
Finite-frequency fuzzy fault-tolerant static
output feedback 𝐻∞ control for Diesel engine

air-path system

A. EL-AMRANI * H. NOURA * E. M. EL ADEL *

M. OULADSINE *

* Aix-Marseille University, CNRS, LIS (UMR 7020), Avenue
Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France.

e-mail: {abderrahim.el-amrani; hassan.noura; mostafa.eladel
mustapha.ouladsine}@univ-amu.fr.

Abstract: This paper focuses on the design of 𝐻∞ finite-frequency (FF) fault-tolerant static
output feedback (FTSOFC) problem of Diesel engine air-path system with consideration of
external disturbances and actuator faults. Initially, a Diesel engine air-path nonlinear model
is described by Takagi-Sugeno (T-S) fuzzy model based descriptor approach. The aim is to
regulate intake and exhaust manifold pressures to the desired reference pressures by controlling
the Geometry Turbine (VGT) and Exhaust Gas Recirculation (EGR) valves. Then, the robust
integrator-based control strategy is developed to track the desired reference signals despite
the presence of disturbances and actuator faults. By using the extended Generalized Kalman
Yakubovich Popov (GKYP) lemma, Lyapunov functions and independent slack matrices,
sufficient conditions are established to ensure both the good tracking of reference pressures
and the prescribed 𝐻∞ performance with FF domain of the fuel flow variation and actuator
faults. Finally, simulation results are given to demonstrate the effectiveness of the proposed
approach.

Keywords: Fault-tolerant, Finite frequency, Diesel engine, static output feedback control, T-S
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1. INTRODUCTION

Diesel engines are still supported by motorists and trans-
port companies, thanks to their performance, which is
generally superior to that of gasoline engines. Nevertheless,
particulate emissions such as nitrogen oxides (NOx) and
particles hazardous to human health remain the main
concerns. Diesel engines have to meet three expectations:
control costs, improved reliability and ave a low impact
on the environment. To meet these requirements, tech-
nologies such as variable geometry turbochargers (VGT)
and exhaust gas recirculation (EGR) systems have been
introduced. The main idea is to recirculate a quantity
of burnt gases into the cylinder and inject fuel at high
pressure to improve combustion. A large number of the-
oretical results have demonstrated a significant reduction
in pollutant emissions Stefanopoulou et al. (2000); Cheng
et al. (2020).
Static output feedback controller has also received consid-
erable attention among control issues because it can easily
be implemented in practice and is much simpler than dy-
namic output feedback control. Recently, some important
results by LMI approach El-Amrani et al. (2022, 2023);
Elias et al. (2022). Faults, particularly actuator Fault are
frequently encountered in many practical systems, often
resulting in poor performance or even instability for sys-
tem dynamics. It is therefore necessary and important
to design a fault-tolerant controller against the actuator

faults. In the past decade, many great results on Fault-
tolerant controller systems have been reported in Tu et al.
(2023); Selvaraj et al. (2023).
To the best of our knowledge, no work has been reported
on the modeling and control of the Diesel engine air-path
system for FF domain with actuator faults. Thus, in this
paper, we study the problem of 𝐻∞ FF FTSOFC design
based on T-S fuzzy model. Diesel engine Air-path nonlin-
ear model is firstly described by TS fuzzy model based
descriptor approach. Then, a FF FTSOFC guaranteeing a
good reference pressures tracking with a 𝐻∞ performance
is designed with consideration of external disturbances
and actuator faults. By constructing the extended GKYP
lemma, Lyapunov functions and independent slack matri-
ces, sufficient conditions are established to ensure both
the reference signal tracking and 𝐻∞ performance with
FF domain of the fuel flow variation and actuator faults.
The theoretical results are given in the form of LMI.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this work, let’s consider the Diesel engine air-path struc-
ture of a variable geometry turbocharged Diesel engine
equipped with an EGR system governed by a valve is
shown in fig. 1. The engine system comprises: the four-
cylinder engine, exhaust and intake manifolds, the VGT,
the EGR valve and cooler, turbocharger. The Diesel en-



Fig. 1. Air-path model of Diesel engine.
gine air-path model with the following form Stefanopoulou
et al. (2000)

�̇�𝑖 = 𝑇𝑖(𝑊𝑐𝑖 − 𝑊𝑖𝑒 + 𝑊𝑥𝑖) ×
𝑅

𝑉𝑖𝑛
;

�̇�𝑥 = 𝑇𝑥(𝑊𝑒𝑖 + 𝑚𝑓 − 𝑊𝑥𝑖 − 𝑊𝑥𝑡) ×
𝑅

𝑉𝑒𝑥
; (1)

�̇�𝑐 = (−𝑃𝑐 + 𝜂𝑚𝑝𝑡) ×
1
𝜏

where states 𝑃𝑖, 𝑃𝑥, 𝑃𝑐 represent, respectively, the intake
manifold pressure, exhaust manifold pressure, compressor
power.
Compressor mass flow rate 𝑊𝑐𝑖 is related to the compressor
power by

𝑊𝑐𝑖 = 𝜂𝑐𝑃𝑐 ×
1

𝑇𝑎𝑐𝑝[(−1 + 𝑃𝑖
𝑝𝑎

)𝜇]
(2)

Engine intake mass flow rate 𝑊𝑖𝑒 is calculated by the
speed density equation

𝑊𝑖𝑒 =
1

120
×

𝜂𝑣𝑁𝑉𝑑𝑃𝑖

𝑅𝑇𝑖
(3)

