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Abstract: Prognostics is the process of forecasting the time-to-failure or the time-to-alarm of
an industrial item using degradation models. Data-driven approaches to prognostics employ re-
gression models fit on condition indicators computed from raw run-to-failure data to extrapolate
the degradation behaviour of the item. The development of a reliable data-driven degradation
model typically requires many run-to-failure acquisitions to understand the degrading behavior.
Such experimental tests are destructive and expensive for items manufacturers. Thus, decreasing
the number of run-to-failure experiments is key in reducing predictive maintenance costs. In this
work, focusing on time-to-alarm prediction to anticipate items breakdown, we propose a data-
driven method based on the scenario approach to characterise the degradation behaviour of an
industrial item in certain operative conditions using only one run-to-failure experiment, updating
the time-to-alarm prediction only when needed. The scenario approach gives probabilistic
guarantees on the time-to-alarm predictions.
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1. INTRODUCTION

Predictive maintenance is a tool to maximize industrial
machinery dependability, reduce damages caused by failed
items and decrease intervention costs (Zio, 2022). In this
context, Prognostics and Health Management (PHM) is
a research field that links the study of failure mecha-
nisms and life cycle management of mechanical items of
industrial machinery (Javed et al., 2017). PHM approaches
employ raw sensor data from industrial machines to com-
pute condition indicators (CIs), preferably monotonic and
proportional with the degradation level, used to contin-
uously evaluate the health state of the items (condition
monitoring) (Mazzoleni et al., 2021). Data-driven methods
to prognostics fit a degradation model on the computed
CIs using regression techniques. These models can be used
at the current time to predict the CIs values at future time
instants. The model and its predictions are then updated
each time a new CI value is available (Javed et al., 2017;
Maurelli et al., 2024), see (Zhai et al., 2019) and (Ramezani
et al., 2023) for thorough reviews. Often, the uncertainty
in the CIs predicted values is considered to provide an
interval of possible future CI values.

Relying on the design specifications of the items, health
state thresholds on CIs trend are derived to estimate the
items Remaining Useful Life (RUL). Typically, prognostics
methods work with a set of different thresholds, denoting
an (i) initial degradation, (ii) an alarm condition where
the degradation is critical, and (iii) a complete failure
situation (Javed et al., 2015). RUL estimation is however
a complex task since the prediction of the CIs future trend
is affected by different sources on uncertainty (Javed et al.,
2017)(Celaya et al., 2012)(Sankararaman, 2015). For this
reason, many run-to-failure data are typically required to
develop a reliable degradation model that is able to also

quantify the uncertainty in the predictions. Still, run-to-
failure experiments are costly and difficult to implement
in industry (Mazzoleni et al., 2022).
Following the previous statements, the development of
a data-driven degradation model can be thought as an
optimization problem under uncertainty. In this context,
the scenario approach theory allows to learn models from
data providing finite-sample uncertainty quantification
that are independent from the data probability distribu-
tion (Campi et al., 2021). In particular, Interval Predictor
Methods (IPMs) apply the scenario theory on estimating
a prediction interval, rather than a point value (Campi
et al., 2009)(Garatti et al., 2019).
In this paper, we propose a data-driven prognostics
method that relies on the scenario approach and employs
an IPM for fitting a degradation model for a single CI.
The use of the IPM allows to (i) consider only a single
run-to-failure experiment for data acquisition, regardless
of the fault on the item, so that only a single item needs
to be characterized with respect to its degradation history;
(ii) manage the uncertainty in the measured data, provid-
ing a forecast of the time-to-alarm 1 interval with finite-
sample and distribution-free probabilistic guarantees; (iii)
update the degradation model only when needed, in case
the online behavior of a new item is different from the
characterised one. The proposed approach to prognostics
is evaluated on the public PRONOSTIA fempto-bearings
dataset (Nectoux et al., 2012). Results are compared
with the Summation-Wavelet Extreme Learning Machine
(sw-elm) structure presented in (Javed et al., 2015).
The remainder of the paper is organised as follows. Section
2 presents the main results of the scenario approach theory.

