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Abstract: To enhance fault resilience in microgrid systems at the energy management level,
this paper introduces a novel proactive scheduling algorithm, based on uncertainty modelling
thanks to a specifically designed neural network. The algorithm is trained and deployed online
and it estimates uncertainties in predicting future load demands and other relevant profiles.
We integrate the novel learning algorithm with a stochastic model predictive control, enabling
the microgrid to store sufficient energy to adaptively deal with possible faults. Experimental
results show that a reliable estimation of the unknown profiles’ mean and variance is obtained,
improving the robustness of proactive scheduling strategies against uncertainties.
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1. INTRODUCTION

The microgrid concept was introduced in (Lasseter, 2002)
to coordinate the operation of numerous distributed en-
ergy resources. Ensuring the microgrid’s power resilience
against possible faults is a critical priority (Panteli and
Mancarella, 2015). Although a microgrid system inher-
ently enhances overall system resilience due to its local
generation and storage, designing a suitable controller
that explicitly considers possible faults is crucial. At the
tertiary control level, the Energy Management System
(EMS) calculates the future power schedule for all agents
connected to the microgrid. The main challenge in de-
signing the EMS stems from the uncertainty associated
with future renewable power generation, load demand, and
electricity prices, which are typically unknown in advance.
The possible presence of faults adds additional complexity
to the controller design.

Fault resilience is addressed at the EMS level by imple-
menting two main strategies: proactive scheduling and out-
age management (Hussain et al., 2019). Proactive schedul-
ing ensures that the system can handle a fault effectively
before its occurrence, while outage management instead
focuses on managing the fault once it has occurred. Typi-
cally, the first strategy is implemented by storing enough
energy in the microgrid to supply the loads during faults.
In contrast, the second strategy optimally manages the
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stored energy under fault conditions. Besides reliable pre-
dictions of the future uncertain profiles, e.g. the future load
demand, the robustness of a proactive scheduling strategy
can be enhanced if knowledge about the uncertainty of
such predictions is available.

In this paper, we design a resilient EMS to coordinate
the operation of microgrid agents, explicitly considering
the potential occurrence of a fault. In particular, we
focus on implementing a proactive scheduling strategy
against blackouts under uncertainty of future load demand
and renewable generation. To address this challenge, we
extend the online learning-based Model Predictive Control
(MPC) algorithm, first presented in (Casagrande et al.,
2023), to estimate the forecasts’ mean and variance and
consider this information in the scheduling computation.
The proposed EMS is composed of two blocks: (i) a
predictor that forecasts the future uncertain profiles as
well as their uncertainty; (ii) an optimiser that implements
a stochastic MPC algorithm with chance constraints. The
learning algorithm outputs the mean and the variance of
the unknown profiles while maintaining its ability to adapt
online to possible changes, such as installing new load
equipment or PV modules. The optimiser schedules the
microgrid operation, employing the predicted profiles, to
minimise the cost due to energy trading. The proactive
scheduling strategy is implemented by enforcing the state
of charge to be greater than the future load demand
with a certain probability. By implementing this as a
chance constraint, the uncertainty in the profile prediction
and fault occurrence reduces the conservativeness of the
proactive scheduling strategy.

In the literature, works concerning microgrid resilience
at the EMS level propose proactive scheduling and out-