The flow through the EGR valve 𝑊𝑥𝑖 is established as
follows

𝑊𝑥𝑖 =

⎧⎨⎩
𝜅0√
𝑅𝑇𝑥

(︁
𝛼

1
2

[︁ 2
𝛼 + 1

]︁𝜅1)︁
;

𝑃𝑖

𝑃𝑥
≤
[︁ 2

𝛼 + 1

]︁𝜅1

𝜅0√
𝑅𝑇𝑥

√
2𝜅3

(︁
(

𝑃𝑖

𝑃𝑥
)

2
𝛼 − (

𝑃𝑖

𝑃𝑥
)𝜅2
)︁

;
𝑃𝑖

𝑃𝑥
>

[︁ 2
𝛼 + 1

]︁𝜅1

where

𝜅0 = 𝐴𝑒𝑔𝑟(𝜗𝑒𝑔𝑟)𝑃𝑥; 𝜅1 =
𝛼 + 1

2(𝛼 − 1)
; 𝜅2 =

𝛼 + 1
𝛼

; 𝜅3 =
𝛼

𝛼 − 1
and 𝐴𝑒𝑔𝑟(𝜗𝑒𝑔𝑟) is the effective area of the valves as a

function of 𝜗𝑒𝑔𝑟 ∈ [0, 100] % being the valve opening
positions.
Turbine flow 𝑊𝑥𝑡 is given by

𝑊𝑥𝑡 =
[︁

𝑐(
𝑃𝑥

𝑝𝑎
− 1) + 𝑑

]︁
𝑃𝑥

𝑝𝑎

√︂
𝑇𝑎

𝑇𝑥

√︂
2𝑝𝑎

𝑃𝑥
(1 −

𝑝𝑎

𝑃𝑥
))𝐴𝑣𝑔𝑡(𝜗𝑣𝑔𝑡) (4)

with the VGT opening position 𝜗𝑣𝑔𝑡 ∈ [0, 1] can be
calculated inversely from equation (4) once the turbine
flow rate is specified by the controller.
The turbine power 𝑝𝑡 is modeled by

𝑝𝑡 = 𝑊𝑥𝑡𝑐𝑝𝑇𝑥𝜏𝑡(1 − (
𝑝𝑎

𝑃𝑥
)𝜇) (5)

Using equations (1-5), the nonlinear model of the air-path
of a diesel engine can be rewritten as:

�̇�𝑖 = −
𝜂𝑣𝑉𝑑𝑁

120𝑉𝑖
𝑃𝑖 +

𝑅𝜂𝑐𝑇𝑖

𝑉𝑖𝑐𝑝𝑇𝑎(( 𝑃𝑖
𝑝𝑎

)𝜇 − 1)
𝑃𝑐 +

𝑅𝑇𝑖

𝑉𝑖
𝑊𝑥𝑖;

�̇�𝑥 =
𝜂𝑣𝑉𝑑𝑁𝑇𝑥

120𝑉𝑥𝑇𝑖
𝑃𝑖 −

𝑅𝑇𝑥

𝑉𝑥
(𝑊𝑥𝑖 + 𝑊𝑥𝑡 − 𝑚𝑓 ); (6)

�̇�𝑐 =
−1
𝜏

𝑃𝑐 +
𝑐𝑝𝜂𝑡𝑇𝑥

𝜏
(1 − (

𝑝𝑎

𝑃𝑥
)𝜇)𝑊𝑥𝑡;

Define 𝑥1 = 𝑃𝑖, 𝑥2 = 𝑃𝑥 and 𝑥3 = 𝑃𝑐 are the state
variables; 𝑢1 = 𝑊𝑥𝑖, 𝑢2 = 𝑊𝑥𝑡 are the control inputs;
𝑤 = 𝑚𝑓 denote the disturbance input. Then, the state-
space form of the Diesel engine Air-path model can be
given as :

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷𝑤(𝑡)

𝑦(𝑡) = 𝐿𝑥(𝑡) (7)

Where

𝐴 =

⎛⎜⎜⎜⎝
−

𝜂𝑣𝑉𝑑𝑁

120𝑉𝑖
0

𝑅𝜂𝑐𝑇𝑖

𝑉𝑖𝑐𝑝𝑇𝑎
𝜉1(𝑥1);

𝜂𝑣𝑉𝑑𝑁

120𝑉𝑥

𝑇𝑥

𝑇𝑖
0 0

0 0
−1
𝜏

⎞⎟⎟⎟⎠ ; 𝑥 =

(︃
𝑃𝑖

𝑃𝑥

𝑃𝑐

)︃
;

𝐵 =

⎛⎜⎜⎜⎝
𝑅𝑇𝑖

𝑉𝑖
0

−
𝑅𝑇𝑥

𝑉𝑥
−

𝑅𝑇𝑥

𝑉𝑥

0
𝑐𝑝𝜂𝑡𝑇𝑥

𝜏
𝜉2(𝑥2)

⎞⎟⎟⎟⎠ ; 𝐷 =

⎛⎝ 0
𝑅𝑇𝑥

𝑉𝑥
0

⎞⎠ ; 𝑢 =
(︁

𝑊𝑥𝑖

𝑊𝑥𝑡

)︁

𝐿 =
(︁

1 0 0
0 1 0

)︁
; 𝜉1(𝑥1) =

1
( 𝑃𝑖

𝑝𝑎
)𝜇 − 1

; 𝜉2(𝑥2) = 1 − (
𝑝𝑎

𝑃𝑥
)𝜇 (8)

