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Abstract: This paper presents mono camera-based GPS spoofing detection for aerial vehicles
utilizing only image information besides the initial orientation of the vehicle. Orientation
information is propagated and motion direction is estimated solely from the mono camera images
through the estimation of the essential matrix. Histograms of Oriented Displacements and their
correlation are considered to detect spoofing considering GPS and image-based data. Straight
and turning simulated flight trajectories of a fixed wing research drone with different turbulence
levels are compared to evaluate the method. The results are promising with timely detection of
every spoofing scenario and without false alarm. The exploration of real flight data is the topic
of future development.
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1. INTRODUCTION

With the increasing use of unmanned aerial vehicles
(UAVs) the threat of GPS spoofing becomes more and
more imminent Kerns et al. (2014), Sorbelli et al. (2020),
Khan et al. (2021), Talaei Khoei et al. (2022) , Septen-
trio (2023). Meng et al. (2021) categorizes the possible
spoofing attacks into 1. forwarding spoofing, 2. generative
spoofing and 3. track tracking spoofing. The second one
is implementable and complex enough to be a real threat
for UAVs modifying their flight trajectory while the au-
topilot ’thinks’ that it guides the UAV on the originally
targeted trajectory. Talaei Khoei et al. (2022) gives a good
overview about the possible spoofing detection methods
such as external UAV characteristics-based (utilizing IMU
measurements e. g. Feng et al. (2017), Jiang et al. (2022)),
artificial intelligence methods (e. g. Jiang et al. (2022))
and vision-based (e. g. Qiao et al. (2017), Xue et al.
(2020), Varshosaz et al. (2020)). Additional methods can
be GPS receiver-based detection Schmidt et al. (2020),
statistical methods Meng et al. (2021) and the application
of a companion drone Hiba et al. (2023).

The vision-based techniques apply satellite imagery match-
ing Xue et al. (2020) which is resource intensive, mono
camera and IMU-based method Qiao et al. (2017) where
the inclusion of the IMU and the solution for scale ambi-
guity is not really discussed and stereo camera-based so-
lutions Varshosaz et al. (2020). The current article targets
to achieve and possibly improve the results of Varshosaz
et al. (2020) based on a mono camera instead of the stereo
making system requirements lower. Besides implementing
a mono camera-based method another contribution is the
comparison of the Histograms of Oriented Displacements
(HODs) through their correlation coefficient instead of an-
gle or taxicab distances. This is a normalized and possibly

more meaningful measure for which threshold selection is
easier. Another difference from the referenced work is the
application of simulated flight trajectories and synthetic
image sequences instead of real data but in close to real
conditions.

The structure of the paper is as follows. Section 2 intro-
duces the considered flight trajectories which even make
it possible to explore turbulence effects on GPS spoofing
detection. Section 3 introduces the method applied for
spoofing detection while Section 4 presents tuning and
detection results. Finally, Section 5 concludes the paper.

Fig. 1. The flight trajectories

2. FLIGHT TRAJECTORIES

Test trajectories for GPS spoofing detection were gen-
erated with the Matlab simulation of the Sindy aircraft



(SZTAKI (2014)) including a waypoint tracking controller.
First, straight trajectories with different turbulence levels
(small, medium, large) were generated resulting in differ-
ent angular rates and slightly different trajectories through
the flight. The large turbulence flight was repeated with
vegetation only background to challenge feature detection
and tracking (see Fig. 3, referenced as ’forest case’). Then
a long left turn and a trajectory with multiple turns were
generated to simulate GPS spoofing (see Fig. 1). Note that
in Fig. 1 the four different straight trajectories cover each
other. The GPS spoofing detection should not differentiate
the straight trajectories from each other despite the differ-
ent noises but should differentiate long turn and multiple
turn ones from each other and from the straight ones.
Thus the generated trajectory set is satisfactory to check
noise tolerance and the basic detection capabilities of the
method. To better evaluate detection, gradually deflected
trajectories should be considered but this will be the topic
of future development.

Fig. 2. Example city plus vegetation camera image from
Unreal-Carla

Fig. 3. Example vegetation camera image from Unreal-
Carla (forest case)

All of the trajectories were sampled with ∆t = 0.02s
saving aircraft position and orientation. This data was
exported to Unreal-Carla where sequences of images were
generated considering a downward tilted HD camera (1280

× 960 pixels with f = 1108.5). A city landscape sur-
rounded by hills and vegetation was considered as the
scene (see Fig.s 2 and 3) and images were generated with
0.02s sampling (50 fps). Unreal- Carla environment was
selected as it became a kind of standard for virtual scenario
generation in the last years.

