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Abstract: This paper focuses on addressing active fault detection issues for linear stochastic
dynamic systems via distributionally robust optimization (DRO) technique. By constructing
an observer-based residual generator over finite time horizon, residuals in fault-free and faulty
situations are characterized by mean-covariance based ambiguity sets, concerning the unknown
exact probability distributions for stochastic disturbances. Then the design of an auxiliary signal
for active fault detection is formulated as a DRO problem in the sense of minimizing the auxiliary
signal energy while guaranteeing satisfactory false alarm rate (FAR) and missed detection rate
(MDR). By bridging the FAR and MDR involved chance constraints with norm-bounded sets,
a deterministic formulation of the targeting DRO problem is derived without making any
distribution assumptions. Analytical solutions to the optimal auxiliary signal and separation
hyperplane are obtained. The proposed method can ensure not only the worst-case fault
detection accuracy in the probabilistic context but also the robustness against distributional
uncertainties of stochastic disturbances.
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1. INTRODUCTION

Towards improving system safety and reliability, model-
based fault detection (FD) has attracted considerable at-
tention over the past few decades and tremendous achieve-
ments have been obtained, see e.g., Chen and Patton
(1999); Campbell and Nikoukhah (2004); Ding (2021).
Among the involved results, one mainstream technology is
passive FD, the key idea of which is generating a so-called
residual signal by means of methods such as observers,
parity relation and parameter estimation, etc., Chen and
Patton (1999). In recent years, great interest in active FD
has been growing both in research and engineering com-
mittees, which provides a powerful tool for multiplicative
fault detection and diagnosis. Different from passive FD
where continuous monitoring can be performed, in active
FD a testing signal named auxiliary signal is designed and
injected into the system during a test period, in such a

⋆ This work was supported in part by National Natural Science
Foundation of China under Grants (62103247, 62233012, 62322303,
62273021, 61973135), Chinese Postdoctoral Science Foundation
(2021M702022, 2022T150388), Postdoctoral Program for Innovative
Talents of Shandong Province of China (SDBX2021010), Project
of Shandong Province Higher Educational Youth and Innovation
Talent Introduction and Education Program, Shanghai Science and
Technology Plan Project (20040501200), and the Beijing Natural
Science Foundation under Grant 4232047 (Corresponding author:
Maiying Zhong, e-mail: myzhong@buaa.edu.cn)

way possible abnormal behaviors of the system can be
separated from the normal mode before the end of the
test period Campbell and Nikoukhah (2004).

According to the monitored system subject to either de-
terministic or stochastic disturbances, active FD results
can be roughly classified into deterministic methods and
stochastic methods. In deterministic active FD, additive
disturbances are generally considered to be norm-bounded
(or energy-bounded) and the input-output observations
are described with closed sets both for fault-free and
faulty modes. An auxiliary signal is thus designed to-
wards separating these sets completely. For example, Zhai
et al. (2015) presented a set-membership aided active
FD method for open-loop systems with energy-bounded
disturbances. Blanchini et al. (2017) proposed a duality
based approach via convex programming for active fault
isolation purpose. Considering closed-loop systems with
deterministic disturbances, Ashari et al. (2012) gave a ro-
bust active FD method by designing an input signal in the
sense of minimizing the linear quadratic regulator control
performance while achieving full separation of abnormal
system mode with the normal one. Niemann (2006) pro-
posed an active FD setup based on Youla-Jabr-Bongiorno-
Kucera (YJBK) parameterization technique and, on this
basis, Wang et al. (2017) extended the results to fault-
tolerant control for incipient faults. Taking into account
fault detection accuracy and control performance indices



simultaneously, issues of active FD and control have been
discussed successively, see for instance, Jan Siroky et al.
(2011); Punčochář et al. (2015); Ashari et al. (2012);
Forouzanfar and Khosrowjerdi (2017).