One way to take into account the nonlinearities of the
model is to use a polytopic approach such as the Takagi-
Sugeno model Takagi et al. (1985). The fuzzy model
is described by fuzzy IF-THEN rules, the set of which
represents the approximation of the nonlinear system. A
fuzzy T-S model has the following form : Plant Rule i:
IF 𝜉1(𝑡) is 𝑁 𝑖

1 and,..., and 𝜉𝑠(𝑡) is 𝑁 𝑖
𝑠 THEN

�̇�(𝑡) = 𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝐷𝑤(𝑡)

𝑦(𝑡) = 𝐿𝑥(𝑡) (9)

Where 𝜉1(𝑡) ,..., 𝜉𝑠(𝑡) are premise variables; 𝑁 𝑖
𝑗(𝑖 =

1, ..., 𝑞; 𝑗 = 1, ..., 𝑠) are fuzzy sets; 𝑞 is the number of
IF-THEN rules; 𝑠 is the number of premise variables
and 𝐴𝑖, 𝐵𝑖, 𝐷, 𝐿𝑖 are known matrices with appropriate
dimensions.
These functions are bounded by 𝜉1 ≤ 𝜉1 ≤ 𝜉1 and
𝜉2 ≤ 𝜉2 ≤ 𝜉2, for (𝑃𝑖𝑚𝑖𝑛

≤ 𝑃𝑖 ≤ 𝑃𝑖𝑚𝑎𝑥
) and (𝑃𝑥𝑚𝑖𝑛

≤
𝑃𝑥 ≤ 𝑃𝑥𝑚𝑎𝑥

) with

𝜉1 =
1

−1 + ( 𝑃 𝑖
𝑝𝑎

)𝜇
; 𝜉1 =

1

−1 + ( 𝑃
𝑖

𝑝𝑎
)𝜇

;

𝜉2 = 1 − (
𝑝𝑎

𝑃 𝑥

)𝜇; 𝜉2 = 1 − (
𝑝𝑎

𝑃 𝑥

)𝜇 (10)

from this decomposition, the follow functions are given

𝑁11 =
𝜉1 − 𝜉1

𝜉1 − 𝜉1

; 𝑁12 = 1 − 𝑁11; 𝑁21 =
𝜉2 − 𝜉2

𝜉2 − 𝜉1

; 𝑁22 = 1 − 𝑁21

(11)

where 𝑁𝑙𝑘(𝜉𝑙(𝑡)) is the grade of membership of 𝜉𝑙(𝑡) in 𝑁𝑙𝑘,
with 𝑙, 𝑘 = 1, 2. This leads four local models by combining
four functions



𝑀𝑖(𝜉(𝑡)) = 𝑁𝑙𝑘(𝜉𝑙(𝑡))𝑁𝑘𝑙(𝜉𝑘(𝑡)) (12)
with 𝑙 = 1 : 2, 𝑘 = 1 : 2, and 𝑖 = 1 : 4.

Finally ℎ𝑖(𝜉(𝑡)) is seen as the normalized weight of each
IF-THEN rules, given by

ℎ𝑖(𝜉(𝑡)) =
𝑀𝑖(𝜉(𝑡))∑︀4
𝑖=1 𝑀𝑖(𝜉(𝑡))

(13)

We assume
4∑︁

𝑖=1

𝑀𝑖(𝜉(𝑡)) = 1; 0 ≤ 𝑀𝑖(𝜉(𝑡)) (14)

for any 𝜉(𝑡). Therefore, for all 𝑡 we have

4∑︁
𝑖=1

ℎ𝑖(𝜉(𝑡)) = 1; 0 ≤ ℎ𝑖(𝜉(𝑡)) (15)

The overall T-S fuzzy model is inferred as follows

�̇�(𝑡) =
4∑︁

𝑖=1

ℎ𝑖(𝜉(𝑡)){𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)} + 𝐷𝑤(𝑡);

𝑦(𝑡) = 𝐿𝑥(𝑡) (16)
For simplicity, introduce the following notations

ℎ𝑖 = ℎ𝑖(𝜉(𝑡); 𝐴(ℎ) =
4∑︁

𝑖=1

ℎ𝑖𝐴𝑖; 𝐵(ℎ) =
4∑︁

𝑖=1

ℎ𝑖𝐵𝑖

Then, the T-S fuzzy model (16) can be rewritten as

�̇�(𝑡) = 𝐴(ℎ)𝑥(𝑡) + 𝐵(ℎ)𝑢(𝑡) + 𝐷𝑤(𝑡);

𝑦(𝑡) = 𝐿𝑥(𝑡) (17)
The energy of the disturbance 𝑤(𝑡) is assumed to be

dominated in a known rectangular FF region Σ given as
follows

Σ = 𝑤 ∈ R| |𝑤| ≤ �̄�𝑙; �̄�𝑙 > 0 (18)

For initial conditions, 𝑥0 = (70𝐾𝑃𝑎; 55𝐾𝑃𝑎; 500 𝑊𝑎𝑡𝑡𝑠)𝑇 ,
fig. 2 a comparison of the intake and exhaust manifold
pressures responses obtained by the two models (T-S
model and nonlinear model). Based on the results of this
figure, it is assumed that the satisfaction of the T-S model
representation is approved. Now, formulate the FTSOFC
problem, the actuator fault given in Yang et al. (2001) is
adopted in this work, for the control input 𝑢(𝑡), we denote
𝑢𝑓 (𝑡) to describe the signal sent from the actuator, and
satisfies