age management strategies (Hussain et al., 2019). Outage
management is typically obtained by reformulating the
scheduling optimisation problem to include safety objec-
tives (Haessig et al., 2019; Casagrande et al., 2022), by
resorting to interconnections between microgrids (Pasha-
javid et al., 2015) or to different backup options for power
generation (Bernardi et al., 2021). An outage management
strategy is feasible only if enough energy is stored in the
microgrid once the fault occurs, and this is indeed the
goal of proactive scheduling. This strategy is implemented
by storing an additional amount of energy to be used in
the case of a fault. For example, in (Jongerden et al.,
2016), a fixed percentage of the total storage capacity, (20-
30%) is reserved for fault resilience. However, less storage
capacity is available for other EMS objectives, such as
economic goals, and the electricity bill increases. While
acknowledging an increase in costs is necessary to im-
plement a resilience strategy, these methods overlook the
future energy requirement at the risk of storing too much
or too little energy for the loads’ requirements. Adapting
the amount of backup energy to the future load demand
is beneficial since only the required storage capacity is
devoted to resiliency. In (Prodan et al., 2015), uncer-
tainty is accounted for by weighting less the cost func-
tion terms that are farther in the future and hence more
uncertain. In (Khodaei, 2014), a method to switch from
grid-connected to island mode considering uncertainties in
load demand and renewable generation is proposed against
power outages, and uncertainty is addressed in a robust
min-max optimisation method. These two works overlook
the problem of predicting uncertain profiles by assuming
to know them and their uncertainty band. Beyond the
uncertainty in the predictions, the uncertainty in the fault
occurrence should be considered too, to avoid storing a
considerable amount of backup energy when the chance of
fault occurrence is remote. The scenario-based approach
has been proposed in (Tobajas et al., 2022; Casagrande
and Boem, 2022) to take into account the probability
of fault occurrence explicitly. The main drawback of this
approach is that the generated scenario tree may lead to a
large-scale optimisation problem (Casagrande and Boem,
2022). Instead, we consider a chance-constrained optimi-
sation problem where the number of decision variables
linearly depends on the prediction horizon only. Moreover,
we consider the uncertain profiles’ prediction. Compared
to (Casagrande et al., 2022), the method proposed here
is centralised instead of distributed and the problem of
predicting uncertain profiles is considered. As opposed
to (Prodan et al., 2015), we explicitly consider online-
predicted uncertainty thresholds. By setting the probabil-
ity of enforcing the proactive scheduling constraint greater
than the probability of fault occurrence, we achieve a
twofold objective, in contrast to (Tobajas et al., 2022):
on the one hand, the constraint is violated with a higher
probability when the chance of fault occurrence is low,
i.e. when the backup energy is not required; on the other
hand, the resilient EMS is robust against uncertainty in
the predictions. Our algorithm is compatible with any
method for fault probability estimation, such as fragility
curves (Panteli et al., 2016).

The online learning method proposed in (Casagrande
et al., 2023) is extended to estimate uncertainty. While
there are several examples in the literature of methods

to estimate future profiles relevant for microgrid EMS
and offline-batch learning, few works propose methods for
online uncertainty estimation. Methods for online uncer-
tainty estimation are proposed in (Álvarez et al., 2021)
using the Hidden Markov model and in (Von Krannich-
feldt et al., 2021) using quantile regression, but they are
limited to load demand and wind generation forecast-
ing, respectively. In comparison, to (Álvarez et al., 2021)
and (Von Krannichfeldt et al., 2021), we use our method
to jointly estimate all the uncertain profiles as well as their
uncertainty and subsequently, we employ the forecasts for
the EMS application.

Summarising, this work presents two main contributions:
(i) a probabilistic online learning method that estimates
the mean and the variance of the uncertainty of all the
predicted profiles: electricity price, load demand, renew-
able generation; (ii) a proactive scheduling strategy based
on a stochastic MPC, where we require the amount of
stored energy to fulfil the future predicted load demand
with a probability greater than the one of fault occurrence,
allowing us to avoid excessively conservative solutions.

Notation. We use subscripts to denote time instants, i.e.
vt is the vector v at time t. We denote vk|t the value of
the variable v, k steps ahead of the time step t, i.e. at
t+ k. The estimation of the variable v is denoted as v̂. So,
the expected value of a variable v, available at time t, k
steps ahead of time step t, i.e. at t+ k, is denoted as v̂k|t.

The variance of a variable v instead is denoted as σ2
s,k|t =

E
[(
sk|t − ŝk|t

)2]
. We use bold variables to denote time

sequences of N samples, namely vN |t = {vk|t}k∈{0,...,N−1}
is the sequence v from time step t to t+N − 1.

2. ENERGY MANAGEMENT SYSTEM

2.1 System model

We consider four different agent types: loads, renewable
generators, storage systems and connections to the util-
ity grid. Renewable generators and loads are the power
sources and sinks in the microgrid. The amount of power
collectively produced by renewable generators at time t
is denoted as P r

t , whereas the power collectively drawn
from the grid from loads at time t is denoted as P l

t .
Storage systems are modelled as first-order linear systems,
as commonly done in the EMS literature (Parisio et al.,
2014; Prodan et al., 2015):

st+1 = (1− ν)st + TsP
s
t (1)

where st is the state of charge at time t, ν ∈ [0, 1] is the
self-discharge rate, Ts is the controller sample time and the
power P s

t is the net power exchanged with the microgrid.
The power P s

t is the sum of the input P sin
t and output

P sout
t power:

P s
t = ηinP

sin
t − ηoutP

sout
t (2)

where ηin ∈ [0, 1] , ηout ≥ 1 are the charging/discharging
efficiencies, respectively. The limits on the storage power
and charge are: −P s

M ≤ P s
t ≤ P s

M , sm ≤ st ≤ sM , where
P s
M is the maximum power, sM and sm are the storage

system’s charge limits. The interconnection among the
agents is modelled through the power balance constraint:

P s
t + P g

t = P r
t − P l

t (3)



where P g
t is the power exchanged with the utility grid

(P g
t ≥ 0 when the microgrid is selling power). Thus, the

microgrid can trade power with the utility grid, incurring a
cost or earning at each time step computed as Ct = −ptP g

t ,
where pt is the electrical energy price. The goal of the EMS
is to minimise the cumulative cost over all the time steps:

C =

∞∑
t=0

Ct (4)

while ensuring power delivery to loads in the case of a fault.
This paper considers utility grid faults, however, extending
the proposed method to other cases is straightforward.
Other faults are investigated in (Casagrande et al., 2022;
Prodan et al., 2015) where the problem of predicting the
future profiles is not considered. In the case of a utility grid
fault, the microgrid has to operate in island mode, hence
resorting only to its storage capacity and local generation:

P g
t = 0 ∀ t ∈ [τi, τf ] (5)

where τi and τf are the initial and final fault time.

2.2 Online Learning-based EMS

We now describe the controller, as designed in (Casagrande
et al., 2023), which is extended for uncertainty estimation.
The architecture is represented in Figure 1 and comprises
two blocks: a predictor, on the left, online trained to
forecast the future uncertain profiles, and an optimiser, on
the right, that computes the power schedule. The input of

min
ξ
f(ξ, ω̂)

s.t. ξ ∈ C(ω̂)

ψ ω̂ ξ⋆

Fig. 1. The architecture of the EMS controller.

the block is a feature tensor ψ, the output is the prediction
of the uncertain profiles ω̂. The optimiser block takes as
input ω̂ and outputs the optimal value of the decision
variable ξ⋆. The optimiser computes the optimal control
actions (Psin

T |t, P
sout

T |t ). The predicted profiles are the future

values of the electricity price, load demand and renewable
generation over the prediction horizon: p̂T |t, P̂

l
T |t, P̂

r
T |t.

As ψ we use the past values of the profiles over the look-
back window L: p̂L|t−L, P̂

l
L|t−L, P̂

r
L|t−L.

The online training of the NN and the hyperparameters
optimisation (HPO) are performed inspired by the method
proposed in (Casagrande et al., 2023). In this paper, we
enhance the method above to estimate the uncertainty of
the forecasts as described in Section 3.1 and then use this
estimate in a specifically designed stochastic MPC. At each
time step, the NN performs two steps as in Figure 2. The
training step, considering time sequences that are only in
the past and computing the loss function Lt(ω

tr
t , ω̂

tr
t ) using

the predicted and the true profiles, which are available as
all samples are in the past. The second is the test step, in
which the NN predicts the future profiles and passes such
information to the optimiser.

The optimisation problem solved at each time step t is the
following:

time

time

t t+ Tt− L

t− T
t− T − L

ψtest
t ωtest

t

ωtr
tψtr

t

Test set

Training set

Fig. 2. Representation of the training and test sets. Blue
and orange samples represent the NN’s input and
output respectively.

min
P

sin
T |t ,P

sout
T |t

T−1∑
k=0

−p̂k|tP g
k|t (6a)

s.t. sk+1|t = (1− ν)sk|t + TsP
s
k|t (6b)

P s
k|t = ηinP

sin
k|t − ηoutP

sout

k|t (6c)

− P s
M ≤ P s

k|t ≤ P s
M (6d)

sm ≤ sk|t ≤ sM (6e)

P g
k|t + P s

k|t = P̂ r
k|t − P̂ l

k|t (6f)

s0|t = st (6g)

sk+1|t ≥ s̃τk+1|t (6h)