3. GPS SPOOFING DETECTION FROM CAMERA
IMAGES

Throughout the work the considered coordinate systems
are the North-East-Down (NED) earth, the XB , YB , ZB

body and XC , YC , ZC camera systems see Fig.s 4 and 5.
From now on a vector vS1 means that its coordinates are
represented in S1 system, a rotation matrix TS1S2 means a
rotation from S2 to S1 system. The position of the camera

in the body system is rBC = [xb yb zb]
T

and the rotation
matrix from body to camera system is TCB(ϕc, θc, ψc)
defined by Z-Y-X Euler angle rotations. The rotation from
earth to body is defined similarly as TBE(ϕ, θ, ψ). Note
that TCB also includes an axis swap (see Fig. 4). In the

generation of the Unreal-Carla images rBC = [1 0 0]
T
m

camera position and θc = −20◦ (down) camera angle were
considered.

Fig. 4. The applied coordinate systems

Fig. 5. One step body and camera motion and rotation

GPS spoofing can be detected based on the camera images
if one can reconstruct at least the motion direction in NED
system and compare it to the direction of motion from
the GPS measurements. A one step motion and rotation
of UAV body and so the attached camera is visualized
in Fig. 5. Here ∆rE = rE2 − rE1 is the translation in
NED system which direction should be estimated from the
camera images. However, considering the essential matrix
and its decoupling to translation and rotation (see e. g.
Hartley and Zisserman (2003)) the direction of motion



between the two camera frames tC2 (from now on (.) will
denote a normalized unit vector) and the relative rotation
TC1C2 can be obtained. Considering the calculation of
tE = TEC2t

C2 based on Fig. 5 results in:

tEC1 =rE1 + TEB1r
B
C , tEC2 = rE2 + TEB2r

B
C

tE =tEC2 − tEC1 = ∆rE + (TEB2 − TEB1)r
B
C

tE =TEB1TBCTC1C2t
C2 =

∆rE + TEB1(TBCTC1C2TCB − I)rBC

(1)

Here indexes 1 and 2 mean first and second position of
body or camera system (see Fig. 5). (1) shows that besides
the GPS measured motion of the body system ∆rE an
additional term appears from the non CG-centered (CG
means center of gravity) camera system and rotation. As

one can only obtain tEI from tC2 as shown in (2) this
term can not be removed from the image measurement (I
stands for image). However, it can be added to the GPS
measurement ∆rE making a fair comparison between the
motion directions as shown by (3) substituting tE from (1)
(G stands for GPS).

tEI = TEB1TBCTC1C2tC2 (2)

tEI ∼ tEG =
tE

∥tE∥
(3)

(2) and (3) show that direction of motion estimation
requires the body to earth rotation matrix of the first
system at every time besides the constant camera to
body (TBC) and the estimated TC1C2 matrices. As the
Euler angles are usually estimated based on IMU-GPS
integration (see e. g. Gebre-Egziabher and Gleason (2009))
they can be corrupt in case of GPS spoofing that’s why
their application should be avoided if possible. Assuming
that at the beginning of the mission the GPS signals
are healthy the body to earth rotational matrix can be
propagated solely from image data and an initial TEB1

value as follows:

TEB2 = TEB1TBCTC1C2TCB → TEB1 = TEB2 (4)

After the first frame this propagation is applied instead of
the simulated Euler angles to prove the feasibility of this
concept.

To find and track the features for essential matrix calcu-
lation the OpenCV functions goodFeaturesToTrack (Shi-
Tomasi corner detector with maximum 30 corners, 0.5
quality level, 50 minimum distance and 5 blocksize) and
calcOpticalFlowPyrLK (sparse optical flow with iterative
Lucas-Kanade method applying pyramids with 15×15
window size, 7 max. level, 10 count and 0.03 epsilon) were
applied downsampling the 50fps data with ∆t = 0.1s
meaning 10fps which is a realistic value for onboard image
processing with state of the art hardware. The Lucas-
Kanade method was applied both forward (frame 1 to 2)
and backward (frame 2 to 1) to filter out the false feature
pairs. Only the features found also backward on frame
1 are preserved. The findEssentialMat (with RANSAC

method, 0.999 prob. and 0.5 threshold) and recoverPose
OpenCV functions are applied to get TC2C1 and tC2. The
selected OpenCV functions are a kind of industry standard
for the given problems.

