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Abstract: Observing the interaction between a system, its environment, and its internal state
is vital to detect failures during operation. Monitoring systems often use predefined system
properties to detect such failures, and violations indicate potential failures. However, obtaining
these properties is work-intensive and error-prone. Therefore, we describe an approach to obtain
a system model by learning only the correct behavior using machine learning. Monitoring
systems can use such models to predict correct future behavior. A potential failure is raised
if real-world data deviate significantly from this prediction. We use a semi-supervised LSTM-
based forecasting approach with a simple architecture, apply our approach to simulation data
from a battery control system, and discuss our experimental results.
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1. INTRODUCTION

Systems have well-defined boundaries and interact with
their surrounding environments during operation. Every
system has a behavior, i.e., actions performed on the en-
vironment the system obtains from perceived information
from the environment and its internal state. Over time,
system performance may degrade, leading to undesired
behavioral changes and finally preventing the system from
performing its intended tasks. Degradation is not the only
source of misbehavior. Attacks from outside or misinter-
preting perceived information from its environment can
also cause the system to fail. In any case, we must identify
failures as early as possible and react with countermea-
sures to compensate for or correct detected faults.

In practice, we use monitoring systems to observe the
behavior of a system over time. Applications of moni-
toring range from keeping track of performance (Lucas
(1971); Zeng and Wang (2009)), identifying security is-
sues (Casola et al. (2019)), to checking for safety (Wotawa
and Lewitschnig (2022)). Monitoring systems often use
properties to detect failures, that is, deviations from the
expected behavior. If the system’s observations violate a
property, the monitoring system raises an alarm message.
Such messages can either trigger human operators to take
countermeasures or pass control. In any case, we have
to specify the properties of a system, which is a time-
consuming and work-intensive task. If we do not declare
all the properties of the system, the monitoring system
may fail to identify a critical situation. The monitoring
system may deliver too many alarms or error messages

if we specify weak properties. Considering the increasing
complexity of today’s systems comprising hardware and
software components. It seems unlikely that we will ob-
tain all of the properties of the system that we use for
monitoring during development. Hence, there is a need to
automate this task.

This paper suggests using machine learning to obtain mod-
els to be checked during operation. The idea is to observe
the system’s interactions with the environment and its
internal state. Take this information and use a machine
learning algorithm to get the system model representing
the system’s behavior. Later, this model is used to verify
the behavior. If we learn the model when the system starts
to operate, we may safely assume that the learned model
only captures the correct behavior of the system. After
learning, we use the model to predict the system’s behavior
over time. We consider deviations between the predictions
and the observations to be failures. From this idea, several
important research questions arise: RQ-1 : Can our ap-
proach identify faults in a real-world setup? RQ-2 : When
should we stop learning, when should we go operational,
and when should we restart learning? RQ-3 : What effect
do our machine learning model’s parameter and setup
choices have on the failure detection’s overall performance?
Finally, we want a general process that allows deploying
such a monitoring approach to any system. In this paper,
we focus on answering the first three questions raised.
For this purpose, we introduce the architecture and im-
plementation of the proposed machine learning monitor-
ing approach that utilizes recurrent neural networks. In
previous work, we described using an LSTM autoencoder



model for intrusion detection (Mühlburger and Wotawa
(2022)). In this work, we use a bidirectional LSTM – no
autoencoder model – to detect anomalies in battery con-
troller signals. The model uses a forecast-based time-series
anomaly detection approach and sensor data from battery
controllers deployed within electrified vehicles. Recurrent
Neural Networks and Long Short-Term Memory (LSTM)
networks specifically are capable of learning long-range
temporal relationships in data (Hochreiter and Schmid-
huber (1997)). When training LSTMs only on nominal
data, it is possible to learn the nominal behavior of a
system as shown in Bontemps et al. (2016). We use this
approach and apply a bidirectional LSTM Graves et al.
(2013) to learn the nominal behavior of our monitored
cyber-physical system. It is possible to detect anomalies
in the system behavior using this trained model. From
the experimental analysis, we gain insights regarding the
potential practical use of machine learning-based monitor-
ing, which includes answering the questions about when to
stop learning and the influence of parameters on the overall
performance.