1 The time-to-alarm is defined as the time instant when the CI
forecast intersects the alarm threshold denoting an alarm condition.



Section 3 and Section 4 define the proposed prognostics
method and show validation and comparison results, re-
spectively. Section 5 is devoted to concluding remarks.

2. SCENARIO APPROACH THEORY
2.1 Review of the scenario approach

Consider the optimization problem as defined in (Campi
and Garatti, 2008, 2011; Garatti and Campi, 2013)

min
v∈Rd−1

ℓ(v, δ), (1)

where v ∈ Rd−1 is the vector of design variables and
δ ∈ ∆ is a generic uncertain element, with ∆ the set
of all possible uncertainty elements. The cost ℓ(v, δ) is
assumed convex in v for any given δ with no dependence
on ∆. However, problem (1) is not well-defined as it lacks
a description of how δ should be accounted for in the
optimization process. To address this issue, the scenario
approach considers N outcomes of the uncertainty variable
δ1, δ2, ..., δN , called scenarios, sampled independently from
∆ according to the probability measure P. In practical
applications, a finite number of N scenarios are used to
approximate ∆ and (approximately) solve (1), following
in its simplest formulation a worst-case philosophy. This
leads to the following scenario program.
Definition 1. (Scenario Program).

SPN : min
v∈Rd−1

[
max

i=1,...,N
ℓ(v, δi)

]
, (2)

Problem (2) is solved in place of (1) to obtain a solution
v∗ with ℓ∗ the related optimal cost value.

Consider now a new scenario δN+1 ̸= δi, i = 1, . . . , N .
As δN+1 has not be considered in solving (2), it may
happen that ℓ(v∗, δN+1) > ℓ∗ (that is, the solution v∗ is
not the optimal one) with a certain probability, quantified
as follows.
Theorem 1. (Campi and Garatti, 2008) For any ϵ ∈ (0, 1)
(risk parameter), and β ∈ (0, 1) (confidence parameter), if
the number of scenarios N satisfies N ≥ 2

ϵ

(
ln 1

β + d− 1
)
,

then, with probability ≥ 1 − β, it holds that ℓ∗ is ϵ-risk
guaranteed, that is

P {δ ∈ ∆ : ℓ(v∗, δ) > ℓ∗} ≤ ϵ.

The risk parameter ϵ is defined by the user and bounds
the quantity P {δ ∈ ∆ : ℓ(v∗, δ) > ℓ∗}, that must be in-
terpreted as the probability of observing δ such that
ℓ(v∗, δ) > ℓ∗ for fixed values of v∗ and ℓ∗. The quantity

V (v∗, ℓ∗) := P {δ ∈ ∆ : ℓ(v∗, δ) > ℓ∗} (3)
is called the violation probability and quantifies the robust-
ness level of (v∗, ℓ∗). Furthermore, {δ ∈ ∆ : ℓ(v∗, δ) > ℓ∗}
is called violation set, of which V (v∗, ℓ∗) is the probabilis-
tic measure. Lastly, note that N is independent of P, so
no knowledge of P is required.

The practical application of the scenario approach only
requires to have at disposal enough scenarios, no matter
how obtained. For instance, a scenario may represent a
set of scalar observations {ui, yi}Ni=1 that are related by a
generic relationship g(·) so that

yi = g(ui) + noise. (4)

This application concerns the interval predictor method.
2.2 Review of the interval predictor method
Interval predictors are regression models that return a
prediction interval (also known as a layer), as opposed to
just a single point prediction (Campi et al., 2009; Garatti
et al., 2019). Consider a set of N independent observations
(scenarios) from (4)

δi := (ui, yi), i = 1, . . . , N. (5)
Interval predictor models are composed by:

(1) a standard regression model ĝ(·) for g(·) in (4) esti-
mated using (5);

(2) a point prediction ŷ(uN+1) = ĝ(uN+1) for a new
unknown input uN+1 and a prediction interval
[ŷlow(uN+1), ŷup(uN+1)] where the true value
y(uN+1) = g(uN+1) lies within a certain guaranteed
probability.

