Sistemi di Controllo Digitale
Codice Google Classroom del Corso: hqmw7a4
Lezioni in Presenza (Lab Info 2, aula F8)
-
Insegnamento per il Corso di Laurea Triennale in Ingegneria Elettronica e Informatica (L-8, 6 CFU, percorso Ingegneria dell'Automazione)
-
Insegnamento per il Corso di Laurea Triennale in Ingegneria Meccanica (L-9, 6 CFU)
Rilevazione delle Opinioni delle Studentesse e Studenti
Propedeuticità
-
Fondamenti di Automatica o Controlli Automatici (suggeriti);
-
Analisi I, Analisi II, Fisica I (suggeriti per la comprensione del corso, e necessari per la verbalizzazione dell'esame finale).
Conoscenze e Abilità da Conseguire
-
Il corso, partendo dalle basi fornite dai moduli di Controlli
Automatici, si propone di fornire gli elementi di analisi e progetto
software dei regolatori digitali, ossia di quei sistemi di controllo in cui
l'unità di elaborazione è costituita da un calcolatore elettronico e
l'acquisizione dei dati è scandita da un opportuno periodo di
campionamento. L'analisi e la sintesi del sistema di controllo viene effettuato
attraverso opportuni strumenti e pacchetti software di progettazione assistita al calcolatore.
Introduzione al Corso
-
Il corso di 6 CFU tratta dei sistemi di controllo digitale,
ossia dei sistemi di controllo in retroazione in cui è presente
un calcolatore digitale. L'argomento, che rappresenta un nucleo
disciplinare importante per l'automazione dei processi industriali ed
il controllo di macchine, costituisce il naturale sviluppo dei
contenuti usualmente impartiti in un corso di base di Controlli
Automatici, ed è tipicamente rivolto agli studenti dei Corsi di
Laurea dell'area dell'Ingegneria dell'Informazione.
Il corso fornisce, oltre ai necessari sviluppi di
tipo metodologico, un insieme di esempi di analisi e di progetto
risolti in dettaglio negli aspetti numerici, grazie all'impiego di
strumenti software di progettazione assistita, quali Matlab e Simulink.
Il corso risulta indicato per i diversi curricula dell'Ingegneria Elettronica
e Informatica, l'Ingegneria Informatica e dell'Automazione, per la Laurea in
Informatica (Scienze), e per la laurea in Ingegneria Meccanica Industriale.
Anche sotto il profilo degli aspetti pratici forniti sull'utilizzo degli strumenti
software, si ritiene che il corso possa fornire competenze trasversali per futuri
progettisti e utilizzatori di sistemi di controllo nelle varie aree dell'Ingegneria.
L'orario delle lezioni segue quello definito per il Corso di Laurea Triennale in Ingegneria
Elettronica e Informatica. Il corso analizza la parte di teoria relativa al Controllo Digitale con
esercitazioni al calcolatore, indispensabili per la comprensione delle metodologie pratiche di progetto e sintesi di
un regolatore digitale.
Programma e Principali Contenuti delle Lezioni
-
Sistemi di Controllo Digitale (6 CFU)
-
La struttura dell'anello di controllo digitale: componenti e tipi di segnale
-
Equazioni alle differenze. La Zeta-trasformata: Proprietà e teoremi notevoli
-
Campionamento dei segnali. Spettro del segnale campionato. Ricostruttori di segnale.