Anomaly detection has been a widely researched area for
system monitoring applications. Chandola et al. (2009)
provided a comprehensive review of various anomaly de-
tection techniques. Hyndman and Athanasopoulos (2013)
discussed various time series forecasting techniques that
can be applied for anomaly detection. More recently, Schlegl
et al. (2021) pointed out that models need to represent nor-
mal behavior well in the case of semi-supervised learning to
detect meaningful anomalies. Other recent papers on the
detection of anomalies using machine learning approaches
include Tuli et al. (2022); Pang et al. (2021); Chalapathy
and Chawla (2019); Lindemann et al. (2021). Our work
builds on these foundational techniques by adapting and
extending them to detect system failures. We integrate
forecast-based time series anomaly detection to enhance
the identification of failures, allowing us to better under-
stand the system’s normal behavior and predict potential
failures.

We organize this paper as follows. In Sec. 2, we formulate
our problem and describe our method with its architec-
ture and components. Sec. 4 presents the results of our
experiments, including data analysis, experimental setup,
ablation study, discussion, and threats to validity. Finally,
we summarize the paper.

2. METHODOLOGY

We propose a semi-supervised, forecast-based approach for
univariate time series. Therefore, we designed a Bidirec-
tional Long Short-Term Recurrent Neural Network (Bi-
LSTM) model that learns to forecast the nominal behavior
of the monitored cyber-physical system (Fig. 1).

2.1 Problem Formulation

Imagine a monitoring device that captures sensor values
from a monitored system over time. We may assume that
the system behaves normally and contains no anoma-
lies for a certain time. This time forms the basis for
training a Bi-LSTM machine learning model to capture
the nominal state of a system. To use captured sensor

values as input sequences for such a machine learning
model, we denote x as the input samples of length t.
We use x<1>, x<2>, ..., x<t> to denote the t-th element
of the input sequence x. t is an index into the position
of the sequence. y is our output sequence and we use
y<1>, y<2>, ..., y<t> to denote the t-th element of the
output sequence y. The length of the input and output
sequences is denoted by Tx and Ty, respectively. X(i)

denotes the i-th training sample, and we use X(i)<t> to
refer to the t-th element of the sequence in the training

sample i. T
(i)
x is the input sequence length of the training

sample i. T
(i)
y is the output sequence length of training

example i. y(i)<t> refers to the t-th element of the output
sequence in the training sample i. In our approach, we

set T
(i)
y = 1 and Ty = 1, so for each training sample we

generate an output value T
(i)
y . This represents a forecast-

based method with univariate time series data. Our goal
is to learn a good representation of the nominal state of
a system to detect states that do not conform with this
learned behavior (potential faults).

2.2 Overall Architecture

We use a monitoring device and record internal and exter-
nal system properties, such as temperature, power con-
sumption, and cooling. Our goal is to train a machine
learning model on the nominal behavior of the monitored
system. This model can identify potential faults by com-
paring its predicted future values with real-life data. An
anomaly is detected if this comparison exceeds a threshold
(Fig. 1). The architecture contains the following modules:

(1) Preprocessing: This step involves cleaning, normal-
izing, and transforming the raw data to ensure its
quality and suitability for further analysis.

(2) Windowing mechanism: A technique that divides
time-series data into smaller overlapping segments, al-
lowing for more efficient analysis and improved model
performance.

(3) Forecasting model: A machine learning algorithm re-
sponsible for learning the system’s normal behavior
and making predictions based on the pre-processed
data and windowing mechanism.

(4) Anomaly scoring: A method that sets boundaries
for detecting anomalies between nominal behavior
and deviations by comparing the forecasting model’s
predictions with predefined thresholds.

2.3 Model Architecture

Our Bi-LSTM-based model has the following model archi-
tecture:

(1) The model starts with a Lambda layer that reshapes
the input data into the shape (Samples, Timesteps,
Features). This layer does not introduce any trainable
parameters.

(2) The first bidirectional LSTM layer consists of 120
hidden units with 29,760 trainable parameters. This
layer is followed by a dropout layer with a dropout
rate of 0.5, to prevent overfitting during training.