𝑢𝑓 (𝑡) = 𝐹𝑢(𝑡) (19)
where, the actuator fault matrix 𝐹 is defined as
𝐹 =diag{𝐹1, 𝐹2}, 0 ≤ 𝐹 𝑗 ≤ 𝐹𝑗 ≤ 𝐹 𝑗 ≤ 1; (𝑗 = 1, 2),
with 𝐹 𝑗 and 𝐹 𝑗 being known real constants. We denote
𝐹 =diag{𝐹 1, 𝐹 2}; 𝐹 =diag{𝐹 1, 𝐹 2}. Then, the actuator
fault function matrix 𝐹 can be represented by

𝐹 = 𝛿1 + Ω𝛿2; |Ω| ≤ 𝐼 (20)

where 𝛿1 = 𝐹 +𝐹
2 , 𝛿2 = 𝐹 −𝐹

2 , Ω =diag{𝜁1, 𝜁2, 𝜁3}. In this
paper, the FF FTSOFC objective is to regulate the intake
and exhaust manifold pressures of the Diesel engine, to
ensure tracking of given output reference 𝑦𝑟, we introduce
the integrator of the tracking errors as follows :
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Fig. 2. Intake and Exhaust manifold pressures of the
nonlinear and the T-S model

�̇�(𝑡) = 𝑦𝑟(𝑡) − 𝑦(𝑡) (21)

proposes the following fuzzy FTSOFC :

𝑢(𝑡) = 𝐾1(ℎ)
∫︁

(𝑦𝑟(𝑡) − 𝑦(𝑡))𝑑𝑡 + 𝐾2(ℎ)𝑦(𝑡) (22)

and

𝐾1(ℎ) =
4∑︁

𝑖=1

ℎ𝑖𝐾1𝑖; 𝐾2(ℎ) =
4∑︁

𝑖=1

ℎ𝑖𝐾2𝑖

Then

𝑢𝑓 (𝑡) =
(︀

0 𝐹 𝐾1(ℎ) 𝐹 𝐾2(ℎ)
)︀(︃ 𝑥(𝑡)

𝑦(𝑡)
𝑒(𝑡)

)︃
(23)

Let 𝜂(𝑡) =
(︀

𝑥𝑇 (𝑡) 𝑦𝑇 (𝑡) 𝑒𝑇 (𝑡)
)︀𝑇 and Combining fuzzy

system (17) and tracking error (21), then the following
closed-loop fuzzy system:

�̄��̇�(𝑡) = 𝐴(ℎ)𝜂(𝑡) + �̄��̄�(𝑡);

𝑟(𝑡) = �̄�𝜂(𝑡) (24)

where

�̄� =

(︃
𝐼 0 0
0 𝐼 0
0 0 0

)︃
; 𝐴(ℎ) =

(︃
𝐴(ℎ) 𝐵(ℎ)𝐹 𝐾1(ℎ) 𝐵(ℎ)𝐹 𝐾2(ℎ)

0 0 −𝐼
−𝐿 0 𝐼

)︃
;

�̄� =
(︀

0 𝐼 0
)︀

; �̄� =

(︃
𝐷 0
0 𝐼
0 0

)︃
; �̄�(𝑡) =

(︁
𝑤(𝑡)
𝑦𝑟(𝑡)

)︁
(25)

The problem of FF fuzzy 𝐻∞ FTSOFC consists in pre-
senting a controller such that the closed-loop fuzzy system
(24) is said with 𝐻∞ performance bound 𝛾 > 0 in the
presence of actuator faults, if it is asymptotically stable,
moreover, the following inequality holds under the zero
initial condition∫︁

𝑤∈Σ
𝑌 𝑇 (𝑤)𝑌 (𝑤)𝑑𝑤 ≤

∫︁
𝑤∈Σ

𝑊 𝑇 (𝑤)𝑊 (𝑤)𝑑𝑤 (26)

where 𝑌 (𝑤), 𝑊 (𝑤) are the Fourier transform of the
exogenous disturbance �̄�(𝑡) and the measured output 𝑟(𝑡),
respectively.



3. FINITE FREQUENCY 𝐻∞ FT SOFC DESIGN
USING DESCRIPTOR SYSTEMS

To deal with actuator fault and external disturbances,
the following lemmas are needed to demonstrate the main
results.
Lemma 1. Gahinet et al. (1994) Given matrices Γ, Λ
and Φ. There exist a matrix 𝒳 such that the following
statements are equivalent :
(i) Φ + Γ𝒳 Λ𝑇 + Λ𝒳 𝑇 Γ𝑇 < 0
(ii) Γ⊥ΦΓ⊥𝑇 < 0; Λ⊥ΦΛ⊥𝑇 < 0
Lemma 2. Tuan et al. (2014) If the following equations are
satisfied :

Δ𝑖𝑖 < 0, 1 ≤ 𝑖 ≤ 𝑟;
1

𝑟 − 1
Δ𝑖𝑖 +

1
2

(Δ𝑖𝑗 + Δ𝑗𝑖) < 0; 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑟;

Then the following parameterized linear matrix inequality
holds:

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

ℎ𝑖(𝜉(𝑡))ℎ𝑗(𝜉(𝑡))Δ𝑖𝑗 < 0

Lemma 3. Chadli et al. (2017) The T-S fuzzy descriptor
system (17) is admissible if and only if the following
statements are equivalent :
(i) The exist a matrix 𝑄 such that :

𝐴𝑇 𝑄 + 𝑄𝑇 𝐴 < 0; �̄�𝑇 𝑄 = 𝑄𝑇 �̄� ≥ 0 (27)

(ii) There exists matrices 𝑄 > 0 and 𝑆 such that :