After calculating the motion directions from images (tEI )

and GPS data (tEG) the HODs from Varshosaz et al. (2020)
are considered calculating only the heading directions
in the horizontal plane. The HOD calculation (for both
vectors) is implemented as follows:

BI =
360◦

8
= 45◦

BN = 0 : BI : 360−BI bins

ψ = atan2

(
tE(2)

tE(1)

)
/π · 180◦ → [0, 360◦)

1stBN = floor

(
ψ

BI

)
2ndBN = (1stBN + 1 or 1)

1stM = 1− (ψ − 1stBN ·BI)
BI

2ndM =
(ψ − 1stBN ·BI)

BI

(5)

Eight bins (BN) are created among which the heading
directions are divided. Modifications relative to Varshosaz
et al. (2020) are the conversion of heading to the range
0 to 360 degrees, the handling of the case if the 1stBN
bin index is the last in the bin sequence (2ndBN should
be the first) and the omission of the length of vectors

from the measures (1stM , 2ndM) as tEI and tEG are both
unit vectors. The measures are cumulatively added to the
selected (through the indexes 1stBN and 2ndBN) bin
counters to create the histogram.

Fig. 6. Sample HODs from different phases of long turn
flight

Sample HOD diagrams from different flight phases in the
long turn maneuver are plotted in Fig. 6 (obtained from
GPS data). The figure shows that when the flight starts
at ψ = −40◦ it is closest to the 315◦ bin so its measure
is the dominant together with some minor portion in the



0◦ = 360◦ bin which is the second closest. Upon turning
the heading enters more and more bins into decreasing
heading direction so their measures are also increased.
Note that between 5s and 10s there is no increase in the
315◦ bin value as it is left before.

Based-on the HOD for image and GPS data the spoofing
can be detected if the motion directions become different.
Contrary to Varshosaz et al. (2020) neither angle distances
(HOD AD) nor taxicab distances (HOD TD) are applied
rather the correlation coefficient (Wikipedia (2023)) of the
HODs is calculated as it should well characterize similarity
or dissimilarity and threshold selection is easier because
it is normalized to [−1, 1] independent of the considered
data.

After establishing the method for GPS spoofing detection
its tuning and evaluation is done considering the flight
data sets presented in Section 2.

4. TUNING AND RESULTS

Tuning of the GPS spoofing detection means the pairwise
comparison of all possible trajectories calculating the HOD
correlations and noting their minimum values in Table 1.
Note that correlations are started to be calculated after
the first ten samples. In the table the spoofed cases
(different compared trajectories) are denoted by boldface
measures. Note that the small, medium, large and large
forest scenarios cover the same straight trajectory so they
are not spoofed the difference is in turbulence parameters
and vegetation background instead of the city (forest case).
Based on these values the decision threshold can be easily
selected if the non-spoofed minimum values differ well from
the spoofed ones. The results show that the minimum
non-spoofed measure is 0.999 while the spoofed cases can
usually decrease to around 0.8 values. Fig.s 7 and 8 show
that the non-spoofed sections give correlation measures
very close to 1 while upon the occurrence of trajectory
deviation the measure starts to decrease as expected (see
Fig. 8). Finally, a 0.997 threshold was selected below which
GPS spoofing is declared. It is worth mentioning that
such values very close to 1 can only occur because of the
ideal simulated flight data for real flight data sets these
measures are expected to degrade.

Table 1. Minimum HOD correlation values
(boldface values are for spoofed trajectories)

Trajectories
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Small 0.999 0.999 0.999 0.999 0.825 0.78

Medium 0.999 0.999 0.999 0.999 0.825 0.78

Large 0.999 0.999 0.999 0.999 0.825 0.78

Forest 0.999 0.999 0.999 0.999 0.825 0.78

Long 0.825 0.866 0.834 0.81 0.999 0.88

Multiple 0.79 0.79 0.8 0.78 0.87 0.999

Evaluation of the decisions was done running the algorithm
again for every trajectory pair and noting the decision.
There was no false decision as expected from Table 1
despite some small dissimilarity between small and large
turbulence rate trajectories shown in Fig. 9. In the figure
(such as in Fig. 10) the estimated motion directions

are plotted at the given GPS positions. For the spoofed
trajectory the image-based directions cover the GPS-based
ones showing the good performance of image-based motion
direction estimation. Considering the image result-based
propagation of the body to earth rotational transformation
(4) this is a really good result without any drift in the
directions along time.

Fig. 7. HOD correlation between small rate and large rate
forest straight scenarios (non-spoofed). Note that the
minimum value is 1− 5 · 10−4!