Let ĝ(·) be a polynomial model of degree n = d − 1. The
IPM is estimated by solving the convex problem

min
v∈Rn

[
max

i=1,...,N

∣∣yi − [
v1 + v2ui + ...+ vnu

n−1
i

]∣∣] , (6)

where v = [v1 . . . vn]
⊤ ∈ Rn are the polynomial coeffi-

cients to be estimated and v∗ ∈ Rn is the problem solution.
Note that (6) follows from (2) by imposing

ℓ(v, δi) =
∣∣yi − [

v1 + v2ui + ...+ vnu
n−1
i

]∣∣ ,
with the uncertain elements δi defined by (5).

Introducing an auxiliary variable ℓ ∈ R, problem (6) can
be reformulated as a problem in dimension d = n+1 (Carè
et al., 2015):

min
ℓ,v∈Rn

ℓ

s.t. :
∣∣yi − [

v1 + v2ui + ...+ vnu
n−1
i

]∣∣ ≤ ℓ.
(7)

where {ℓ∗ ∈ R,v∗ ∈ Rn} is the solution of (7). Using v∗ =

[v∗1 . . . v∗n]
⊤ ∈ Rn, the point prediction ŷ(ui) at input ui

is
ŷ(ui) = v∗1 + v∗2ui + ...+ v∗nu

n−1
i , (8)

while the prediction interval in ui is defined by the limits
ŷlow(ui) = ŷ(ui)− ℓ∗, (9a)
ŷup(ui) = ŷ(ui) + ℓ∗. (9b)

The term layer refers to the region of the u-y plane
composed by values in (9) evaluated for any input u.

Given a new observation δN+1 = (uN+1, yN+1), the prob-
ability that δN+1 lies outside (9) is the violation of the
solution (v∗, ℓ∗), defined as in (3)
V (v∗, ℓ∗) := P

{∣∣yi − [
v∗1 + v∗2ui + ...+ v∗nu

n−1
i

]∣∣ ≥ ℓ∗
}
.

(10)
Theorem 1 can be specialised in this context as follows.
Theorem 2. (Campi et al., 2009) For any ϵ ∈ (0, 1) (risk
parameter), and β ∈ (0, 1) (confidence parameter), if the
number of scenarios N in (4) satisfies N ≥ 2

ϵ

(
ln 1

β + n
)
,

then, with probability ≥ 1 − β the layer fails to correctly
predict (uN+1, yN+1) with probability no more than ϵ.

Theorem 2 is particularly powerful as it holds for every
noise distribution and complexity of g(·) in (4). In many
real situations where the model family ĝ(·) does not
include g(·), Theorem 2 still holds, with a possibly wider
layer (9).



3. DATA-DRIVEN PROGNOSTICS USING IPM

Consider two exemplars A and B of the same item operating
under defined operative conditions. Let fi, i = 1, . . . , N ,
be the i-th value of a (possibly) monotonic condition
indicator (CI), computed from raw measurements acquired
during a single run-to-failure experiment of item A, i.e.
starting from healthy to a failed condition of the item.
The observations (scenarios) follows from (4) as

δi = (i, fi), i = 1, . . . , N (11)
by setting ui = i and yi = fi, with i denoting the time
index when fi is computed. The time instants i do not
need to be evenly spread, nor any knowledge about the
fault mechanism is required. Then, an interval predictor
model as (7) can be estimated using (11) to characterise
the degradation process of item A as in (8)-(9)

f̂(i) = v∗1 + v∗2i+ ...+ v∗ni
n−1, (12a)

f̂low(i) = f̂(i)− ℓ∗, (12b)

f̂up(i) = f̂(i) + ℓ∗, (12c)
We denote this characterisation of the degradation model
as the primary interval predictor.