Corrispondenza tra piano s e piano z
-
Criteri di stabilità per sistemi discreti
-
Specifiche di progetto
-
Tecniche di discretizzazione. Progetto diretto e indiretto del regolatore digitale mediante luogo delle
radici e discretizzazione. Progetto diretto mediante luogo delle radici. Regolatori PID digitali
Modalità di Verifica dell'Apprendimento
-
L'esame consiste (1) in una prova pratica da svolgere al calcolatore della durata di 30 minuti, in cui lo studente
dovrà dimostrare di aver appreso l'utilizzo degli strumenti di Matlab e Simulink al fine di effettuare un semplice progetto di un
sistema di controllo digitale al fine di soddisfare le specifiche richieste; successivamente, (2) ci sarà la verifica delle conoscenze relative
agli aspetti teorici del corso, ovvero la modellistica dei sistemi a tempo discreto e le metodologie di progetto di un
sistema di controllo digitale, attraverso una serie di domande a quiz a scelta multipla. Il tempo a disposizione per rispondere alle domande è di 15 minuti. Il punteggio conseguito dallo svolgimento corretto del progetto al calcolatore porta fino a 22 punti su 30 (22 in caso di prova risolta in maniera "perfetta"); le domande a quiz a scelta multipla consentono di ottenere un punteggio massimo di 9 punti (su un massimo di 9), a seconda del numero di domande risposte in maniera corretta. Il voto finale è dato dalla somma del punteggio della prova al PC e dei punti totalizzati con le domande a quiz a scelta multipla. Per accedere alla seconda (2) parte della prova è necessario aver acquisito almeno 18 punti su 30 nella prima parte (1) della prova pratica al PC.
Metodi Didattici
-
Le lezioni sono in presenza. Disponibili le registrazioni offline (non aggiornate per l'anno corrente, si consiglia comunque di seguire le lezioni).
La prova a quiz dell'esame è preceduta dallo svolgimento al calcolatore del progetto di
sistema di controllo digitale. La durata della prova al computer è di
30 minuti. Le domande a quiz a scelta multipla da completare in 15 minuti serviranno invece per la verifica
della conoscenza della teoria relativa ai Sistemi di Controllo Digitale.
Materiale Didattico: Dispense e Lucidi delle Lezioni
Lezioni in Laboratorio Informatica (in presenza) - Registrazioni delle Lezioni (offline)
-
29/02/2024. Introduzione al Corso: Commenti alla Scheda di Insegnamento. Link al filmato sul canale YouTube (durata: 15 min. circa).
-
29/02/2024. Commento al Piano di Studi della Laurea Triennale L8 in Elettronica e Informatica (curriculum Automazione). Link al filmato su YouTube (durata: 23 min. circa).
-
29/02/2024. Commento al Piano di Studi della Laurea Magistrale in Ingegneria Informatica e Automazione, percorso Sistemi per l'Automazione. Link al filmato su YouTube (durata: 28 min. circa).
-
29/02/2024. Il ruolo dell'Automazione nell'Industria, nell'Accademia e nella Società. Indagine ANIPLA. Il piano di studi della LT in Ingegneria Informatica ed Elettronica e della LM in Ingegneria Informatica e Automazione. Proposte di tesi nel settore Automazione, Meccatronica e Robotica Intelligente.
File versione 2019 in formato PDF; file aggiornato 2023 in formato PDF; Link al filmato su YouTube (durata: 28 min. circa).
-
29/02/2024. 01. Introduzione ai Sistemi di Controllo Digitale (Lucidi 1 - 7). Link al filmato su YouTube (durata: 18 min. circa).
-
05/03/2024. Introduzione a Matlab - Parte 1: Commento ai Lucidi e Principali Comandi (Lucidi Matlab 1 - 23). Link al filmato su YouTube (durata: 1 ora e 52 min. circa); script file salvati durante l'esercitazione in Laboratorio (file compresso .zip).
-
05/03/2024. Introduzione a Matlab - Parte 2: Commento ai Lucidi ed Elementi di Grafica (Lucidi Matlab 24 - 48). Link al filmato su YouTube (durata: 1 ora e 51 min. circa); file utilizzati durante l'esercitazione in Laboratorio (file compresso .zip); esempio di campionamento "ideale" e "reale"; esempi di Grafica 3D in Matlab (file compresso).
-
07/03/2024. 02. Gli Elementi di Base dei Sistemi di Controllo Digitale in Retroazione (Lucidi 8 - 10). Link al filmato su YouTube (durata: 23 min. circa); file di note alla LIM salvato durante la lezione in Laboratorio (file PDF); file utilizzati nella lezione: script di Matlab; script di Matlab.