(𝑄�̄� + 𝑆𝑅)𝑇 𝐴 + 𝐴𝑇 (𝑄�̄� + 𝑆𝑅) < 0 (28)

with �̄�𝑇 𝑅 = 0 and 𝑅 ∈ R𝑛×(𝑛−𝑛�̄�).
Lemma 4. El-Amrani et al., 2023 Assume that the closed-
loop system (24) is asymptotically stable, with FF 𝐻∞
performance index 𝛾, if there exists symmetric matrices
𝑃 (ℎ), 𝑈(ℎ) = 𝑈𝑇 (ℎ) > 0 such that

[︁
𝐴(ℎ) �̄�

�̄� 0

]︁𝑇
[︂

−𝑈(ℎ) 𝑃 (ℎ)
𝑃 (ℎ) �̄�2

𝑙 𝑈(ℎ)

]︂[︁
𝐴(ℎ) �̄�

�̄� 0

]︁
+
[︂

�̄�𝑇 �̄� 0
0 −𝛾2𝐼

]︂
< 0

(29)

Remark 1. If all the parameters in Lemma 4 is indepen-
dent of ℎ, T-S fuzzy system becomes a linear system,
Lemma 4 reduces to the GKYP lemma Iwasaki et al.
(2005).
Theorem 1. For unknown actuator fault matrix 𝐹 , closed-
loop fuzzy system (24) is asymptotically stable and 𝐻∞
performance index 𝛾 of FF domain Σ, if there exist
symmetric matrices 𝑈(ℎ), 𝑃 (ℎ) > 0 and 𝑄(ℎ) > 0 and
matrices 𝐺(ℎ), 𝑆 satisfying the following conditions :⎡⎢⎣ −𝑈(ℎ) − 𝐺(ℎ) − 𝐺𝑇 (ℎ) Γ1 𝐺(ℎ)�̄� 0

⋆ Γ2 𝐺(ℎ)�̄� �̄�𝑇

⋆ ⋆ −𝛾2𝐼 0
⋆ ⋆ ⋆ −𝐼

⎤⎥⎦ < 0 (30)

[︂
−𝐺(ℎ)𝑇 − 𝐺(ℎ) −𝐺(ℎ) + Γ3

⋆ 𝐺(ℎ)𝐴(ℎ) + 𝐴𝑇 (ℎ)𝐺𝑇 (ℎ)]

]︂
< 0 (31)

where

Γ1 = 𝑈(ℎ)�̄� + 𝐺(ℎ)𝐴(ℎ) − 𝐺𝑇 (ℎ);

Γ2 = �̄�2
𝑙 �̄�𝑇 𝑈(ℎ)�̄� + 𝐺(ℎ)𝐴(ℎ) + 𝐴𝑇 (ℎ)𝐺𝑇 (ℎ);

Γ3 = (𝑄(ℎ)�̄� + 𝑅𝑆)𝑇 + 𝐴𝑇 (ℎ)𝐺𝑇 (ℎ);

𝑅 =
[︀

𝑅𝑇
1 𝑅𝑇

2 𝑅𝑇
3
]︀𝑇

and �̄�𝑇 𝑅 = 0 and 𝑅 ∈ R𝑛×(𝑛−𝑛�̄�).
Proof 1. First, show that (29) is equivalent to (30), con-
sider that (29) can be rewritten as follows :[︃

𝐴(ℎ) �̄�
𝐼 0
0 𝐼

]︃𝑇

Φ

[︃
𝐴(ℎ) �̄�

𝐼 0
0 𝐼

]︃
< 0 (32)

where

Φ =

[︃
𝐼 0
0 𝐼
0 0

]︃[︂
−𝑈(ℎ) 𝑃 (ℎ)�̄�

�̄�𝑇 𝑃 (ℎ) �̄�2
𝑙 �̄�𝑇 𝑈(ℎ)�̄�

]︂[︁
𝐼 0 0
0 𝐼 0

]︁
+
[︁

0 �̄� 0
0 0 𝐼

]︁𝑇
[︂

𝐼 0
0 −𝛾2𝐼

]︂[︁
0 �̄� 0
0 0 𝐼

]︁
(33)

Define

𝒳 =
[︀

𝐺𝑇 𝐺𝑇 0
]︀𝑇

; Λ =
[︀

−𝐼 𝐴 �̄�
]︀

; Γ = 𝐼

Based on Lemma 1, then

Σ + Γ𝑇 𝒳 Λ + Λ𝑇 𝒳 𝑇 Γ < 0 (34)
As can see Γ⊥ = 0, the first inequality in condition (ii)
of Lemma 1 disappears, and according to Lemma 1, (33)
is valid for some 𝒳 if and only if the second inequality of
condition (ii) of lemma 1. Note that Λ⊥ can be chosen as

Λ⊥ =

⎡⎣𝐴(ℎ) �̄�
𝐼 0
0 𝐼

⎤⎦ and by using the Schur complement,

can get the equivalence between equations (29) and (30).
Secondly, let’s show that the (28) is equivalent to (31),
Define (28) be rewritten in the form[︁

𝐴(ℎ)
𝐼

]︁𝑇
[︂

0 𝑄(ℎ)�̄� + 𝑆𝑅

(𝑄(ℎ)�̄� + 𝑆𝑅)𝑇 0

]︂[︁
𝐴(ℎ)

𝐼

]︁
< 0 (35)

Let :

Σ =
[︂

0 𝑄(ℎ)�̄� + 𝑆𝑅

(𝑄(ℎ)�̄� + 𝑆𝑅)𝑇 0

]︂
; 𝐺 =

[︁
𝐺(ℎ)
𝐺(ℎ)

]︁
;