Let Tal be a threshold that if exceeded denotes an alarm
situation, we define as iTal the time index where the
predicted CI-values interval (12b)-(12c) first reaches the
value Tal, that is

f̂low(iTal) = Tal, (13a)

f̂up(iTal − ρ) = Tal, (13b)
with ρ the width (in time) of the estimated time-to-alarm
interval. We use ρ to evaluate the performance of an
estimated interval. In this context, a better performance
means a lower ρ. Note that, if the model structure (12)
is wrong (e.g. the data are generated by a polynomial
model of higher grade or by a model of another family)
the primary interval predictor will be wider (higher ρ)
with respect to the one obtained using the right model
structure. In this case, despite possible minor performance
(i.e. a higher ρ) , all data points will still be inside the
interval (12b) (12c) so the primary interval predictor is still
valid. To improve the layer performance (i.e. to obtain a
lower ρ) while maintaining a polynomial model, it might be
necessary to increase the order of the polynomial model.
Finally, we also define as iestTal

the time index where the
estimated polynomial model (12a) touches Tal, that is

f̂(iestTal
) = Tal (14)

Assume now to employ (12) in production, that is to
perform prognostics using online data from another item
B, which is a different exemplar but shares the same
design of A (e.g. the two items can be different physical
instantiations of the same part number). Two situations
may arise:

(1) the item B presents a similar CI behavior as item A
(i.e. with CI values fB

t that lie inside the layer defined
by (12c)-(12b)), so that model (12) is consistent
with the new data. The quantity fB

t denotes the CI
computed on raw data from item B at a time t ̸= i;

(2) the item B shows a different CI behavior than item
A (i.e. with CI values fB

t that lie outside the layer
defined by (12c)-(12b)), so that model (12) is not
consistent with the new data.

In the first case, the quantity (13) is especially important
as allows, for another item B with similar CI behavior
as item A, to reuse the same prognostics model (12),
according to the following proposition.
Proposition 1. For any ϵ ∈ (0, 1) and β ∈ (0, 1), if
the number of observations N in (11) satisfies N ≥
2
ϵ

(
ln 1

β + n
)
, then, with probability ≥ 1− β the time-to-

alarm interval (13) does not contain the true time-to-alarm
with probability no more than ϵ.
Proof 1. Since (11) contains time-to-alarm data, the proof
follows from the application of Theorem 2 to (12).

Consider now the case where item B shows a different
CI behavior than item A (i.e. with CI values fB

t outside
the layer defined by (12c)-(12b). In this case, the interval
predictor model (12) needs to be updated to characterize
the new degradation behavior fB

t . We denote the updated
models as the secondary interval predictor.

Note however that the analysis of the degradation process
of item B is made online when the system is running, so
run-to-failure data are not available from B (indeed, it is of
interest to predict its alarm time). Thus, in this case, no a
priori guarantees can be given on the time-to-alarm predic-
tion interval as in Proposition 1 until N ≥ 2

ϵ

(
ln 1

β + n
)

samples of fB
t are acquired. At that time, by updating

the prognostics model for item B as needed considering its
incoming CI values, the validity of Proposition 1 will be
restored. So, the secondary layer has the same properties
of the primary one. Nonetheless, the presented approach
allows to fully leverage a single run-to-failure experiment,
providing finite-sample and distribution-free guarantees of
the time-to-alarm prediction if the online-computed CI
values are compatible with the primary model (12).