-
07/03/2024. 03. Il Mantenitore di Ordine Zero: Esempio di Calcolo della Funzione di Trasferimento (Approfondimento alla Lavagna) (Discussione del Lucido 9).
Link al filmato su YouTube (durata: 24 min. circa); file di note alla LIM salvato durante la lezione in Laboratorio (file PDF)
-
12/03/2024. 04. Descrizione Matematica dei Sistemi a Tempo Discreto: Equazioni alle Differenze (Lucidi 11 - 13). Link al filmato su YouTube (durata: 26 min. circa).
-
12/03/2024. 05. Introduzione alle Trasformate Z: Definizione ed Esempi di Calcolo di Funzioni di Riferimento (Lucidi 15 - 23). Link al filmato su YouTube (durata: 33 min. circa); file utilizzati nella lezione: esempio di utilizzo del mantenitore ZOH in Simulink (dimensione: 24kB); esempio di schema di controllo in Simulink (dimensione: 39kB).
-
12/03/2024. 06. Esempio di Calcolo della Trasformata Z del Gradino Unitario (Approfondimento) (Lucido 20). Link al filmato su YouTube (durata: 11 min. circa).
-
14/03/2024. 07. Principali Proprietà delle Trasformate Z (Lucidi 24 - 34). Link al filmato su YouTube (durata: 39 min. circa); file utilizzati nella lezione: esempio di calcolo delle Trasformate Z in Matlab col Toolbox Simbolico (dimensione: 1kB);
-
14/03/2024. 08. Cenni sui Principali Medodi di Calcolo dell'Antitrasformata Z (Lucidi 36 - 40). Link al filmato su YouTube (durata: 22 min. circa); file utilizzati nella lezione: esempio di calcolo della Scoposizione in Fratti Semplici (dimensione: 1kB); note della lezione alla LIM (file PDF, dimensione: 176kB).
-
19/03/2024. Introduzione a Simulink e al Control System Toolbox: Elementi di Base; file utilizzati nella lezione: cartella compressa (dimensione: 26kB). Link al filmato su YouTube (durata: 1 ora e 47 min. circa).
-
21/03/2024. Uso Avanzato di Simulink e del Control System Toolbox: Esempio di Schema di Controllo; file utilizzati nella lezione: cartella compressa (dimensione: 26kB).
-
21/03/2024. 09. Relazione tra Trasformata Z e Trasformata di Laplace di un Segnale Campionato (Lucidi 43 - 48). Link al filmato su YouTube (durata: 27 min. circa); note della lezione alla LIM (file PDF, dimensione: 388kB).
-
26/03/2024. 10. Note sul Problema del Campionamento (Approfondimento) (Lucidi 45, 46, 48, 49, 61). Link al filmato su YouTube (durata: 30 min. circa); file Matlab utilizzati nella lezione: esempio di campionamento e filtraggio di segnali (dimensione: 2kB).
-
26/03/2024. 11. Spettro di un Segnale Campionato (Lucidi 49 - 55). Link al filmato su YouTube (durata: 25 min. circa).
-
04/04/2024. 12. Risposta in Frequenza del Mantenitore di Ordine Zero (Lucidi 56 - 61). Link al filmato su YouTube (durata: 19 min. circa); note alla LIM utilizzate durante la lezione: documento PDF (dimensione: 244kB).
-
04/04/2024. 13. Relazione Fondamentale tra Piano s e Piano z: Proprietà Topologiche (Lucidi 62 - 66). Link al filmato su YouTube (durata: 34 min. circa).
-
09/04/2024. 14. Mappe tra Piano s e Piano z: Esempi (Lucidi 67 - 71). Link al filmato su YouTube (durata: 41 min. circa); note alla LIM utilizzate durante la lezione: documento PDF (dimensione: 174kB).