(3) The second bidirectional LSTM layer also contains
120 hidden units and has 86,880 trainable parameters.



Fig. 1. Overview of Semi-Supervised Machine Learning
Approach for Monitoring Devices. Input data are
time series values. First, nominal input samples train
a forecast-based machine learning model. Second, a
threshold based on this anomaly score is calculated
for each value, enabling the detection of potential
anomalies.

We also use a dropout rate of 0.5 after this bidirec-
tional LSTM layer.

(4) Next, a unidirectional LSTM layer with 60 hidden
units is included, adding 43,440 trainable parameters
to the model.

(5) Finally, a Dense layer with a single output unit and
61 trainable parameters is used to produce the model
output.

In total, the model has 160,141 trainable parameters and
no non-trainable parameters. The input to the network
is a sequence x(i) with a length of n steps (Sec. 2.4.2).
The output layer generates output sequences y(i) with one
element. We trained in 50 epochs with a batch size of 120.
We use the gradient descent optimization algorithm with
a momentum of 0.9, a learning rate of 1 × 10−3 (Fig. 2),
and the Huber loss criterion for training.

2.4 Implementation

We implemented 1 our model using Tensorflow 2 and Ke-
dro 3 machine learning frameworks.

Data Preprocessing In the preprocessing steps, we load
the raw data consisting of multivariate time series. We
select a univariate time series from the multivariate time
series for further processing. We normalize the features by
scaling the values to a feature range of [0,1].

xstd = x−min(x)
max(x)−min(x)

z = xstd × (max−min) + min

xstd represents the standardized and z the scaled versions
of x. min(x) denotes the minimum values and max(x) the
maximum values in x. max and min are used to represent
the specified scaling range.

For training and validation, we only used data that contain
normal behavior. For testing, we used data containing
normal and possibly faulty behavior.

Windowing Mechanism We aim to transform the time
series prediction into a supervised learning problem.
Therefore, we span a window of n steps past values to

1 Source code and data is available under an
open-source license: https://github.com/muehlburger/
safeprocess2024-making-systems-fail-aware
2 https://www.tensorflow.org, Accessed October 20, 2023.
3 https://kedro.org, Accessed October 2nd, 2023.

predict a horizon of future values at time T . We set
horizon = 1, which means that we only forecast one future
value. We tested different values for n steps and found that
n steps = 60 works well.

Threshold Calculation Previous work suggests calculat-
ing anomaly scores using reconstruction, forecast, or pre-
diction errors (Luo et al. (2020); Koutroulis et al. (2023);
Hundman et al. (2018)). We calculate the forecast error
and measure the forecasts’ mean absolute error (MAE)
on the training set. We take the maximum error on the
training set. Our model follows a semi-supervised learning
approach, as our training set contains no anomalies. The
forecast error on the training set is lower than on the test
set, which contains potential anomalies. During anomaly
scoring, we use the test set, generate forecasts, and com-
pare the forecast error to the calculated threshold of the
training set. If the error exceeds this threshold, an anomaly
is detected.

3. EXPERIMENTAL SETUP

To answer the research questions from Sec.1, we evaluated
our approach experimentally using the following dataset.

3.1 Dataset Description

Our dataset consists of multiple time series readings pro-
duced by a Cyber-Physical System (CPS), concretely a
battery management system in an electrified vehicle. It
contains sensor values of temperature, power consumption,
velocity, and airflow of the cooling system and has 90
minutes (5,400.5 seconds) of continuous readings, resulting
in 10,801 total samples. We divided it into training and
validation in a proportion of 95% (10,260 training samples)
and 5% (541 validation samples). For evaluation, we used
a separate test dataset.

We collected the dataset by simulating a battery man-
agement system in an electrified vehicle (CSP) with an
array of sensors installed at different locations. These sen-
sors continuously monitored and recorded various system
parameters under different operating conditions. Some sig-
nals in the dataset are identical; therefore, we selected 4
types of signals from the 13 available. The first two signals
represent temperature sensors (temp5 and temp6). Two
other sensors measure the electric current (amperage) and
airflow in liters per second from a cooling device (volflow).
Before training our model, we preprocessed the dataset by
transforming each time series into a sequence x with input
length Tx = 60 and output length Ty = 1. The sequence x
contains one signal from the dataset. The resulting dataset
represents a supervised learning problem, forecasting one
value based on historical values.