Consider again the situation where item B shows CI values
fB
t that are not consistent with model (12) estimated

using (11), so that (12) needs to be updated according
to the incoming CI values fB

t . As reported in Theorem
2, the scenario approach requires a minimum quantity of
observations N in (5), that depend from the user choice
of parameters ϵ, β and n, prior to employ the model with
its probabilistic guarantees. The rationale for the updates
of the interval predictor model is as follows. First, define
the following deployment thresholds T1, T2, Q, in addition
to the typical thresholds denoting (i) initial degradation
Tdeg, (ii) alarm Tal, and (iii) complete failure Tfail:

• T1 is the degradation level where the comparison
between the degradation behavior of A and B starts.
It can be set as T1 = Tdeg or T1 < Tdeg;

• T2 is the degradation level where any new update
of the interval predictor model (12) is performed,
only when needed. To update the model in advance
with respect to a supposedly true alarm, it is set as
T2 < Tal. When feature values from B exceed T2, the
model can be updated according to the threshold Q;

• Q is the number of CI samples that are allowed to lie
outside the primary layer (12), before triggering the
updated of the interval predictor.

The exact definition of the degradation/alarm/failure
thresholds is application-dependent and mostly based on
the physics of the degradation process. The proposed



deployment thresholds T1, T2, Q are less critical to tune
as they may be defined as a percentage of the standard
thresholds Tdeg, Tal, Tfail or (especially T2) be set automat-
ically when exactly a total of N feature samples from B
are acquired. Algorithm 1 and Algorithm 2 summarize the
method.

Algorithm 1: Primary interval predictor.
Input: ϵ, β, n
Output: primary interval predictor model (12)
Acquire raw run-to-failure data from item A
Compute N values of the CI as in (11)
Solve (7) using (11) to get (12)

Algorithm 2: Use and update of the primary model.
Input: primary model (12), a new CI value fB

t ,
T1, T2, Q, Tdeg, Tal, Tfail

Output: secondary interval predictor models
q = 0

if fB
t ≥ T1 and fB

t ≤ T2 then
if fB

t is not in the primary layer (12) then
q = q + 1

end
else

if q > Q then
update the interval predictor model using the fB

t CIs
collected up to the current time t

q = 0

end
end

4. CASE STUDY: PRONOSTIA FEMPTO-BEARINGS

The PRONOSTIA experimental platform (Nectoux et al.,
2012) is used to validate the proposed approach. We con-
sider bearings data under rotation speed of 1800 rpm and
a radial force of 4000N, using only the horizontal ac-
celerometer measurements. We use the bearing1-1 (b1-1)
experiment for offline estimation of the primary model
(12), and the bearing1-3 (b1-3), bearing1-4 (b1-4) ex-
periments to show how the fine tuning works and when
it is performed, simulating an online prognostics. The
performance of the proposed method will be assessed by
the width ρ of the estimated time-to-alarm interval. The
results considering the other available acquisitions are not
reported to simplify the exposition. However, the method
performs similarly also in these cases.

Figure 1-(left) shows the PRONOSTIA raw data. Note
that the b1-1 experiment has the longest run-to-failure
acquisition while b1-3 and b1-4 reach a complete failure
earlier. On b1-1 we define the time instant where we
consider that the bearing started to degrade (green dashed
line), the time instant where the component is critically
degraded (red dashed line), and the time instant where
it is broken (black dashed line). It is clearly visible that
b1-4 reaches the complete failure status much earlier than
b1-1 (used to estimate the primary model), so in this case
the degradation process is different and we expect that an
updating of the primary model is needed.

As in (Javed et al., 2015), the monotonic cumulative
feature σ̃(arctan)i is defined as the CI fi as follows:
first, the arctan value is computed for each sample of
the raw vibration signal; then, the data are organised in

Fig. 1. (Left) raw vibration signals. The green dashed line
is the time instant at which we consider that the bear-
ing starts to degrade. The red one is the time instant
at which we consider that it is critically degraded. The
black one is the time instant at which the component
breaks down. (Right): Condition indicator σ̃(arctan)i.
Each point covers 10 s of raw data. The horizontal
green dashed line represents the degradation thresh-
old Tdeg; the red one is the alarm threshold Tal and
the black one is the complete failure threshold Tfail.