-
11/04/2024. 15. Specifiche in Transitorio nel Tempo e Specifiche Frequenziali (Lucidi 107 - 111, 112 - 113). Link al filmato su YouTube (durata: 46 min. circa); note alla LIM utilizzate durante la lezione: documento PDF (dimensione: 378kB).
-
11/04/2024. 16. Luogo dei punti a δ Costante nel Piano z (Approfondimento) (Lucidi 69 - 70). Link al filmato su YouTube (durata: 16 min. circa); file Matlab utilizzato nella lezione: esempio di diagrammi di Bode e Nyquist (dimensione: 1kB).
-
11/04/2024. 17. Funzione di Trasferimento Discreta e Funzione di Risposta Armonica (Risposta Frequenziale) per Sistemi a Tempo Discreto (Lucidi 74 - 76). Link al filmato su YouTube (durata: 30 min. circa); note alla LIM utilizzate durante la lezione: documento PDF (dimensione: 157kB).
-
11/04/2024. 18. Condizioni di Stabilità per Sistemi a Tempo Discreto: Poli della Funzione di Trasferimento a Tempo Discreto (Lucidi 77 - 83). Link al filmato su YouTube (durata: 33 min. circa).
-
11/04/2024. 19. Stabilità per Schemi a Blocchi a Tempo Continuo e Discreto in Retroazione Unitaria (Lucidi 84 - 85). Link al filmato su YouTube (durata: 19 min. circa); file utilizzati nella lezione: cartella compressa con lo schema dei regolatori (dimensione: 670kB).
-
16/04/2024. 20. Confronto delle Condizioni di Stabilità tra Sistemi a Tempo Continuo e a Tempo Discreto (Lucidi 71 - 72). Link al filmato su YouTube (durata: 18 min. circa).
-
16/04/2024. 21. Diagramma di Nyquist e Stabilità per Sistemi a Tempo Discreto (Lucidi 86 - 92). Link al filmato su YouTube (durata: 27 min. circa).
-
16/04/2024. 22. Luogo delle Radici per Sistemi a Tempo Continuo e Discreto (Lucidi 95 - 96). Link al filmato su YouTube (durata: 17 min. circa).
-
16/04/2024. 23. Errori a Regime: Specifiche per Sistemi a Tempo Continuo e Tempo Discreto (Lucidi 96 - 99, 100 - 101). Link al filmato su YouTube (durata: 32 min. circa); note alla LIM utilizzate durante la lezione: documento PDF (dimensione: 125kB).
-
16/04/2024. 24. Tecniche di Progetto del Regolatore Digitale: Il Metodo Indiretto (Lucidi 114 - 118). Link al filmato su YouTube (durata: 14 min. circa).
-
18/04/2024. 25. Tecniche di Discretizzazione (Lucidi 119 - 125). Link al filmato su YouTube (durata: 27 min. circa).
-
18/04/2024. 26. Interpretazione delle Tecniche di Discretizzazione (approfondimento). Link al filmato su YouTube (durata: 35 min. circa); note alla LIM utilizzate durante la lezione: documento PDF (dimensione: 222kB).
-
30/04/2024. 27. Reti Correttrici - Richiami (Lucidi 127 - 139). Link al filmato su YouTube (durata: 20 min. circa).
-
30/04/2024. 28. Cenno sul Principio dei Poli Dominanti per il Progetto Pratico di Sistemi di Controllo Digitale. Link al filmato su YouTube (durata: 49 min. circa).
-
02/05/2024. 29. Progetto Diretto del Regolatore Digitale ed Esempio Numerico. (Lucidi 147 - 156). Link al filmato su YouTube (durata: 37 min. circa).
-
02/05/2024. 30. Regolatori Standard PID: Richiamo del Controllore Analogico e Progetto del Regolatore PID Digitale (Lucidi 157 - 169). Link al filmato su YouTube (durata: 36 min. circa).