𝒳 =
[︀

−𝐼 𝐴(ℎ)
]︀

; 𝒳 ⊥ =
[︁

𝐴(ℎ)
𝐼

]︁
(36)

So get that equations (35) and (36) are equivalent to
inequality (31).
Theorem 2. For unknown actuator fault matrix 𝐹 , closed-
loop fuzzy system (24) is asymptotically stable, with 𝐻∞
performance index 𝛾 in FF domain |𝜔| ≤ �̄�𝑙, if there exist
symmetric matrices �̃�1𝑡𝑖, �̃�2𝑣𝑖, �̃�33𝑖, 𝑃1𝑡𝑖, 𝑃2𝑣𝑖, 𝑃33𝑖, �̃�1𝑡𝑖,
�̃�2𝑣𝑖 and �̃�33𝑖 and matrices �̄�𝑡𝑖, 𝑆𝑡, 𝑍𝑠𝑖 and 𝐻, (with,
𝑠 = 1, 2, 3, 𝑡 = 2, 3, 𝑣 = 1, 2) satisfying :

Ψ𝑖𝑖 < 0; ϒ𝑖𝑖 < 0; 𝑖 = 1, ..., 4
1
3Ψ𝑖𝑖 + 1

2 {Ψ𝑖𝑗 + Ψ𝑗𝑖} < 0; 1 ≤ 𝑖 ̸= 𝑗 ≤ 4 (37)
1
3ϒ𝑖𝑖 + 1

2 {ϒ𝑖𝑗 + ϒ𝑗𝑖} < 0; 1 ≤ 𝑖 ̸= 𝑗 ≤ 4

where



Ψ𝑖𝑗 =

[︃
Ψ11 Ψ12 Ψ13

⋆ Ψ22 Ψ23
⋆ ⋆ Ψ33

]︃
; ϒ𝑖𝑗 =

[︁
ϒ11 ϒ12

⋆ ϒ22

]︁
;

Ψ11 =

[︃
𝑎1 −�̄�𝑇

2𝑖 − �̃�12𝑖 −�̄�𝑇
3𝑖 − �̃�13𝑖

⋆ −𝐻 − 𝐻𝑇 − �̃�22𝑖 −𝐻 − �̃�23𝑖

⋆ ⋆ −𝐻 − 𝐻𝑇 − �̃�33𝑖

]︃
;

Ψ12 =

[︃
𝑎2 𝑎3 𝑎4
𝑎5 𝑎6 −𝑈 − 𝑈𝑇

𝑎7 𝑎8 −𝐿�̄�𝑇
3𝑖 + 𝐻𝑇 − 𝐻

]︃
; Ψ13 =

[︃
𝐷 0 0
0 𝐼 0
0 0 0

]︃
;

Ψ22 =

[︃
𝑎9 𝑎10 𝑎11
⋆ 𝜔2

𝑙 �̃�22𝑖 − 𝐻 − 𝐻𝑇 𝑎12
⋆ ⋆ 𝑎13

]︃
; Ψ23 =

[︃
𝐷 0 0
0 𝐼 𝐻𝑇

0 0 0

]︃
;

Ψ33 =

[︃
−𝛾2𝐼 0 0

0 −𝛾2𝐼 0
0 ⋆ −𝐼

]︃
;

ϒ11 =

[︃
−�̄�1𝑖 − �̄�𝑇

1𝑖 −�̄�𝑇
2𝑖 −�̄�𝑇

3𝑖 − 𝐷𝐻

⋆ −𝐻 − 𝐻𝑇 −𝐻

⋆ ⋆ −𝐻 − 𝐻𝑇

]︃
;

ϒ12 =

[︃
𝑎14 𝑎15 𝑎16
𝑎17 �̃�22𝑖 + 𝑆𝑇

2 𝑅𝑇
2 − 𝐻 − 𝐻𝑇 𝑎18

𝑎19 𝑆𝑇
3 𝑅𝑇

2 − 𝐻 − 𝐻𝑇 𝑎20

]︃
;

ϒ22 =

[︃
𝑎21 𝑎22 𝑎23
⋆ −𝐻 − 𝐻𝑇 −𝐻𝑇 − �̄�2𝑖𝐿

𝑇 + 𝐻
⋆ ⋆ 𝑎24

]︃
;

𝑅1 =

[︃
0 0
0 0
𝐼 𝐼

]︃
; 𝑅2 = 𝑅3 =

[︁
𝐼 0
0 𝐼

]︁
; 𝑉 =

[︃
𝐼 0
0 𝐼
0 0

]︃
;

𝑎1 = −�̃�11𝑖 − �̄�1𝑖 − �̄�𝑇
1𝑖;

𝑎2 = 𝑃11𝑖 + 𝐴𝑗�̄�𝑇
1𝑖 + 𝛿1𝐵𝑍1𝑖𝑉

𝑇 + Ω𝛿2𝐵𝑍1𝑖𝑉
𝑇 − �̄�1𝑖;

𝑎3 = 𝑃12𝑖 + 𝐴𝑗�̄�𝑇
2𝑖 + 𝛿1𝐵𝑍1𝑖 + Ω𝛿2𝐵𝑍1𝑖 + 𝛿1𝐵𝑍2𝑖 + Ω𝛿2𝐵𝑍2𝑖;

𝑎4 = 𝐴𝑗�̄�𝑇
3𝑖 + 𝛿1𝐵𝑍1𝑖 + Ω𝛿2𝐵𝑍1𝑖 + 𝛿1𝐵𝑍2𝑖 + Ω𝛿2𝐵𝑍2𝑖 − 𝑉 𝐻;