N batches that cover 10 s of processed samples, with P
data in each batch. For batch i = 1, . . . , N , the standard
deviation of the data is computed and a smoothing process
is performed by applying a local regression (LOESS) filter
with a span value of 0.3, obtaining the simple feature
σ(arctan)i,j for the j-th sample in the i-th batch. The
cumulative feature is then computed as

σ̃(arctan)i =

∑M
j=1 σ(arctan)i,j∣∣∣∑M
j=1 σ(arctan)i,j

∣∣∣ 1
2

, i = 1, . . . , N (15)

This definition allows to use (15) in online situations, like
the considered case. Figure 1-(right) shows the computed
CIs (15). In the first graph above we derive the degrada-
tion/alarm/complete failure thresholds considering the CI
values corresponding to the time instants defined on raw
vibration data. For b1-3 and b1-4 we simulate an online
acquisition process, using Algorithm 2.

4.1 Primary interval predictor estimation

The proposed method performs offline only the primary
interval predictor estimation, using all the CI samples
together calculated from the run-to-failure raw data of
b1-1. We fix ϵ = 0.05, β = 1 · 10−9 and n = 6. As a result,
the minimum quantity of samples needed is N = 1069.
The deployment thresholds are set as T1 = 0.9 · Tdeg
and T2 = 0.9 · Tal. Lastly, we set Q = 200 which allows
new features to lie outside the primary layer for 2000
seconds consecutively. Cyan lines in Figure 2 show how
the estimated layer contains the true value of (15) (blue
line). The width of this primary time-to-alarm interval is
ρ = 21minutes. This performance can be considered good
in this context, since on more than 6-hours test, it does
not lead to overly premature alarms.

4.2 Online usage: model updating not needed
Consider now the CI (15) from b1-3. The yellow line and
the green zoomed box in Figure 2 show that the new



Fig. 2. (Cyan area): primary interval predictor estima-
tion. (Yellow line): b1-3 degradation process analysis.
(Purple line) b1-4 degradation process analysis.

considered item has a degradation process that stays in
the primary layer (12c)-(12b). It has some points outside
prior to threshold T2, but the counting does not exceed Q.

In this case, the proposed method does not solve any
other optimization problem, saving computational re-
sources that can be used for other tasks. Human operators
can check runtime how the degradation evolves having
already the primary time-to-alarm interval. So, the prepa-
ration of the maintenance can be scheduled very early. If,
as in the next case, the degradation process is outside the
primary layer for more than Q points before the T2 level,
a pre-alarm can be generated to alert the operators.

4.3 Online usage: model updating needed

Lastly, we analyse the behavior of b1-4. The purple line
in Figure 2 shows that the new item has a degradation
process not consistent with the primary layer. So, the
degradation model must be updated. The new interval
predictor is computed only when the feature (15) reaches
the threshold T2, so reducing the computational load. In
the red zoomed part of Figure 2, it is possible to observe
that the projection of the interval estimation (purple
dotted and dashed lines) from T2 to the alarm threshold Tal
no longer contains the true value of (15) (purple solid line).
This is acceptable for two reasons: first, the estimated
interval is conservative with respect to the real alarm
instant; second, data that occur after T2 have not yet been
acquired. Here comes the possibility to update the model
each time a new CI value, or a batch of new values, is
acquired.

Figure 3 shows this iterative update. The layer was set
to be updated whenever a batch of 50 new CI values is
available. It can be seen that the updated layer (in yellow)
touches Tal closer to the true alarm instant. The time
difference between the two instants is about 5minutes.
This small estimation error is not critical in the prognostics
task as the alarm is not too premature. Note that this
error can be imputed to the choice of a polynomial interval
predictor. Selecting different model families may result
in different predictions. Nevertheless, the prognostics task
was completed. The model performance is still very good,

Fig. 3. Updating the new layer (purple dashed line) with a
batch of 50 new feature samples, that lie between the
2 yellow dots on the purple solid line. In yellow, the
updated layer.

as the width ρ of the estimated fine tuned interval is
about 2 minutes and 30 seconds. In this case, a key role is
played by T1 and specially by T2 thresholds. The former
can be fixed to a lower level to make the comparison
earlier and possibly to allow arising a pre-alarm if the
degradation is different to the primary one. The latter
determines when the new degradation model estimation is
performed. A lower T2 leads to an earlier model estimation,
however it is possible that the time difference between
the predicted alarm time and the true one increases, as
enough observations N should be collected for the scenario
guarantees to hold.