The objective function (6a) is the finite horizon approx-
imation of (4) using the predicted price. The dynamics
of the storage system appear in (6b) and (6c). Con-
straints (6d) and (6e) are the storage limits and (6f)
is the power balance. The state feedback is (6g). Con-
straints (6h) implement the proactive scheduling strategy.
The constraint enforces the storage charge to be greater
than a pre-defined charge, enough to supply loads in case of
faults for τ steps. Depending on the storage capacity and
the load need, the amount of backup energy s̃τk|t can be

computed differently. For example, some methods in the
literature require the backup energy to be greater than
the total energy demand of the loads for the following
τ steps without taking into account the renewable power
production. The renewable power production can be taken
into account as:

s̃τk|t =

τ∑
i=0

Ts[P̂
r
k+i|t − P̂ l

k+i|t] (7)

assuming the load is deferrable. In the following, we will
assume that the storage has enough capacity and power
limits to enforce the backup energy constraint. It should
be noted that Eq. (7) uses the forecasts of renewable and
load power profiles since they are not known in advance.
One of the goals of this work is enforcing (6h) with a
certain level of robustness given the prediction uncertainty.
An outage management strategy, like the one presented
in (Casagrande et al., 2022; Haessig et al., 2019), can
be integrated with the proposed method by modifying
the optimisation problem when a fault occurs. Once the
optimal solution of Problem (6a)-(6h) is computed, the
control law is defined as P sin

t = P sin⋆
0|t , P sout

t = P sout⋆
0|t .

The state of the storage evolves to st+1 as presented
in Section 2.1 according to Eqs. (1) and (2), as well as
the power exchanged with the utility grid P g

t , following



Eq. (3). The microgrid incurs a cost at each time step
which determines the overall cost computed as Eq. (4).

3. RESILIENT STOCHASTIC EMS

The previously presented method assumes a fault can
happen at each time step but it does not consider the
probability of fault occurrence. It also does not consider
uncertainty in the future load demand and renewable
generation. Therefore, when the fault probability is low, we
can tolerate violating such constraint due to uncertainty
since it is very likely that the backup energy will not be
used. Hence, we reformulate constraint (6h) as:

pr
(
sk+1|t ≤ s̃τk+1|t

)
≤ πt (8)

where πt ∈ [0; 1] represents an acceptable probability level
of constraint violation, dependent on time. By setting
πt as the complementary probability of fault occurrence,
the EMS will store the minimum amount of required
backup energy with high probability. Hence it is neces-
sary to reformulate (8) in a deterministic way. Namely
constraint (6h) has to be tightened by reformulating (8)
as sk+1|t ≥ s̃τk+1|t + δπk+1|t, where δ

π
k+1|t is the tightening

value. In the following, we first extend the online learn-
ing algorithm to estimate uncertainties, then we compute
δπk+1|t by reformulating (8).

3.1 Uncertainty estimation

The online learning method is extended to estimate the
predictions’ expected value and variance over the predic-
tion horizon.

Assumption 1. It is assumed the future uncertain profiles
are Gaussian variables, as in (Álvarez et al., 2021). In
particular, for load and renewable generation P l

k|t ∼
N (P̂ l

k|t, σ̂
2
l,k|t), P

r
k|t ∼ N (P̂ r

k|t, σ̂
2
r,k|t), where P̂ ∗

k|t, σ̂
2
∗,k|t

denote the expected value and variance respectively.

Instead of estimating 3×T variables, i.e. only the expected
value, the NN estimates 2×3×T variables, i.e. the expected
value and the variance. In general terms, we denote the
predicted mean and variance of the uncertain profiles as
ω̂k|t and σ̂

2
k|t, respectively. Therefore, the likelihood of the

predicted profiles is pr
(
ωk|t|ω̂k|t, σ̂∗,k|t

)
= N (ω̂k|t, σ̂∗,k|t),

where ω̂k|t is the actual value of the uncertain profile at
time k+ t. The NN learns the parameters of the Gaussian
distribution by minimising the negative log-likelihood of
the predicted profiles as:

Lt(ωt, ω̂t, σ̂t) = − log
(
pr
(
ωk|t|ω̂k|t, σ̂∗,k|t

))
=

1

2
log(2πσ̂∗,k|t) +

(ωk|t − ω̂k|t)
2

2σ̂2
∗,k|t

+ C (9)

C is a constant term independent of the output. Hence,
the NN empirically learns to predict the expected value
and the variance of uncertain profiles.