𝑎5 = 𝑃 𝑇
12𝑖 − �̄�2𝑖 − 𝐻𝑇 𝑉 𝑇 ; 𝑎6 = −𝐻 − 𝐻𝑇 + 𝑃 𝑇

22𝑖;

𝑎7 = 𝑃 𝑇
13𝑖 − 𝐿�̄�𝑇

1𝑖 − �̄�3𝑖; 𝑎8 = 𝑃 𝑇
23𝑖 − 𝐿�̄�𝑇

2𝑖 + 𝐻𝑇 ;

𝑎9 = 𝜔2
𝑙 �̃�11𝑖 + 𝑠𝑦𝑚[𝐴𝑗�̄�𝑇

1𝑖 + 𝛿1𝐵𝑍1𝑖𝑉
𝑇 + Ω𝛿2𝐵𝑍1𝑖𝑉

𝑇 ];

𝑎10 = 𝜔2
𝑙 �̃�12𝑖 + 𝐴𝑗�̄�𝑇

2𝑖 + 𝛿1𝐵𝑍1𝑖 + Ω𝛿2𝐵𝑍1𝑖

+ 𝛿1𝐵𝑍2𝑖 + Ω𝛿2𝐵𝑍2𝑖 − 𝑉 𝐻;

𝑎11 = 𝐴𝑗�̄�𝑇
3𝑖 + 𝛿1𝐵𝑍2𝑖 + Ω𝛿2𝐵𝑍2𝑖 − �̄�1𝑖𝐿

𝑇 + 𝑉 𝐻;

𝑎12 = −�̄�2𝑖𝐿
𝑇 + 𝐻 − 𝐻𝑇 ; 𝑎13 = −�̄�3𝑖𝐿

𝑇 − 𝐿�̄�𝑇
3𝑖 + 𝐻𝑇 + 𝐻;

𝑎14 = �̃�11𝑖 + 𝑆𝑇
1 𝑅𝑇

1 + �̄�1𝑖𝐴
𝑇
𝑗 + 𝑉 𝑍𝑇

1𝑖𝐵
𝑇 𝛿1 + 𝑉 𝑍𝑇

1𝑖𝐵
𝑇 Ω𝛿2 − �̄�𝑇

1𝑖;

𝑎15 = �̃�12𝑖 + 𝑆𝑇
1 𝑅𝑇

2 − 𝑉 𝐻 − �̄�𝑇
2𝑖;

𝑎16 = �̃�13𝑖 + 𝑆𝑇
1 𝑅𝑇

3 − �̄�1𝑖𝐿
𝑇 + 𝑉 𝐻 − �̄�𝑇

3𝑖;

𝑎17 = �̃�𝑇
12𝑖 + 𝑆𝑇

2 𝑅𝑇
1 + �̄�2𝑖𝐴

𝑇
𝑗 + 𝑍𝑇

1𝑖𝐵
𝑇 𝛿1 + 𝑍𝑇

1𝑖𝐵
𝑇 Ω𝛿2

+ 𝑍𝑇
2𝑖𝐵

𝑇 𝛿1 + 𝑍𝑇
2𝑖𝐵

𝑇 Ω𝛿2;

𝑎18 = �̃�23𝑖 + 𝑆𝑇
2 𝑅𝑇

3 − �̄�2𝑖𝐿
𝑇 + 𝐻;

𝑎19 = 𝑆𝑇
3 𝑅𝑇

1 + �̄�3𝑖𝐴
𝑇
𝑗 + 𝑍𝑇

2𝑖𝐵
𝑇 𝛿1 + 𝑍𝑇

2𝑖𝐵
𝑇 Ω𝛿2 − 𝐻𝑇 𝑉 𝑇 ;

𝑎20 = 𝑆𝑇
3 𝑅𝑇

3 − �̄�3𝑖𝐿
𝑇 + 𝐻 − 𝐻𝑇 ;

𝑎21 = 𝑠𝑦𝑚[𝐴𝑗�̄�𝑇
1𝑖 + 𝛿1𝐵𝑍1𝑖𝑉

𝑇 + Ω𝛿2𝐵𝑍1𝑖𝑉
𝑇 ];

𝑎22 = 𝐴𝑗�̄�𝑇
2𝑖 + 𝛿1𝐵𝑍1𝑖 + Ω𝛿2𝐵𝑍1𝑖 + 𝛿1𝐵𝑍2𝑖 + Ω𝛿2𝐵𝑍2𝑖 − 𝑉 𝐻;

𝑎23 = 𝐴𝑗�̄�𝑇
3𝑖 + 𝛿1𝐵𝑍2𝑖 + Ω𝛿2𝐵𝑍2𝑖 − 𝐹1𝑖𝐿

𝑇 + 𝑉 𝐻

𝑎24 = −�̄�3𝑖𝐿
𝑇 − 𝐿�̄�𝑇

3𝑖 + 𝐻𝑇 + 𝐻;

Furthermore, under the above conditions, the fuzzy 𝐻∞
SOF controller gain matrices in (22) are

𝐾1𝑖 = 𝑍1𝑖𝐻
−1; 𝐾2𝑖 = 𝑍2𝑖𝐻

−1; 1 ≤ 𝑖 ≤ 4 (38)