4.4 Comparison with sw-elm structure

The comparison between the proposed method and the
sw-elm structure (Javed et al., 2015) consists of evaluating
how much the RUL estimation R̂UL(tc) differs from the
true one RUL(tc) for each current time tc such that
0 < tc < itrue

Tal
, where itrue

Tal
is the true time-to-alarm instant.

In details, we define

RUL(tc) = itrue
Tal

− tc; R̂UL(tc) = iestTal
− tc. (16)

where iestTal
is defined as (14). We consider the absolute

value of the RUL estimation error, defined as follows:

|RULerror(tc)| = |RUL(tc)− R̂UL(tc)|. (17)

Figure 4 shows how the methods perform, considering
three different bearings: b1-3, b1-4 and bearing1-7
(b1-7). Figure 4 does not show the layers widths ρ. It
is clearly visible that the first and the latter cases (blue
and green lines) does not require IPM model updates;
b1-4 (red lines) instead implies two model updates. Con-
sidering the experiments b1-3 and b1-7 it is possible to
say that the proposed method is beneficial with respect
to the sw-elm algorithm: a constant error is more useful
than one which continues to rise and fall in time, since
it makes the maintenance schedule easier. Furthermore,
especially in the b1-3 case, R̂UL(tc) is only thirty seconds
away from true RUL(tc),∀tc. On experiment b1-4 the
proposed method has three different constant error levels,
one relative to the primary layer and two for each model
updates. These updates decrease the error significantly,
as can be seen in the zoomed part of Figure 4. Instead,
sw-elm performs worse at the beginning, but at some
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Fig. 4. Absulute value of RUL estimation errors. The
solid lines are relative to the proposed method. The
dashed ones instead, refer to the sw-elm method.
b1-4 requires IPM model updates to reduce the
corresponding |RULerror(tc)|.

point its performance become better than the proposed
method. However, when the IPM model is updated the two
methods behaves similarly. Furthermore, sw-elm estimates
the entire degradation process for each tc, and thus it is
computationally heavier with respect to the proposed IPM
model that is updated only when needed.

5. CONCLUSIONS

This work presented a data-driven prognostics method
based on the scenario approach theory. The strategy
uses only one run-to-failure acquisition to characterise the
degradation process of an item, leading to a primary time-
to-alarm interval estimation. This interval has probabilis-
tic guarantees of containing the true alarm instant. The
obtained results evidence that the method performances
are satisfactory, also in comparison with sw-elm algorithm.
The strategy is thought to have a light computational load,
updating the predictions only if the behavior of a new item
is different from the the characterised one.

Future research will be devoted to provide an optimal
strategy to define the deployment thresholds T1 and T2 as
well as improving the comparison of degradation processes
to detect differences more efficiently.

REFERENCES

Campi, M.C. and Garatti, S. (2008). The exact feasibility
of randomized solutions of uncertain convex programs.
SIAM Journal on Optimization, 19(3), 1211–1230. doi:
10.1137/07069821X.

Campi, M. and Garatti, S. (2011). A sampling-and-
discarding approach to chance-constrained optimiza-
tion: Feasibility and optimality. Journal of Optimization
Theory and Applications, 148, 257–280. doi:10.1007/
s10957-010-9754-6.

Campi, M., Calafiore, G., and Garatti, S. (2009). Interval
predictor models: Identification and reliability. Auto-
matica, 45(2), 382–392. doi:10.1016/j.automatica.2008.
09.004.