-
09/05/2024. 31. Scelta Pratica del Tempo di Campionamento (Lucido 174). Link al filmato su YouTube (durata: 12 min. circa).
-
32. Considerazioni Conclusive sul Corso: Conoscenze, Abilità e Competenze. Link al filmato su YouTube (durata: 45 min. circa).
Esempi di Progetto di Schemi di Controllo Digitale: Testo del Problema, Soluzioni con Commenti, e Filmati
-
30/04/2024. Esempio di Progetto in Simulink di Schema di Controllo a Tempo Continuo. Esempio in Simulink di Schema a Tempo Continuo e script file in Matlab (file compresso); Link al filmato su YouTube (durata: 1 ora e 46 min. circa).
-
02/05/2024. Esempio di Progetto Indiretto. Esercizio sul metodo indiretto di progetto di sistema di controllo digitale con metodo di discretizzazione di Tustin e dell'Hold Equivalence: (Testo del problema, file in formato PDF). Appunti per l'esercizio: (File in formato PDF). File Simulink della soluzione .slx; File dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (File in formato PDF); File complessivi in unica cartella compressa: (File in formato .zip). Filmato offline con svolgimento dell'esercizio: Link a YouTube (durata: 1h e 20 min. circa).
-
07/05/2024. Esempio di Progetto in Simulink di Schema di Controllo a Tempo Continuo e Tempo Discreto. Esempio in Simulink di Schemi e script file in Matlab (file compresso 670kB); Link al filmato su YouTube (durata: 1 ora e 48 min. circa); note alla LIM utilizzate durante la lezione: documento PDF (dimensione: 200kB).
-
09/05/2024. Esempio di Progetto Diretto. Esercizio sul metodo diretto di progetto di regolatore digitale con luogo delle radici a tempo discreto (Testo del problema, file in formato PDF). Copia degli appunti scritti durante il filmato: (File in formato PDF). File Simulink della soluzione .slx; File dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (File in formato PDF). Filmato offline della risoluzione del progetto: Link a YouTube (durata: 57 min. circa).
-
14/05/2024. Esercizio. Esercizio sul progetto di regolatori standard PID a tempo continuo e a tempo discreto come metodi di taratura empirica di Ziegler-Nichols e autotuning con Simulink (Testo del problema, file in formato PDF). Copia degli appunti scritti durante il filmato: (File in formato PDF). File Simulink della soluzione .slx; File dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (File in formato PDF); filmato offline della soluzione proposta del docente: Link a YouTube (durata: 46 min. circa).
-
14/05/2024. Esercizio. Esercizio sul progetto con metodo indiretto di un sistema di controllo digitale per un modello del terzo ordine. (Testo del problema, file in formato PDF). Copia degli appunti scritti durante il filmato: (file in formato PDF); (file in formato PDF). File Simulink della soluzione .slx; file dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (file in formato PDF). Filmato offline dell'esercitazione: link a YouTube (durata: 33 min. circa).
-
16/05/2024. Esercizio. Esercizio sul progetto con metodo diretto di un sistema di controllo digitale per il tracking di un'antenna satellitare. (Testo del problema, file in formato PDF). Copia degli appunti scritti durante il filmato: (file in formato PDF). File Simulink della soluzione .slx; file dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (file in formato PDF). Filmato offline dell'esercitazione: link a YouTube (durata: 27 min. circa).
-
16/05/2024. Esercizio. Esercizio sul progetto di un regolatore standard PD a tempo continuo e a tempo discreto come metodi di taratura empirica di Ziegler-Nichols e automatica di Simulink. Il progetto viene applicato ad un sistema di tipo 1. (Testo del problema, file in formato PDF). Copia degli appunti scritti durante la lezione: (file in formato PDF); (file in formato PDF). File Simulink della soluzione .slx; file dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (file in formato PDF). Filmato dell'esercitazione: link a YouTube (durata: 37 min. circa).
