br>Process Safety<br>Chair: Carpitella, Silvia<br>Co-Chair: Jiang, Jin                                                                                                             |
| 10:00-10:20, FrB2.1 | Sustainable Supply Chain Control Strategies for the Natural Stone<br>Market by Azevedo Elen, Carpitella Silvia                                                                                                    |
| 10:20-10:40, FrB2.2 | Ageing in Process Industry: Identification of Material Degradation<br>from past Accidents Analysis by Vitale Morena, Shi Huxiao, Castro<br>Rodriguez David Javier, Barresi Antonello, Demichela Micaela           |
| 10:40-11:00, FrB2.3 | Adding Smart Functions to an Industry-Grade Transducer for<br>Process Fault Detection without Modifying Footprint by Jiang Jin                                                                                    |
| 11:00-11:20, FrB2.4 | A Modeling Approach of EFT Faults on In-Vehicle Communication<br>Protocols Supported by FTA Analysis by Pohren Daniel, Dos<br>Santos Roque Alexandre, Pignaton de Freitas Edison, Pereira<br>Carlos Eduardo       |

| 11:20-11:40, FrB2.5 | Short-Term Photovoltaic Power Forecasting Based Kernel Ridge<br>Regression by Marweni Manel, Hajji Mansour, Mansouri Majdi,<br>Mimouni Mohamed Fouzi, Nounou, Mohamed                          |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:40-12:00, FrB2.6 | <i>Sensor Fault Detection and Diagnosis: Methods and Challenges</i> by Jombo Gbanaibolou, Zhang Yu, Lu Ningyun                                                                                 |
| 10:00 – 12:00 FrB3  | <b>Regular Session, Rehearsal Room</b><br><i>Wind and Wave Energy System</i><br>Chair: Martinez Molina, John J.<br>Co-Chair: Simani, Silvio                                                    |
| 10:00-10:20, FrB3.1 | <i>Accommodating Sensor Faults in Wave Energy Optimal Control</i> by<br>Papini Guglielmo, Faedo Nicolás, Matiazzo Giuliana                                                                     |
| 10:20-10:40, FrB3.2 | Neural Networks for Offshore Wind Turbine Converter Failure<br>Prognosis by Moros Demitri, Berrabah Nassif, Ashton Ian                                                                         |
| 10:40-11:00, FrB3.3 | Friction Estimation for Condition Monitoring of Wind Turbine<br>Hydraulic Pitch System by Dallabona Alessio, Blanke Mogens,<br>Papageorgiou Dimitrios                                          |
| 11:00-11:20, FrB3.4 | <i>Wind Turbine Blade Monitoring Via Deep Learning and Acoustic Aerodynamic Signals</i> by Ping Lam Yat, Simani Silvio                                                                         |
| 11:20-11:40, FrB3.5 | Current Sensor Fault Diagnosis of DFIG Wind Turbines Using an<br>Extended Kalman Filter Observer: Experimental Validation by<br>Abbas Mohammed, Chafouk Houcine, Ardjoun Sid Ahmed El<br>Mehdi |
| 11:40-12:00, FrB3.6 | Evaluating the Effect of Control Gains on Wind Turbine Drive-<br>Train Deterioration: An Experimental Study by Romero Elena,<br>Martinez Molina John J., Dumon Jonathan, Berenguer Christophe  |
| 13:15 – 15:15 Fr2P  | <b>Plenary Session, Main Stage</b><br>Chair: Simani, Silvio<br>Co-Chair: Quinones-Grueiro, Marcos                                                                                              |
|                     | Ping Zhang<br>Detection and Avoidance of Cyber Attacks on Industrial Control<br>Systems                                                                                                        |
| 14:15 – 16:15 FrD1  | Invited Session, Main Stage<br>LiU-ICE Benchmark Competition<br>Chair: Jung, Daniel<br>Co-Chair: Frisk, Erik                                                                                   |
|                     | LiU-ICE Industrial Fault Diagnosis Benchmark - Anomaly<br>Detection and Fault Isolation with Incomplete Data                                                                                   |
| 14:15 – 16:15 FrD2  | <b>Regular Session, Small Theatre</b><br><i>FDI for Discrete Event and Hybrid Systems</i><br>Chair: Chadli, Mohammed<br>Co-Chair: Frey, Christian W.                                           |
| 14:15-14:35, FrD2.1 | <i>The Effect of Graph Complexity in an Energy-Based FDI Approach</i><br>by Smith Jan-Hendrik, van Schoor George, Uren Kenneth Richard,<br>Schäfer Thomas                                      |