In the framework of stochastic active FD, statistical anal-
ysis and probability theory are widely applied for auxil-
iary signal design. For instance, aiming to minimize the
upper bound of the probability of mode selection er-
ror, Blackmore and Williams (2006) applied Bayes risk
as optimization target and presented a hypothesis selec-
tion based fault isolation scheme for systems subjected
to Gaussian distributed noises. Very recently, Guo et al.
(2023) extended the results to state-constrained stochas-
tic dynamic systems. A unified design framework of an
active fault detector and the controller for closed-loop
stochastic systems has also be demonstrated in Šimandl
and Punčochář (2009), where the probability distribution
for noises was assumed to be known exactly. For closed-
loop systems with Gaussian distributed noises, Kwang-
Ki K. Kim and Braatz (2013) combined the model-based
prediction technique with statistical distance measures
(including Kullback-Leibler divergence and Mahalanobis
distance) and developed an optimal input design scheme
for active fault diagnosis. The connection of this method
with generalized likelihood ratio is also discussed, which,
to some extent, bridges the gap between deterministic and
stochastic active FD methods.

Despite the remarkable progress of active FD, it remains
worth mentioning that: 1) a large amount of stochastic
active FD studies assume the probability distribution for
random noises is known exactly, which is usually not true
in practical applications. As a side effect of this, 2) the
robustness of the designed active FD system to distri-
butional uncertainties of stochastic disturbances is poor.
Note the effectiveness of distributionally robust optimiza-
tion (DRO) in handling distributional uncertainties Parys
et al. (2016); Zymler et al. (2013); Ghaoui et al. (2003)),
growing research efforts have been made for distribution-
ally robust passive FD in recent years, see e.g., Shang et al.
(2021); Xue et al. (2020); Tzortzis and Polycarpou (2021).
While active FD for stochastic dynamic systems suffering
distributional uncertainties remains an open topic.

Proceedings of the above observations, in this paper we
demonstrate a new active FD approach for linear stochas-
tic dynamic systems in the framework of DRO. Without
knowing exact probability distributions for disturbances,
an optimal auxiliary signal is designed in the sense of min-
imizing the energy of auxiliary signal with the worst-case
false alarm rate (FAR) and missed detection rate (MDR)
being ensured not exceeding predefined levels. Simulta-
neously, by specifying the probability distributions for
disturbances with mean-covariance based ambiguity sets,
the designed FD system will be robust to distributional
uncertainties of disturbances. The paper is organized as
follows. Problem formulation is given in Section II. Section
III demonstrates the main results of the paper. Conclusion
ends the paper in Section IV.

Notations. In this paper, diag{· · · } denotes the diago-
nal matrix with elements {· · · }. λmax{A} represents the
largest eigenvalue of matrix A. For a sequence vector
ξ(i) ∈ Rn, we denote the column vector comprised of

elements ξ(i), i = 0, 1, · · · , N by col{ ξ(i)|i=0:N } =

[ ξT (0) ξT (1) · · · ξT (N) ]T . Let Pζ , E[ζ] and V[ζ] be the
probability distribution, the mean and the variance of
random variable ζ ∈ Rm, respectively. ξ ∼ (ξ̄, Σξ) means
that variable ξ follows probability distribution with mean ξ̄
and variance Σξ. P ≻ 0 means P is positive definite. Given
matrices A,B,C,D and an integer N > 0, operators ON

and FN are respectively defined as follows

ON (A,C) =
[
CT (CA)T · · · (CAN )T

]T
FN (A,B,C,D) =


D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAN−1B · · · AB D


2. PROBLEM FORMULATION

Consider the following stochastic linear discrete time-
invariant system modeled as

Gi :

{
xi(k + 1) = Aixi(k) +Biu(k) + Eidi(k)

y(k) = Cixi(k) +Diu(k) + Fidi(k)
(1)

where Gi with i = 0 denotes the system mode in fault-free
case and i = 1 the mode in faulty case, xi ∈ Rn, u ∈ Rl

and y ∈ Rm are the system state, auxiliary signal and
output vectors, respectively, xi(0) = xi,0, di ∈ Rq is a zero-
mean stochastic disturbance vector without knowing exact
probability distribution, Ai, Bi, Ci, Di, Ei, Fi are system
matrices of appropriate dimensions and[

A1 B1 E1

C1 D1 F1

]
=

[
A0 B0 E0

C0 D0 F0

]
+∆ref

f

∆ref
f represents the reference for multiplicative faults under

consideration.