We aim to train a Bi-LSTM machine learning model using
this dataset to detect anomalies in the cyber-physical
system’s operation. The performance of the model is
evaluated on a separate test dataset.

3.2 Model Training

We train our model using input sequences to predict future
values accurately. After training, the model can forecast
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Fig. 2. Optimization of the learning rate for the ’temp5’
model. A learning rate of 1 × 10−3 was identified
as optimal, balancing model accuracy and training
efficiency.

the next values based on historical sensor readings. When
forecasting nominal input sequences, our model has a low
forecast error. We use the low forecast error to define a
threshold and compare it with the forecast errors of the
test sequences to detect potential anomalies. Fig. 3 shows
the loss and mean absolute error (MAE) for the training
and validation sets. The errors decrease steadily, indicating
that the model is able to learn the data well.

3.3 Evaluation Metrics

We evaluate the performance of our model using the mean
absolute error and the mean squared error metrics follow-
ing Hyndman and Athanasopoulos (2013) and Willmott
and Matsuura (2005). The lower the values, the better the
forecast performance of the model.

Mean Absolute Error (MAE) measures the mean error
in the absolute values between the predictions ŷ and the
actual values y.

MAE(y, ŷ) = 1
nsamples

∑nsamples−1
i=0 |yi − ŷi| .

Mean Squared Error (MSE) measures the mean error in
squared values between predictions ŷ and actual values y
and is therefore more sensitive to larger errors.

MSE(y, ŷ) = 1
nsamples

∑nsamples−1
i=0 (yi − ŷi)

2.

Mean Absolute Percentage Error (MAPE) measures the
mean of the percentage error of the difference between
predictions ŷ and actual values y.

MAPE(y, ŷ) = 1
nsamples

∑nsamples−1
i=0

|yi−ŷi|
max(ϵ,|yi|)

4. RESULTS

Our results highlight the model’s precision in forecast-
ing and anomaly identification, with detected anomalies
closely correlating with the simulated faults. These find-
ings, illustrated for models ”temp5” and ”amperage” in
Figs. 4 and 3 underscore the potential of our approach in

Fig. 3. Training history for the ’temp5’ model, demonstrat-
ing the model’s convergence over 60 epochs. This effi-
ciency supports the feasibility of frequent re-training
to adapt to new system behaviors.

enhancing monitoring systems’ sensitivity to early signs of
system failures. Fig. 4 shows the predictions in the train
set, test set, the errors, and detected anomalies.

4.1 Model Performance

Table 1 presents the evaluation of our models temp5,
temp6, volflow, and amperage, on various metrics such as
Mean Absolute Error (MAE), and the count of detected
faults for both training and testing. The ability of temp5
and volflow to detect 6800 anomalies in the test set, as
opposed to 1156 in ’temp6’, underscores the variability in
model performance and highlights the challenge of learning
the intricate dynamics of CPS features like amperage,
where we observed a high number of false positives (8767
anomalies detected). We selected 60 epochs, a learning rate
of 0.001, a batch size of 120, a window size of 60, and a
train / test split of 95% train and 5% test data.

4.2 Analyzing Anomalies and Fault Detection

Our method’s ability to distinguish between nominal and
anomalous states is further evidenced by the detailed
analysis of temp5 with different window sizes shown in
Table 2. The variation in detected anomalies with changing
window sizes demonstrates the model’s responsiveness to
temporal features of the data, which is crucial for real-time
anomaly detection.

The computational efficiency of our approach, validated
on an Apple MacBook Pro 14-inch with an M1 chip and
16GB of RAM, underscores the feasibility of deploying
such models in real-world CPS with limited computational
resources. Each experiment was carried out several times,
and average values are reported. Our experiments aimed
to find a small window size for model training to produce
good forecasts.