3.2 Chance constraint reformulation

We now use the estimated prediction uncertainty to refor-
mulate the chance constraint (8) as in (Farina et al., 2013)
using Cantelli’s inequality:

pr
(
x− x̂ ≤ λ

)
≤ σ̂2

x

σ̂2
x + λ2

(10)

where x̂ and σ̂2
x are the expected value and variance of

x, λ ∈ R. First, the state variance must be computed to
use (10) for reformulating (8).

Assumption 2. It is assumed that the state, renewable
generation and load profiles are uncorrelated, i.e. E[(sk −
ŝk)(P

l
k − P̂ l

k)] = 0, E[(sk − ŝk)(P
r
k − P̂ r

k )] = 0, E[(P r
k −

P̂ r
k )(P

l
k − P̂ l

k)] = 0.

We propagate the state variance over the prediction hori-
zon, i.e. the dynamics of the state variance. By combining
the storage dynamics (1), the power balance (3) and the
fault model (5) we obtain:

sk+1 − ŝk+1 =

(1− ν)sk|t + TsP
s
k|t − (1− ν)ŝk|t − TsP̂

s
k|t =

(1− ν)(sk|t − ŝk|t) + Ts(P
r
k|t − P̂ r

k|t) + Ts(P
l
k|t − P̂ l

k|t)

The state variance is σ2
s,k+1|t = E[(sk+1 − ŝk+1)

2], hence

by considering Assumption 2, we obtain:

σ2
s,k+1|t = (1− ν)2σ2

a,k|t + T 2
s (σ̂

2
r,k|t + σ̂2

l,k|t) (11)

which is the dynamics of the state variance. The con-
straint (8) is reformulated as a deterministic constraint
employing (10) and the procedure explained in (Farina
et al., 2013):

ŝk+1|t ≥ s̃k+1|t + σ2
s,k+1|t

√
1− π

π
(12)

The first term is the predicted backup energy for fault
resilience and the second term considers the predicted
variance of the state. The resulting optimisation problem
is:

min
P

sin
T |t ,P

sout
T |t

T−1∑
k=0

−p̂k|tP g
k|t (13a)

s.t. ŝk+1|t = (1− ν)ŝk|t + TsP
s
k|t (13b)

σ2
s,k+1|t = (1− ν)2σ2

s,k|t + T 2
s (σ

2
r,k|t + σ2

l,k|t)

(13c)

P s
k|t = ηinP

sin
k|t − ηoutP

sout

k|t (13d)

− P s
M ≤ P s

k|t ≤ P s
M (13e)

sm ≤ sk|t ≤ sM (13f)

P g
k|t + P s

k|t = P̂ r
k|t − P̂ l

k|t (13g)

s0|t = st, σ2,s
0|t = 0 (13h)

ŝk+1|t ≥ s̃k+1|t + σ2
s,k+1|t

√
1− π

π
(13i)

where the initial condition (13h) for the state variance is
set to zero as the current state st is known.

4. EXPERIMENTAL RESULTS

The datasets employed in the following experiments are
taken from the EMSx benchmark dataset (Le Franc et al.,
2021) for the power profiles and the ENTSO-E Trans-
parency Platform dataset (Hirth et al., 2018) for the price.
The power profiles comprise a PV plant as a renewable
generator and an industrial site as a load. As NN we
employed a network composed of a single LSTM layer



with 48 hidden units followed by a dense layer. The NN
has been pre-trained on industrial site 10 and the hy-
perparameters have been set using the HPO procedure
described in (Casagrande et al., 2023) on the pre-training
dataset. Pre-training is suggested to warm-start the online
learning algorithm and transfer the knowledge from one
site to another. The controller is then tested on industrial
site 12. The system has been simulated for 15400 steps
with a sampling time Ts = 1h (1.8 years). Other simu-
lation parameters are: T = 24, L = 168, ν = 0.0042,
ηin = 0.95, ηout = 1.05, sm = 80kWh, sM = 800kWh,
P s
M = 500kW, τ = 1h. The employed code is available on

GitHub at https://github.com/vittpi/ol-ems.