Given a gain matrix L stabilizing (A0−LC0), an observer-
based residual generator can be constructed as follows{

x̂(k + 1) = AL,0x̂(k) +BL,0u(k) + Ly(k)

r(k) = y(k)− C0x̂(k)−D0u(k)
(2)

where r ∈ Rm is the residual signal, x̂(0) = x̂0 and

AL,0 = A0 − LC0, BL,0 = B0 − LD0

Let x̃(k) = [xT
i (k) x̂T (k)]T . It is easy to derive from (1)

and (2) that the dynamics of residual is driven by{
x̃(k + 1) = Āix̃(k) + B̄iu(k) + Ēidi(k)

r(k) = C̄ix̃(k) + D̄iu(k) + Fidi(k)
(3)

where x̃(0) = x̃0 = [xT
i,0 x̂T

0 ]
T and

Āi =

[
Ai 0
LCi AL,0

]
, B̄i =

[
Bi

BL,0 + LDi

]
, Ēi =

[
Ei

LFi

]
C̄i = [Ci −C0 ] , D̄i = Di −D0.

Despite the unknown exact probability distribution for
disturbance di and the initial state x̃0, we can without
loss of generality assume

E
[

x̃0

di(k)

]
= 0, E

{[
x̃0

di(k)

] [
x̃0

di(j)

]T}
=

[
Σx̃0

δkjΣd,i

]
where δkj is the delta function that satisfies δkj = 0 for
k ̸= j and δkj = 1 for k = j, Σx̃0

≻ 0 and Σd,i ≻ 0.

It is seen from (3) that the residual signal r is coupled with
auxiliary input u due to multiplicative fault ∆ref

f . This



is different from the case with additive faults where the
residual signal is decoupled with system input completely.
On the other hand, from the viewpoint of classification, an
FD issue can be regarded as a binary classification prob-
lem, i.e., the fault-free and faulty classes. So a hyperplane
H(w, b) = {r|wT r = b} with parameters w and b ∈ R can
be determined in residual evaluation stage, such that, by
using J(r) = wT r(k) as an evaluation function and Jth = b
as the threshold, the occurrence of a fault can be detected
by performing the following decision logic{

J(r) > Jth, fault alarm

J(r) ≤ Jth, no alarm
(4)

Thus the design of an active FD system for process (1)
lies in the design of auxiliary signal u(k) and hyperplane
parameters w and b.

To assess the fault detection performance, we recall the
definitions of FAR and MDR (Ding et al. (2019))

Definition 1. Given an FD system with residual generator
(2), evaluation function J(z), threshold Jth and decision
logic (4), we call the conditional probability

PFAR = Pr{J(r) > Jth|∆ref
f = 0}

FAR with respect to (w.r.t.) uncertainty d0, x̃0, and the
conditional probability

PMDR = Pr{J(r) ≤ Jth|∆ref
f ̸= 0}

is called the MDR w.r.t. fault mode ∆ref
f ̸= 0.

Note that, due to the unknown precise probability distri-
butions for initial state x̃0 and stochastic disturbance di,
it is difficult to compute the exact value of FAR and MDR
in the probabilistic context. Since means and covariance
matrices of x̃0 and di are known, an alternative way is to
measure the upper bounds of FAR and MDR in the worst-
case setting. Meanwhile, the injection of an auxiliary signal
should not influence the system dynamics seriously. Thus
the energy of u(k) over testing period should be as small as
possible with satisfactory FAR and MDR. In this context,
the design of the active FD system is formulated as follows.