5. DISCUSSION

Our approach can identify faults in a real-world setup
(see Table 1). Therefore, we can confirm RQ-1. Our
models for temp5, temp6, and volflow detected faults on



Table 1. Results for all models. For each model, we report the calculated threshold, the mean
absolute error (MAE), and the detected faults in the training and test datasets.

Model Data MAE MSE MAPE Window Size Epochs Threshold Anomalies detected

amperage test 18.33 672.86 209.10 60 60 6.65 8766
amperage train 18.34 673.26 208.77 60 60 6.65 8767
temp5 test 52.29 4309.47 55.68 60 60 1.05 6800
temp5 train 0.29 0.14 4.60 60 60 1.05 0
temp6 test 0.44 0.66 1.82 60 60 1.37 1156
temp6 train 0.15 0.04 0.62 60 60 1.37 0
volflow test 6.53 67.14 52.38 60 60 1.70 6800
volflow train 0.14 0.04 1.76 60 60 1.70 0

Table 2. Results for temp5 with different window sizes. The model was trained with a window
size of 60.

Model Data MAE MSE MAPE Window Size Epochs Threshold Anomalies detected

temp5 test 68.41 7035.16 625063.56 1 60 1.05 10366
temp5 test 64.95 6392.36 208.10 5 60 1.05 10287
temp5 test 60.22 5566.50 131.75 10 60 1.05 10077
temp5 test 52.63 4382.89 54.96 30 60 1.05 6800
temp5 test 52.29 4309.47 55.68 60 60 1.05 6800
temp5 train 16.30 349.05 346.60 1 60 1.05 10366
temp5 train 12.81 214.76 225.08 5 60 1.05 10287
temp5 train 8.07 84.28 120.79 10 60 1.05 10077
temp5 train 0.40 0.25 3.94 30 60 1.05 43
temp5 train 0.29 0.14 4.60 60 60 1.05 0
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Fig. 4. Model Predictions and Anomaly Detection for ”temp5” and ”amperage” models. The figure presents the
predictions of the model during training, the test performance with the mean absolute error, and the detected
anomalies using a predefined threshold for the training set. It illustrates the ability of the bidirectional LSTM model
to learn normal behavior and detect deviations, demonstrating its potential for real-world system monitoring.

the test set, and a manual analysis confirmed that the
detected anomalies are true positives. We experimented
with different parameters, such as window size, learning
rate, number of epochs, and different train/test splits. We
were unable to find reliable information to answer RQ-
2 unquestionably. One possibility is to perform an error
analysis of the training history. Fig. 3 shows the training
history of temp5, and as we can see, it was sufficient to

train for 60 epochs. So, we can stop learning after 60
epochs and go operationally fast, as the training time is
less than two minutes. Further, it enables the model to
be re-trained after a certain time to learn new nominal
behavior of the system.

To answer RQ-3 we calculated thresholds for each model
that predicted no false positives on the training sets and



found that a window size of 60 has a suitable performance
on our dataset. We trained for not more than 60 epochs,
which is rather low. To find an appropriate learning rate to
train the temp5 model, we used a learning rate scheduler,
testing different learning rates and selecting 1 × 10−3 as
optimal (Fig. 2).

The mean absolute error is highly dependent on the
possibility that the model fits well and the ability to learn
the nominal behavior. Due to our setup, it is not possible
to evaluate if all anomalies are found because we only rely
on the fact that no anomalies are present in the training set
(semi-supervised learning). Window size is an important
parameter in time series, as it defines the historical values
that are used to predict the future. A bigger window size
enables the model to can more information, but it also
requires more resources (compute, memory) and has the
potential to overfit (see Tables 1 and 2).

6. CONCLUSION

In conclusion, this paper introduces a semi-supervised,
Bi-LSTM-based forecasting model for anomaly detection
in CPS. Distinguished by its focus on learning nominal
behavior and evaluated through a simulation dataset, our
approach signifies a step forward in developing fail-aware
systems capable of adapting to real-world complexities.
Future directions include expanding our dataset to en-
compass wider operational spectra and exploring the inte-
gration of additional forecasting techniques for enhanced
anomaly detection capabilities.
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