-
21/05/2024. Esercizio. Esercizio sul metodo indiretto di progetto di regolatore proporzionale e rete anticipatrice a tempo continuo come sistemi di controllo digitale; discretizzazione del regolatore a tempo continuo con tecnica di Tustin: (Testo del problema, file in formato PDF). Copia degli appunti scritti durante il filmato: (File in formato PDF). File Simulink della soluzione .slx; File dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (File in formato PDF). Filmato con svolgimento del progetto: Link a YouTube (durata: 1 ora e 20 min. circa).
-
21/05/2024. Esercizio. Esercizio sul progetto con metodo diretto di un sistema di controllo digitale con luogo delle radici a tempo discreto. Il progetto viene applicato ad un modello a tempo continuo del 2o ordine: (testo del problema, file in formato PDF). Copia degli appunti usati durante il filmato: (file in formato PDF). File Simulink della soluzione .slx; File dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (file in formato PDF). Filmato offline della risoluzione del progetto: Link a YouTube (durata: 29 min. circa).
-
23/05/2024. Esercizio. Esercizio sul progetto di regolatori standard PID a tempo continuo e a tempo discreto come metodi di taratura empirica di Ziegler-Nichols e automatica di Simulink. Il progetto riguarda un modello del 4o ordine. (testo del problema, file in formato PDF). Copia degli appunti scritti durante il filmato: (file in formato PDF). file Simulink della soluzione .slx; file dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (file in formato PDF). Filmato dell'esercitazione in Laboratorio di Informatica: Link a YouTube (durata: 36 min. circa); filmato offline della soluzione proposta del docente: Link a YouTube (durata: 27 min. circa).
-
23/05/2024. Esercizio. Esercizio di progetto con metodo diretto di un sistema di controllo digitale per un modello del secondo ordine. (Testo del problema, file in formato PDF). Copia degli appunti scritti durante il filmato: (file in formato PDF). File Simulink della soluzione .slx; file dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (file in formato PDF). Filmato dell'esercitazione: link a YouTube (durata: 31 min. circa).
-
28/05/2024. Esercizio. Esercizio su metodo diretto di progetto di regolatore digitale con luogo delle radici a tempo discreto (Testo del problema, file in formato PDF). File Simulink della soluzione .slx; File dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (File in formato PDF). Filmato offline della risoluzione del progetto: Link a YouTube (durata: 57 min. circa).
-
30/05/2024. Esercizio. Esercizio di progetto con metodo indiretto di un sistema di controllo digitale di rete anticipatrice per un modello di motore elettrico con accoppiamento di carico. (Testo del problema, file in formato PDF). Copia degli appunti scritti durante la lezione: (file in formato PDF); (file in formato PDF). File Simulink della soluzione .slx; file dati della soluzione in Matlab .mat. Risoluzione dell'esercizio proposta dal docente: (file in formato PDF). Filmato dell'esercitazione: link a YouTube (durata: 46 min. circa).
Test di Autovalutazione per lo Studente (Preparazione per la Prova d'Esame)
Documenti Tecnici su Matlab e Simulink
-
K. Sigmon, "Matlab Primer". University of Florida, Florida, Second
Edition ed., 1993. (PDF format file).
-
"Matlab Tutorial", Getting Started with MATLAB. (PDF format file).
-
Simulink Main Features, "SIMULINK. Dynamic System Simulation for MATLAB".
(PDF format file).
-
Simulink for Dynamic System Modelling. Dynamic System Simulation for MATLAB and SIMULINK.
(PDF format file).
-
Simulink Basic Features. SIMULINK for Beginners.
(PDF format file).
Riferimenti Bibliografici (per eventuali approfondimenti)
-
C. Bonivento, C. Melchiorri, R. Zanasi. Sistemi di controllo digitale, Esculapio ed., Bologna, 1999
-
Gene F. Franklin, J. David Powell, Abbas Emami-Naeini, CONTROLLO A RETROAZIONE DI SISTEMI DINAMICI,
volume II. EdiSES s.r.l. 2005. ISBN: 88 7959 308 0
-