Problem 2. Given system (1) and residual generator (2),
find an appropriate auxiliary signal over finite time hori-
zon, i.e., u(k) with k ∈ [0, N ] (N > 0), and determine
a hyperplane H(w, b) = {r|wT r = b}, such that for
predefined upper bounds of FAR and MDR the energy
of auxiliary signal is minimized, i.e.,

Jopt := min
u,w, b

N∑
k=0

uT (k)u(k) (5)

s.t.



x̃(k + 1) = Āix̃(k) + B̄iu(k) + Ēidi(k)

r(k) = C̄ix̃(k) + D̄iu(k) + Fidi(k)

E
[

x̃0

di(k)

]
= 0,

E

{[
x̃0

di(k)

] [
x̃0

di(j)

]T}
=

[
Σx̃0

δkjΣd,i

]
sup

∆ref
f

=0

Pr
{
wT r > b

}
≤ α

sup
∆ref

f
̸=0

Pr
{
wT r ≤ b

}
≤ β

(6)

where α, β ∈ (0, 1) represent the predefined upper bounds
of FAR and MDR, respectively.

3. MAIN RESULTS

In this section, we first give a determinstic formulation of
the target problem (5)–(6) by handling the constraints in
(6) with DRO technique. Then analytical optimal solutions
to the auxiliary signal and the hyperplane are derived for
decision making purpose.

3.1 A determistic reformulation

According to (3), the residual signal over finite time
horizon [0, N ] can be rewritten as

rN = Hu,iuN +Hdx,idi,N (7)

where rN = col{r(j)|j=0:N}, uN = col{u(j)|j=0:N},
di,N = col{x̃0, di(j)|j=0:N} and

Hu,i = FN (Āi, B̄i, C̄i, D̄i)

Hd,i = FN (Āi, Ēi, C̄i, Fi)

Hx̃,i = ON (Āi, C̄i)

Hdx,i = [Hx̃,i Hd,i]

In what follows Hdx,i is assumed to be of full row rank.

In residual evaluation stage, the evaluation function and
threshold become

J(r) = wT rN , Jth = b (8)

so as to achieve FD by performing (4), where w ∈ Rm(N+1)

and b ∈ R are parameters to be designed.

Let d̄i,N = E[di,N ] = 0 and ΣdN ,i = V[di,N ] = diag(Σx̃0 ,
Σd,i, · · ·Σd,i). Define

ξi = Σ
− 1

2

dN ,i(di,N − d̄i,N ) (9)

where ξi ∈ Rq is a random vector following the probability
distribution with zero-mean and identity variance matrix,

i.e., ξi ∼ (0, I). Then di,N = Σ
1
2

dN ,iξi and

rN = Hu,iuN +Hdx,iΣ
1
2

dN ,iξi (10)

Denote the residual in fault-free and faulty cases respec-
tively by

rN,0 = rN |∆ref
f

=0 = Hdx,0Σ
1
2

dN ,0ξ0 (11)

rN,1 = rN |∆ref
f

̸=0 = Hu,1uN +Hdx,1Σ
1
2

dN ,1ξ1 (12)

The corresponding means and covariance matrices are
obtained as

r̄N,0 = E[rN,0] = 0, r̄N,1 = E[rN,1] = Hu,1uN (13)

ΣrN ,0 = V[rN,0] = Hdx,0ΣdN ,0HT
dx,0 (14)

ΣrN ,1 = V[rN,1] = Hdx,1ΣdN ,1HT
dx,1 (15)

respectively. Despite the unknown exact probability dis-
tributions for residual in fault-free and faulty cases, we
can, without loss of generality, construct the following
mean-covariance based ambiguity sets to characterize their
distributions, i.e.,