Proof 2. Left- and right- multiplying (30) and (31) by
𝑑𝑖𝑎𝑔{𝐺−1(ℎ), 𝐺−1(ℎ), 𝐼, 𝐼} and 𝑑𝑖𝑎𝑔{𝐺−1(ℎ), 𝐺−1(ℎ)},
respectively.
Let �̄�(ℎ) = 𝐺−1(ℎ), �̃�(ℎ) = 𝐺−1(ℎ)𝑈((ℎ)𝐺−𝑇 (ℎ),
𝑃 (ℎ) = 𝐺−1(ℎ)𝑃 (ℎ)𝐺−𝑇 (ℎ), �̃�(ℎ) = 𝐺−1(ℎ)𝑄(ℎ)𝐺−𝑇 (ℎ)
and 𝑆 = 𝐺−1(ℎ)𝑆𝐺−𝑇 (ℎ).
Furthermore, Defining the following matrices :

�̃�(ℎ) =
4∑︁

𝑖=1

ℎ𝑖

(︃
�̃�11𝑖 �̃�12𝑖 �̃�13𝑖

⋆ �̃�22𝑖 �̃�23𝑖

⋆ ⋆ �̃�33𝑖

)︃
;

𝑃 (ℎ) =
4∑︁

𝑖=1

ℎ𝑖

(︃
𝑃11𝑖 𝑃12𝑖 𝑃13𝑖

⋆ 𝑃22𝑖 𝑃23𝑖

⋆ ⋆ �̃�33𝑖

)︃
;

�̃�(ℎ) =
4∑︁

𝑖=1

ℎ𝑖

(︃
�̃�11𝑖 �̃�12𝑖 �̃�13𝑖

⋆ �̃�22𝑖 �̃�23𝑖

⋆ ⋆ �̃�33𝑖

)︃
;

�̄�(ℎ) =
4∑︁

𝑖=1

ℎ𝑖

(︃
�̄�1𝑖 0 𝑉 𝐻
�̄�2𝑖 𝐻 𝐻
�̄�3𝑖 0 𝐻

)︃
; 𝑆 =

(︃
𝑆𝑇

1
𝑆𝑇

2
𝑆𝑇

3

)︃𝑇

;

𝐴(ℎ) =
4∑︁

𝑖=1

4∑︁
𝑗=1

ℎ𝑖ℎ𝑗

(︃
𝐴𝑗 𝐹 𝐵𝑗𝐾1𝑖 𝐹 𝐵𝑗𝐾2𝑖

0 0 −𝐼
−𝐿 0 𝐼

)︃
After that we applying Lemma 2, we have (30) and (31)

are equivalent to (37).
Table 1: Numerical values of Diesel engine

𝑇𝑖 Intake manifold temperature 340 𝐾

𝑇𝑎 Ambient temperature 310 𝐾

𝑝𝑎 Ambient pressure 100 𝑘𝑃 𝑎

𝑇𝑥 Exhaust manifold temperature 620 𝐾

N Engine Speed 1500 𝑟𝑝𝑚

𝑉𝑖 Volume of the intake manifold 0.003 𝑚3

𝑉𝑑 Displacement volume 0.006 𝑚3

𝑐𝑝 Specific heat at constant pressure 1014,4 𝐽/𝐾𝑔.𝐾

𝑐𝑣 Specific heat at volume pressure 727,4 𝐽/𝐾𝑔.𝐾

𝜂𝑐 compressor efficiency 0.61
𝑉𝑥 Volume of the exhaust manifold 0.002 𝑚3

𝜏 Time constant 0.11
𝜂𝑡 turbine efficiency 0.76
𝜂𝑣 Volumetric efficiency 0.87
𝑅 Gas constant 287 𝐽/𝐾𝑔.𝐾

𝜂𝑚 Turbocharger mechanical efficiency 1

4. SIMULATION

In this section, results are presented to illustrate the
effectiveness of the proposed controller design. The Diesel
engine air-path model parameters are given in Table 1.
The actuator fault is taken as 0.25 ≤ 𝐹1 ≤ 0.75, 0.35 ≤
𝐹2 ≤ 0.65. Choosing 𝑝𝑖 ∈ [135𝑘𝑃𝑎, 160𝑘𝑃𝑎] and 𝑝𝑥 ∈
[85𝑘𝑃𝑎, 115𝑘𝑃𝑎] and fuel flow rate are given as follows :

𝑚𝑓 =

{︃
6/3600 10 ≤ 𝑡 ≤ 20
3/3600 20 ≤ 𝑡 ≤ 30
4/3600 𝑜𝑡ℎ𝑒𝑟𝑠

(39)

Since the frequency range of the disturbances can be seen
as belonging to the FF domain |𝜔| ≤ 0.5 rad/s.
We set the initial conditions to 𝑝𝑖(0) = 145 𝑘𝑃𝑎, 𝑝𝑥(0) =



90 𝑘𝑃𝑎 and 𝑝𝑐(0) = 1200 𝑊 . The frequency responses of
the superposition of the measurements of the real outputs
system 𝑃𝑖, 𝑃𝑥 and its reference are plotted in figs. 3 and
4, respectively, the solid line being obtained by the FF
FTSOFC method, while the dotted line is obtained by
the EF FTSOFC approach. Can conclude from these two
figures that the frequency response results validate the 𝐻∞
performance, good tracking and fast convergence of the
proposed FF FTSOFC method in this article.
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Fig. 3. Intake manifold pressures
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Fig. 4. Exhaust manifold pressures

5. CONCLUSION

In this work, a fault- tolerant finite-frequency 𝐻∞ static
output control is proposed for the Diesel engine air-
path system. The LMI sufficient conditions guaranteeing
good tracking and specified 𝐻∞ performance are obtained
with actuator faults. The Air-path Diesel engine model is
described by T-S fuzzy model based descriptor approach.
Simulation has been provided to illustrate the effectiveness
of the proposed approach.
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