4.1 Uncertainty estimation

Figure 3 shows the results on the three unknown profiles.
The blue lines are the ground truth, P l

t , P
r
t , pt, the orange

lines are the expected value of the first predicted sample,
P̂ l
0|t, P̂

r
0|t, p̂0|t, and the orange area represents the 1-

standard deviation band P̂ l
0|t ± σ̂l,0|t, P̂

r
0|t ± σ̂r,0|t, p̂0|t ±

σ̂p,0|t. The ground truth value is within the uncertainty
band for most of the represented samples. However, some-
times, it has some unexpected behaviours, e.g. the load
profiles have a sudden spike on the 1st of September. The
uncertainty band of the electricity price is broader than the
other two, suggesting that it is more difficult to predict.
The results of the uncertainty estimation are numerically
assessed in Table 1 where the percentage of samples that
lie within one, two and three standard deviations over all
the simulation steps are computed. The obtained values
are in line with the 68-95-99.7 rule.
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Fig. 3. Ground truth, expected value and uncertainty band
of the unknown profiles.

4.2 Resilient EMS

Three effects of the implementation of the proactive
scheduling strategy are shown: (i) the amount of backup
energy is affected by the uncertainty estimation results, i.e.
more energy is stored in moments of higher uncertainty;
(ii) the amount of backup energy depends on the fault
probability, i.e. when the fault probability is higher, more

Table 1. Percentage of samples, for each un-
known profile, that lie within 1, 2 and 3 σ and

comparison with the theoretical result.

Interval Price Load PV Average 68-95-99.7 rule

σ 70.4% 65.3% 73.0% 69.6% 68.3%
2σ 93.4% 92.7% 94.3% 93.5% 95.5%
3σ 98.3% 98.3% 99.4% 98.5% 99.7%

energy is stored; (iii) there is a trade-off between resilience
and economic performance. The first effect is clear from
Fig. 4 that shows the constraint tightening limit, for k = 0,
over some simulation steps. By comparing Fig. 4 with
Fig. 3, we see that the constraint tightening is greater
in moments of higher uncertainty. The constraint has a
periodic behaviour with a peak at midday due to the
uncertainty band of renewable energy production, which is
zero during the night but may have different values during
the day. The second effect is also evident from Fig. 4,
showing the constraint tightening for different fault prob-
ability levels πt in simulations where we assume the fault
probability is constant over time. More energy is stored
when the fault probability πt is higher. In the first row of
Table 2, the percentage of times in which the stored energy
is lower than the required backup energy is given, and this
value decreases as πt increases, as the controller becomes
more robust to potential fault occurrence. Thirdly, the
trade-off between resilience and economic performance is
evident from the second row of Table 2. As the amount
of backup energy and less storage capacity can be used
for the normal EMS operation, the total cost computed
over all the simulation steps increases. However, in this
scenario, we kept πt constant for all simulation steps.
This value, however, can be changed over time as the
probability of fault occurrence changes, as shown in the
results in Fig. 5. The second effect, i.e. the amount of
backup energy depends on the fault probability, is also
evident from Fig. 5 that shows the experimental results
in a simulation scenario where πt changes over time. The
top plot represents the storage state st and the true value
of the backup energy computed as in Eq. (7) with the
true values of load demand and renewable generation. The
middle plot represents the constraint tightening, and the
bottom plot represents the fault probability. As the fault
probability increases over time, the constraint tightening
increases too while fluctuating in response to the predic-
tions and uncertainty estimation. Moreover, as the fault
probability increases, from the top plot, we can see that
the low values that the state periodically reaches have an
increasing trend due to the constraint tightening.
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Fig. 4. Backup energy constraint tightening limits evolu-
tion for different constant probability levels over time.
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Fig. 5. Simulation results obtained when the fault proba-
bility starts to increase.

Table 2. Results on violating the chance con-
straint and total cost for different probability

levels.

πt 0.1 0.2 0.5

st ≤ s̃τt [%] 15.85± 1.26 13.77± 0.19 10.25± 0.10
C [e] 67, 126± 109 67.450± 159 67, 773± 366

5. CONCLUSION

This paper proposes a novel proactive scheduling strategy
for microgrid energy management to ensure fault resilience
during a utility grid outage. The proposed EMS consists of
an online learning-based predictor and a stochastic MPC.
The predictor is trained online to forecast the mean and
the variance of the future profiles. The optimiser uses this
information to compute the power schedule to optimise
economic performance. Proactive scheduling is enforced
as a chance constraint of the optimisation problem to
consider the prediction uncertainty and probability of
fault occurrence. Simulation results show that a reliable
estimation of the prediction uncertainty can be obtained,
and the proactive scheduling constraint enhances resilience
against faults. As for future work, we will extend the
method to consider chance constraints not only in the
system state but also in the system input.
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