P0=
{
PrN ∈Vm(N+1)|EPrN

[rN ] = r̄N,0, VPrN
[rN ] = ΣrN ,0

}
P1=

{
PrN ∈Vm(N+1)|EPrN

[rN ] = r̄N,1, VPrN
[rN ] = ΣrN ,1

}
where PrN is the probability distribution of rN , Vm(N+1)

represents all valid probability distributions in space



Rm(N+1). In this sense, the last two conditions in (6) can
be converted into

sup
PrN

∈P0

Pr
{
wT rN > b

}
≤ α

sup
PrN

∈P1

Pr
{
wT rN ≤ b

}
≤ β

(16)

which are named the distribtuionally robust chance-
constraints (DCCs).

To handle the DCCs in (16), the following theorem is
referred.

Theorem 3. (Ghaoui et al. (2003)) Given a random vari-
able ζ ∈ Rn following probability distribution Pζ with
E[ζ] = ζ̄ and V[ζ] = Σζ ≻ 0, define P = {Pζ ∈ Vn|EPζ

[ζ] =

ζ̄, VPζ
[ζ] = Σζ}. Then, for a fixed vector g ∈ Rn and a

constant g0, if

∀ζ ∈ Ωϵ
ζ , g

T ζ > g0

holds with

Ωϵ
ζ =

{
ζ|(ζ − ζ̄)TΣ−1

ζ (ζ − ζ̄) ≤ κ2(ϵ)
}

where κ(ϵ) =
√
(1− ϵ)/ϵ, ϵ ∈ (0, 1), then

sup
Pζ∈P

Pr
{
gT ζ > g0

}
≤ ϵ

It is worth emphasizing that Theorem 3 establishes a
bridge between a deterministic condition and a DCC while
without making any distribution assumptions on random
variable. On this basis, let

κ(α) =

√
1− α

α
, κ(β) =

√
1− β

β

Define the following sets

Ωα
rN,0

=
{
rN | (rN−r̄N,0)

T
Σ−1

rN ,0 (rN−r̄N,0)≤κ2(α)
}

Ωβ
rN,1

=
{
rN | (rN−r̄N,1)

T
Σ−1

rN ,1 (rN−r̄N,1)≤κ2(β)
}

which, together with (11)–(15) and Hu,0 = 0, can be
further rewritten as

Ωα
rN,0

=

{
rN

∣∣∣∣∣ rN = rN,0 = Hdx,0Σ
1
2

dN ,0ξ0
ξ0 ∼ (0, I), ∥ξ0∥2 ≤ κ(α)

}

Ωβ
rN,1

=

{
rN

∣∣∣∣∣ rN = rN,1 = Hu,1uN +Hdx,1Σ
1
2

dN ,1ξ1
ξ1 ∼ (0, I), ∥ξ1∥2 ≤ κ(β)

}
The DCCs in (16) can then be equally represented as{

∀rN ∈ Ωα
rN,0

, wT rN > b

∀rN ∈ Ωβ
rN,1

, wT rN ≤ b.
(17)

Obviously, equation (17) shows that if we can find a
hyperplane H(w, b) = {rN |wT rN = b} to separate the
ellipsoids Ωα

rN,0
for fault-free case (i = 0) and Ωβ

rN,1
for

faulty case (i = 1) with probability one, i.e.,

Ωα
rN,0

∩ ∈ Ωβ
rN,1

= ∅ (18)

the upper bounds of FAR and MDR for any PrN ∈ P0

in fault-free case and PrN ∈ P1 in faulty case can be
guaranteed not larger than α and β, respectively, when the
decision logic (4) with evaluation function and threshold
in (8) is used.