| 14:35-14:55, FrD2.2 | <i>Learning System Descriptions for Cyber-Physical Systems</i> by Diedrich Alexander, Moddemann Lukas, Niggemann Oliver                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14:55-15:15, FrD2.3 | <i>Hybrid Unsupervised Learning Strategy for Monitoring Industrial</i><br><i>Batch Processes</i> by Frey Christian W.                                                                                                |
| 15:15-15:35, FrD2.4 | <i>Discret2Di - Deep Learning Based Discretization for Model-Based Diagnosis</i> by Moddemann Lukas, Steude Henrik Sebastian, Diedrich Alexander, Niggemann Oliver                                                   |
| 15:35-15:55, FrD2.5 | <i>Transforming Time Petri Nets into Heterogeneous Petri Nets for</i><br><i>Hybrid System Monitoring</i> by Hatte Léonie, Ribot Pauline,<br>Chanthery Elodie                                                         |
| 15:55-16:15, FrD2.6 | <i>V-Nets</i> by Vasquez John William, Pérez Zuñiga Gustavo,<br>Rodriguez Leonardo                                                                                                                                   |
| 14:15 – 16:15 FrD3  | <b>Regular Session, Rehearsal Room</b><br>Fault Detection and Isolation for Linear Systems<br>Chair: Niemann, Henrik                                                                                                 |
|                     | Co-Chair: Orchard, Marcos                                                                                                                                                                                            |
| 14:15-14:35, FrD3.1 | A Novel Dynamical Model for Diagnosis, Prognosis and Health-<br>Aware Control of Lithium-Ion Batteries by Martinez Molina John<br>J., Spinola Félix Mônica, Kulkarni Chetan, Orchard Marcos,<br>Berenguer Christophe |
| 14:35-14:55, FrD3.2 | <i>Vector Based Fault Isolation in Closed-Loop Systems</i> by Niemann<br>Henrik, Poulsen Niels Kjølstad                                                                                                              |
| 14:55-15:15, FrD3.3 | Distributed Data-Driven Fault Detection for Industrial<br>Interconnected Systems with Unknown Topology Structure by Gao<br>Jingjing, Yang Xu, Zhou Xian, Li Qing, Huang Jian, Cui Jiarui                             |
| 15:15-15:35, FrD3.4 | Active Fault Detection Based on Tensor Train Decomposition by<br>Puncochar Ivo, Straka Ondrej, Tichavsky Petr                                                                                                        |
| 15:35-15:55, FrD3.5 | A Unified Modelling of Dead-Zone, Dead-Band, Hysteresis, and<br>Other Faulty Local Behaviors of Actuators and Sensors by Bainier<br>Gustave, Marx Benoit, Ponsart Jean-Christophe                                    |
| 15:55-16:15, FrD3.6 | <i>Interval Observer Design for Fault Diagnosis</i> by Zhirabok Alexey N., Zuev Alexander, Shumsky Alexey                                                                                                            |
| 16:30 – 18:10 FrE2  | Regular Session, Small Theatre                                                                                                                                                                                       |
| 10·30 – 10·10 FFEZ  | <i>Fault-Tolerant and Reconfigurable Control</i><br>Chair: Jiang, Jin<br>Co-Chair: Witczak, Marcin                                                                                                                   |
| 16:30-16:50, FrE2.1 | Finite-Frequency Fuzzy Fault-Tolerant Static Output Feedback<br>$H\infty$ Control for Diesel Engine Air-Path System by El-Amrani<br>Abderrahim, Noura Hassan, El Adel El Mostafa, Ouladsine<br>Mustapha              |
| 16:50-17:10, FrE2.2 | <i>Evaluating Resilience Metrics in the Context of Safety Concepts</i> by Ghanbari Mohammad, Jiang Jin                                                                                                               |
| 17:10-17:30, FrE2.3 | Consensus Control for T-S Fuzzy Multi-Agent Systems with<br>Parametric Uncertainties by Cherigui Aioub, Nachidi Meriem,<br>Chadli Mohammed                                                                           |

| 17:30-17:50, FrE2.4 | Switching LPV Approach for Analysis and Control of TCP-Based<br>Cyber-Physical Systems under DoS Attack by Barchinezhad<br>Soheila, Puig Vicenç, Witczak Marcin                                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17:50-18:10, FrE2.5 | <i>Optimal Fault Tolerant Control Strategy of a Continuous Fermentative Bioprocess for Biogas Production</i> by Gurubel Tun Kelly Joel, Rodríguez Reyes Juan José, León Becerril Elizabeth, Moya Sanchez Eduardo Ulises |
| 16:30–18:10 FrE3    | Regular Session, Rehearsal Room                                                                                                                                                                                         |
|                     | Fault Diagnosis in Electromechanical Systems                                                                                                                                                                            |
|                     | Chair: Zhang, Ping<br>Co-Chair: Karimi, Hamid Reza                                                                                                                                                                      |
| 16:30-16:50, FrE3.1 | Application of Digital Signature to Attack Detection in a DC Motor                                                                                                                                                      |
| 10 00 10 00, 11201  | Control System by Barbosa Costales Jose Efren, Gomez Munoz<br>Daniel, Yadgar Obaidullah, Fauser Moritz, Zhang Ping                                                                                                      |
| 16:50-17:10, FrE3.2 | Weighted Feature Fusion of Convolutional Neural Network and<br>Graph Convolutional Network for Mechanical Fault Diagnosis under<br>Time-Varying Speeds by Yu Yue, Karimi Hamid Reza, Liu Caiyi                          |
| 17:10-17:30, FrE3.3 | Harmonic Signature Extraction in Motor Fault Detection Via a<br>Weighted Sparsity-Driven and Graph-Based Model by Tsuruta<br>Shinya, Liu Dehong                                                                         |
| 17:30-17:50, FrE3.4 | A Blind Denoising Method for Noise Rotating Machinery Vibration<br>Signals by Yang Daoguang, Karimi Hamid Reza, Ma Dayou                                                                                                |
| 17:50-18:10, FrE3.5 | Multi-Modal Self-Supervised Learning for Cross-Domain One-Shot<br>Bearing Fault Diagnosis by Chen Xiaohan, Xue Yihao, Huang<br>Mengjie, Yang Rui                                                                        |









CONSORZIO FUTURO IN RICERCA