Fig. 8. HOD correlation between long turn and multiple
turn scenarios (spoofed)

Table 2. Detection results

Detection measures
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Long time [s] 0.9 0.9 0.9 0.9 - 1.0

Long distance [m] 5.86 5.86 5.9 5.9 - 9.84

Multiple time [s] 0.7 0.7 0.7 0.7 0.3 -

Multiple distance [m] 4.75 4.75 4.77 4.77 3.6 -

In case of different trajectories all simulated spoofing oc-
currences were successfully detected. The time for spoof-
ing detection was calculated measuring the time between



spoofing alarm and the time when the trajectories are 2m
apart from each other (stated to be the beginning of spoof-
ing). Detection times are summarized in Table 2 together
with the distance between the trajectories when spoofing is
declared. The detection times are 0.3 to 1.0 seconds being
much lower than with the image-based method presented
in Qiao et al. (2017) (5s). The distances at detection are
about 5-6m in most of the cases. What is interesting is the
difference between long-multiple and multiple-long pairs.
In the first case image-based directions of the long turn
case are compared to GPS track of the multiple turns and
vice versa and this causes a difference in the detection
time. Comparing the results to Varshosaz et al. (2020)
this method can similarly only detect the change in the
direction of motion no velocity change along the trajec-
tory can be detected (as motion vectors are normalized).
However, here the HOD correlation measure does not go
back to 1 after the turn contrary to SEDCP, HOD AD
and HOD TD in the reference. This is because here the
global flight direction is estimated and evaluated contrary
to the local flight direction in the measurement window in
Varshosaz et al. (2020).

Fig. 9. Tracks of small rate and large rate forest straight
scenarios

Fig. 10. Tracks of long turn and multiple turns scenarios

As a comparison the HOD TD measures presented in
Varshosaz et al. (2020) are also calculated and shown
in Fig.s 11 and 12. The figures show that threshold
selection is not as easy as for the correlation because this
measure continuously increases even in the non-spoofed
case (Fig. 11).

Finally, Fig. 10 shows the instance of HOD detection (by
considering the HOD correlation) by coloring the further
trajectory with red dots.

Fig. 11. HOD TD measure between small rate and large
rate forest straight scenarios

Fig. 12. HOD TD measure between long turn and multiple
turns scenarios

5. CONCLUSION

The paper presents mono camera-based GPS spoofing
detection utilizing the direction of motion and rotation in-
formation from the essential matrix. Straight and turning
flight trajectories are generated with the dynamic simula-
tion of the Sindy test aircraft considering also different tur-
bulence levels. Synthetic images are generated in Unreal-
Carla considering city and rural scenarios. After presenting
the coordinate systems and the description of UAV motion
from images and GPS coordinates image processing and
the estimation of the essential matrix are briefly discussed.
The global orientation of the UAV is propagated starting
from a known rotation matrix and utilizing the relative
rotations of the image frames. Finally, the motion direction
of the aircraft in the horizontal North-East frame can



be obtained both from images and GPS data. To detect
GPS spoofing the headings from the motion directions
are calculated and registered in Histograms of Oriented
Displacement (HODs) based on the literature. However,
contrary to the literature these are global heading angles
instead of local ones in a moving window. The introduced
measure for spoofing detection is the correlation coeffi-
cient of GPS and image-based HODs as it is normalized
and so threshold selection is easy. After tuning the HOD
correlation threshold the performance of the algorithm is
evaluated considering all possible pairs of the simulated
flight trajectories. Neither false alarm nor missed detection
resulted having about 0.3-1.0s detection time (from start
of spoofing) and about 5-6m distance between the nor-
mal and spoofed trajectories when spoofing is detected.
The HOD taxicab distance measure from the literature
is also examined showing a continuous increase even for
non-spoofed trajectories which makes threshold selection
problematic. Future directions can be the extension to 3D
GPS spoofing detection, the utilization of IMU data to
estimate aircraft velocity and so detect spoofing of the
flight velocity and the application of the methods on real
flight data and camera images which is missing from the
current article.

ACKNOWLEDGEMENTS

Part of the research was supported by the European
Union within the framework of the National Laboratory
for Autonomous Systems. (RRF-2.3.1-21-2022-00002).

Project no. TKP2021-NVA-01 has been implemented with
the support provided by the Ministry of Innovation
and Technology of Hungary from the National Research,
Development and Innovation Fund, financed under the
TKP2021-NVA funding scheme.