In this context, the probabilistic optimization problem
(5)–(6) can be equally converted into the following deter-
ministic optimization problem

Jopt := min
uN , w, b

uT
NuN (19)

s.t. Ωα
rN,0

∩ ∈ Ωβ
rN,1

= ∅ (20)

Remark 4. It is notable that sets Ωα
rN,0

and Ωβ
rN,1

can be
regarded as collections of random variable samples rN
having the two-norm not greater than κ(α) and κ(β),
respectively and such samples are obtained w.r.t. ξ0 ∼
(0, I) and ξ1 ∼ (0, I), respectively. In other words, Ωα

rN,0

and Ωβ
rN,1

can be regarded as samples sets of norm-
bounded residuals at levels α and β, respectively.

3.2 Solution and algorithm

In this subsection we will apply useful results given in
Campbell and Nikoukhah (2004) to address the optimiza-
tion problem (19)–(20).

At first, we consider the residual suffered disturbance ξi
in (10) is a norm-bounded deterministic signal both for
fault-free and faulty cases, i.e.,

rN = Hu,iuN +Hdx,iΣ
1
2

dN ,iξi, ∥ξi∥2 ≤ pi, i = 0, 1 (21)

where p0 = κ(α), p1 = κ(β). The corresponding residual
signals are then norm-bounded and belong to

Ω̄α
rN,0

=

rN

∣∣∣∣∣∣ rN = κ(α)Hdx,0Σ
1
2

dN ,0ξ̃0∥∥∥ξ̃0∥∥∥
2
≤ 1


Ω̄β

rN,1
=

rN

∣∣∣∣∣∣ rN = Hu,1uN + κ(β)Hdx,1Σ
1
2

dN ,1ξ̃1∥∥∥ξ̃1∥∥∥
2
≤ 1


in fault-free and faulty cases, respectively. Then we have

Ωα
rN,0

⊆ Ω̄α
rN,0

, Ωβ
rN,1

⊆ Ω̄β
rN,1

(22)

which means if Ω̄α
rN,0

∩ Ω̄β
rN,1

= ∅, then Ωα
rN,0

∩ Ωβ
rN,1

=

∅ holds. So in what follows we focus on solving the
following optimization problem towards an optimal design
of auxiliary signal uN

Jd
opt : = min

uN

uT
NuN (23)

s.t. Ω̄α
rN,0

∩ Ω̄β
rN,1

= ∅ (24)

Supposing the residual signals in fault-free and faulty cases
can both be modeled as (21), according to Campbell and
Nikoukhah (2004), we then have

Hu,1uN =
[
κ(α)Hdx,0Σ

1
2

dN ,0 −κ(β)Hdx,1Σ
1
2

dN ,1

][
ξ̃0
ξ̃1

]
(25)

Let G = Hu,1, ξ̃ =
[
ξ̃T0 ξ̃T1

]T
, H = [H0 −H1] and

H0 = κ(α)Hdx,0Σ
1
2

dN ,0 (26)

H1 = κ(β)Hdx,1Σ
1
2

dN ,1 (27)

Equation (25) delivers

GuN = Hξ̃ (28)

It is remarkable that for the monitored system with i = 0
and i = 1, observations u(k) and y(k) over time horizon



[0, N ] for each case consists with one of the system modes.
That means, for the same observations u(k) and y(k) with

k ∈ [0, N ], there exists no ξ̃0 and ξ̃1 satisfying ||ξ̃0||2 ≤ 1

and ||ξ̃1||2 ≤ 1 simultaneously. In this regard, the optimal
design of auxiliary input uN with respect to solving
(23)–(24) can be further reformulated as (Campbell and
Nikoukhah (2004))

Jd
opt := min

uN

uT
NuN (29)

s.t. max
η∈[0,1]

ϕη(uN ) ≥ 1 (30)

where

ϕη(uN ) = min
ξ̃0,ξ̃1

(ηξ̃T0 ξ̃0 + (1− η)ξ̃T1 ξ̃1) (31)

= min
uN

(uT
NPηuN )

with Pη = GT (HQ−1
η HT )−1G, Qη = diag{ηI, (1 − η)I}

and η ∈ (0, 1).