Campi, M., Carè, A., and Garatti, S. (2021). The scenario
approach: A tool at the service of data-driven decision
making. Annual Reviews in Control, 52, 1–17. doi:
10.1016/j.arcontrol.2021.10.004.

Carè, A., Garatti, S., and Campi, M.C. (2015). Scenario
min-max optimization and the risk of empirical costs.
SIAM Journal on Optimization, 25(4), 2061–2080.

Celaya, J., Saxena, A., and Goebel, K. (2012). Uncertainty
representation and interpretation in model-based prog-
nostics algorithms based on kalman filter estimation.

Garatti, S., Campi, M., and CarÃ¨, A. (2019). On a
class of interval predictor models with universal reliabil-
ity. Automatica, 110, 108542. doi:10.1016/j.automatica.
2019.108542.

Garatti, S. and Campi, M. (2013). Modulating robust-
ness in control design: Principles and algorithms. Con-
trol Systems, IEEE, 33, 36–51. doi:10.1109/MCS.2012.
2234964.

Javed, K., Gouriveau, R., and Zerhouni, N. (2017). State
of the art and taxonomy of prognostics approaches,
trends of prognostics applications and open issues to-
wards maturity at different technology readiness levels.
Mechanical Systems and Signal Processing, 94, 214–236.
doi:10.1016/j.ymssp.2017.01.050.

Javed, K., Gouriveau, R., Zerhouni, N., and Nectoux, P.
(2015). Enabling health monitoring approach based on
vibration data for accurate prognostics. IEEE Trans-
actions on Industrial Electronics, 62(1), 647–656. doi:
10.1109/TIE.2014.2327917.

Maurelli, L., Mazzoleni, M., Previdi, F., and Camisani, A.
(2024). A New Physics-Informed Condition Indicator
for Cost-Effective Direct Current Solenoid Valves Using
Significant Points of the Excitation Current. Journal of
Dynamic Systems, Measurement, and Control, 146(3),
031007. doi:10.1115/1.4064602.

Mazzoleni, M., Rito, G.D., and Previdi, F. (2021). Electro-
Mechanical Actuators for the More Electric Aircraft.
Springer International Publishing. doi:10.1007/978-3-
030-61799-8.

Mazzoleni, M., Sarda, K., Acernese, A., Russo, L., Man-
fredi, L., Glielmo, L., and Del Vecchio, C. (2022). A
fuzzy logic-based approach for fault diagnosis and condi-
tion monitoring of industry 4.0 manufacturing processes.
Engineering Applications of Artificial Intelligence, 115,
105317. doi:10.1016/j.engappai.2022.105317.

Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso,
E., Chebel-Morello, B., Zerhouni, N., and Varnier,
C. (2012). Pronostia: An experimental platform
for bearings accelerated degradation tests. 1–8.
URL https://www.nasa.gov/content/prognostics-
center-of-excellence-data-set-repository.

Ramezani, S.B., Cummins, L., Killen, B., Carley, R.,
Amirlatifi, A., Rahimi, S., Seale, M., and Bian, L.
(2023). Scalability, explainability and performance of
data-driven algorithms in predicting the remaining use-
ful life: A comprehensive review. IEEE Access, 11,
41741–41769. doi:10.1109/ACCESS.2023.3267960.

Sankararaman, S. (2015). Significance, interpretation,
and quantification of uncertainty in prognostics and
remaining useful life prediction. Mechanical Systems and
Signal Processing, 52-53, 228–247. doi:10.1016/j.ymssp.
2014.05.029.

Zhai, X., Wei, X., and Yang, J. (2019). A comparative
study on the data-driven based prognostic approaches
for rul of rolling bearings. In 2019 IEEE Symposium Se-
ries on Computational Intelligence (SSCI), 1751–1755.
doi:10.1109/SSCI44817.2019.9002764.

Zio, E. (2022). Prognostics and health management (phm):
Where are we and where do we (need to) go in theory
and practice. Reliability Engineering & System Safety,
218, 108119. doi:10.1016/j.ress.2021.108119.