The authors gratefully acknowledge the help of Antal Hiba
(Computational Optical Sensing and Processing Labora-
tory, SZTAKI, HUN-REN) with the generation of the
Unreal-Carla image series based-on our Sindy simulated
flight trajectories.

REFERENCES

Feng, Z., Guan, N., Lv, M., Liu, W., Deng, Q., Liu, X.,
and Yi, W. (2017). Efficient drone hijacking detection
using onboard motion sensors. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017,
1414–1419. doi:10.23919/DATE.2017.7927214.

Gebre-Egziabher, D. and Gleason, S. (2009). GNSS Ap-
plications and Methods. Artech House, Inc.

Hartley, R. and Zisserman, A. (2003). Multiple View
Geometry in computer vision. Cambridge University
Press.

Hiba, A., Kortvelyesi, V., Kiskaroly, A., Bhoite, O., David,
P., and Majdik, A. (2023). Indoor vehicle-in-the-loop
simulation of unmanned micro aerial vehicle with arti-
ficial companion. In 2023 International Conference on
Unmanned Aircraft Systems (ICUAS).

Jiang, P., Wu, H., and Xin, C. (2022). Deeppose: Detecting
gps spoofing attack via deep recurrent neural network.
Digital Communications and Networks, 8(5), 791–803.
doi:https://doi.org/10.1016/j.dcan.2021.09.006. URL

https://www.sciencedirect.com/science/article/
pii/S2352864821000663.

Kerns, A.J., Shepard, D.P., Bhatti, J.A., and Humphreys,
T.E. (2014). Unmanned aircraft capture and control
via gps spoofing. Journal of Field Robotics, 31(4),
617–636. doi:https://doi.org/10.1002/rob.21513.
URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/rob.21513.

Khan, S.Z., Mohsin, M., and Iqbal, W. (2021). On gps
spoofing of aerial platforms: a review of threats, chal-
lenges, methodologies, and future research directions.
PeerJ. Computer science, 7, e507.

Meng, L., Yang, L., Ren, S., Tang, G., Zhang, L., Yang,
F., and Yang, W. (2021). An approach of linear
regression-based uav gps spoofing detection. Wireless
Communications and Mobile Computing, 2021, 5517500.
doi:10.1155/2021/5517500. URL https://doi.org/
10.1155/2021/5517500.

Qiao, Y., Zhang, Y., and Du, X. (2017). A vision-
based gps-spoofing detection method for small uavs. In
2017 13th International Conference on Computational
Intelligence and Security (CIS), 312–316. doi:10.1109/
CIS.2017.00074.

Schmidt, E., Gatsis, N., and Akopian, D. (2020). A
gps spoofing detection and classification correlator-
based technique using the lasso. IEEE Transactions
on Aerospace and Electronic Systems, 56(6), 4224–4237.
doi:10.1109/TAES.2020.2990149.

Septentrio (2023). Gnss spoofing. Technical report,
Septentrio.

Sorbelli, F.B., Conti, M., Pinotti, C.M., and Rigoni,
G. (2020). Uavs path deviation attacks: Survey
and research challenges. In 2020 IEEE Interna-
tional Conference on Sensing, Communication and
Networking (SECON Workshops), 1–6. doi:10.1109/
SECONWorkshops50264.2020.9149780.

SZTAKI (2014). Sindy test aircraft. URL http://
uav.sztaki.hu/sindy/home.html.

Talaei Khoei, T., Ismail, S., and Kaabouch, N. (2022).
Dynamic selection techniques for detecting gps spoofing
attacks on uavs. Sensors, 22(2). doi:10.3390/s22020662.
URL https://www.mdpi.com/1424-8220/22/2/662.

Varshosaz, M., Afary, A., Mojaradi, B., Saadatseresht, M.,
and Ghanbari Parmehr, E. (2020). Spoofing detection
of civilian uavs using visual odometry. ISPRS Interna-
tional Journal of Geo-Information, 9(1). doi:10.3390/
ijgi9010006. URL https://www.mdpi.com/2220-9964/
9/1/6.

Wikipedia (2023). Pearson correlation coeffi-
cient. URL https://en.wikipedia.org/wiki/
Pearson correlation coefficient.

Xue, N., Niu, L., Hong, X., Li, Z., Hoffaeller, L., and
Poepper, C. (2020). Deepsim: Gps spoofing detection
on uavs using satellite imagery matching. In Annual
Computer Security Applications Conference, ACSAC
’20, 304–319. Association for Computing Machinery,
New York, NY, USA. doi:10.1145/3427228.3427254.
URL https://doi.org/10.1145/3427228.3427254.