According to Ashari et al. (2012); Zhai et al. (2015), the
optimal solution to problem (29)–(30) can be obtained by
using the following theorem.

Theorem 5. Suppose that ∀η ∈ [0, 1], HQ−1
η HT ≻ 0. The

optimal solution of uN to (29)–(30) is obtained as

u∗
N =

1√
λ∗

v∗

∥v∗∥2
(32)

where λ∗ is the largest eigenvalue of Pη w. r. t. η, i.e.,

λ∗ = max
η∈[0,1]

λmax{Pη} (33)

and v∗ is the corresponding eigenvector. At the optimum,
we have

Jd
opt =

1

λ∗ (34)

Moreover, since

[I −Hu,i]
T
(Hdx,iHT

dx,i)
−1 [I −Hu,i] ⪰ 0

holds, sets Ω̄α
rN and Ω̄β

rN are bounded and convex for uN

according to Lemma 3.2.6 in Campbell and Nikoukhah
(2004). In this context, a unique hyperplane exists that
can, with probability one, separate the fault-free and the
faulty classes w.r.t. norm-bounded disturbances ξ̃0 and
ξ̃1. To determine such a separation hyperplane H(w, b),

denote the optimal values of η, ξ̃0, ξ̃1 respectively by
η∗, ξ̃∗0 , ξ̃

∗
1 . According to (21) and (26)–(27), it is obtained

ξ̃0 = H−1
0 rN , ξ̃1 = H−1

1 (rN −GuN )

Let

f(ξ̃0) = ηξ̃T0 ξ̃0, g(ξ̃1) = (1− η) ξ̃T1 ξ̃1

We further have

f(ξ̃0) = f̄(rN ) = ηrTNH−T
0 ξ̃0

g(ξ̃1) = ḡ(rN ) = (1− η) (rN −GuN )
T
H−T

1 ξ̃1

At the optimum of ϕη(uN ) in (31) with respect to ξ̃0 = ξ̃∗0 ,

ξ̃1 = ξ̃∗1 , η = η∗ and uN = u∗
N , it holds

f̄(rN ) = f(ξ̃∗0) = η∗rTNH−T
0 ξ̃∗0

ḡ(rN ) = g(ξ̃∗1) = (1− η∗) (rN −Gu∗
N )

T
H−T

1 ξ̃∗1

By utilizing the results of Lemma 3.2.7 in Campbell and
Nikoukhah (2004), we have

Algorithm 1 Proposed method for auxiliary signal design

1: Set acceptable upper bounds of FAR α ∈ (0, 1) and
MDR β ∈ (0, 1), an appropriate initial state x̃0, and
covariance matrices Σx̃0 and Σd,i for i = 0, 1.

2: Compute matrices Hdx,i andHu,i and construct ΣdN ,i.
3: Solve the optimization problem (33) for η∗, v∗ and

λ∗ via generalized eigenvalue-eigenvector technique.
Compute u∗

N according to (32).

4: Compute ξ̃∗ with (37) and then compute r∗N , w∗ and
b∗ with (36), (38) and (39), respectively.

5: During the testing period, compute residual r(k) with
(2) at each step k ∈ [0, N ] and construct rN . Then
compute J(r) = (w∗)T rN and perform (4) to detect
the occurrence of a fault.

w∗ =
f̄(rN )

∂rN
|rN=r∗

N
− ḡ(rN )

∂rN
|rN=r∗

N

= η∗H−T
0 ξ̃∗0 − (1− η∗)H−T

1 ξ̃∗1

=
[
H−T

0 −H−T
1

] [ η∗I
(1− η∗)I

] [
ξ̃∗0
ξ̃∗1

]
=

[
H−T

0 −H−T
1

]
Qη∗ ξ̃∗ (35)

where ξ̃∗ = [(ξ̃∗0)
T (ξ̃∗1)

T ]T , w∗ defines the hyperplane

tangent to the sets Ω̄α
rN ,0 and Ω̄β

rN ,1, r
∗
N is the optimal rN

at the tangent surface. Note from (21) that

r∗N = H0ξ̃
∗
0 = Gu∗

N +H1ξ̃
∗
1 (36)

which means Hξ̃∗ = Gu∗
N . Together with the optimal

solution of (31), vector ξ̃∗ is then specified by

ξ̃∗ = Q−1
η∗ HT (HQ−1

η∗ HT )−1Gu∗
N (37)

Substituting ξ̃∗ into equation (35) delivers

w∗ = 2(HQ−1
η∗ HT )−1Gu∗

N (38)

The hyperplane through the tangent point is thus deter-
mined as

b∗ = (w∗)T r∗N (39)

We thus have the following lemma.

Lemma 6. Given optimal auxiliary input u∗
N in (32) w.r.t.

η∗ and residual generator (21), if Ω̄α
rN and Ω̄β

rN are
bounded and convex sets, a hyperplane completely sep-
arating Ω̄α

rN and Ω̄β
rN is determined as

H(w∗, b∗) = {rN |(w∗)T rN = b∗} (40)

with w∗ and b∗ being given in (38) and (39), respectively.

Up to now, by solving the deterministic optimization prob-
lem (29)–(30), we have found an optimal auxiliary signal
u∗
N and a hyperplane H(w∗, b∗) that can separate the

fault-free and faulty modes of system with norm-bounded
disturbances at levels α and β with probability one. Re-
membering the relation (22), we can conclude that u∗

N
and H(w∗, b∗) also solve the optimization problem (19)–
(20). That means when the monitored system is subject to
stochastic disturbances without knowing exact probability
distribution, hyperplane H(w∗, b∗) can separate the fault-
free and faulty modes before the end of the testing period
[0, N ], with FAR and MDR not larger than α and β,
respectively. The proposed auxiliary signal design method
for active FD is summarized in Algorithm 1. Addition-
ally, since ambiguity sets P0 and P1 specify groups of prob-
ability distributions that share same means and covariance



matrices, the solution of optimization problem (19)–(20)
is thus suitable for any probability distributions delivering
PrN ∈ P0 in fault-free case and PrN ∈ P1 in faulty case.
Namely, the developed active FD system is robust against
distributional uncertainties of stochastic disturbances.

Remark 7. It is worth noting that this work connects the
stochastic active FD and deterministic active FD with the
aid of DRO technique. Without precise probability distri-
butions for disturbances, the relationship between upper
bounds of FAR and MDR and the auxiliary signal design
is investigated in the probabilistic context, . In the pioneer
work of Zhai et al. (2015), a set-membership based active
FD scheme was presented and such relations also were
discussed even though the concerned disturbances were de-
terministic and the fault detection rate (FDR) index (i.e.,
FDR=1-MDR) was computed by using an approximation
method. On the other hand, since in the proposed method
worst-case FAR and MDR are considered, the designed
auxiliary signal is to some extent conservative.

4. CONCLUSION

In this paper, a distributionally robust approach has been
proposed to address active fault detection problem for lin-
ear stochastic dynamic systems. To this end, an observer-
based residual generator is first constructed over finite
time horizon. For predefined upper bounds of FAR and
MDR, the auxiliary signal design has been formulated as
an energy minimization problem subject to FAR and MDR
involved DCCs. By virtue of the connections between
DCCs and norm-bounded residual sample sets, targeting
DRO problem has been reformulated as a deterministic
optimization problem that can be solved with generalized
eigenvalue-eigenvector technique. An analytical solution to
the auxiliary signal has been derived and, on this basis,
an optimal hyperplane has been determined for decision
making aim. In the future, a data-driven realization of
the designed active fault detection system remains worth
studying. Besides, with control performance being consid-
ered, extending such an approach to stochastic closed-loop
systems to achieve an integrated design of fault detector
and controller is also an interesting topic.
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